메뉴 건너뛰기




Volumn 16, Issue 5, 2004, Pages 1063-1076

Are Loss Functions All the Same?

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BIOLOGICAL MODEL; LEARNING; PHYSIOLOGY; STATISTICAL MODEL; STATISTICS;

EID: 1842733197     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/089976604773135104     Document Type: Article
Times cited : (463)

References (18)
  • 2
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • Aronszajn, N. Theory of reproducing kernels. (1950). Trans. Amer. Math. Soc., 686, 337-404.
    • (1950) Trans. Amer. Math. Soc. , vol.686 , pp. 337-404
    • Aronszajn, N.1
  • 4
    • 0036436325 scopus 로고    scopus 로고
    • Best choices for regularization parameters in learning theory: On the bias-variance problem
    • Cucker, F., & Smale, S. (2002). Best choices for regularization parameters in learning theory: On the bias-variance problem. Foundation of Computational Mathematics, 2, 413-428.
    • (2002) Foundation of Computational Mathematics , vol.2 , pp. 413-428
    • Cucker, F.1    Smale, S.2
  • 5
    • 0036071370 scopus 로고    scopus 로고
    • On the mathematical foundation of learning
    • Cucker, F., & Smale, S. (2002). On the mathematical foundation of learning. Bull. A.M.S., 39, 1-49.
    • (2002) Bull. A.M.S. , vol.39 , pp. 1-49
    • Cucker, F.1    Smale, S.2
  • 6
    • 0034419669 scopus 로고    scopus 로고
    • Regularization networks and support vector machines
    • Evgeniou, T., Pontil, M., & Poggio, T. (2000). Regularization networks and support vector machines. Adv. Comp. Math., 13, 1-50.
    • (2000) Adv. Comp. Math. , vol.13 , pp. 1-50
    • Evgeniou, T.1    Pontil, M.2    Poggio, T.3
  • 7
    • 0001219859 scopus 로고
    • Regularization theory and neural networks architectures
    • Girosi, F., Jones, M., & Poggio, T. (1995). Regularization theory and neural networks architectures. Neural Computation, 7, 219-269.
    • (1995) Neural Computation , vol.7 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 9
    • 0036643043 scopus 로고    scopus 로고
    • Statistical properties and adaptive tuning of support vector machines
    • Lin, G., Wahba, Y., Zhang, H., & Lee, Y. (2003). Statistical properties and adaptive tuning of support vector machines. Machine Learning, 48, 115-136.
    • (2003) Machine Learning , vol.48 , pp. 115-136
    • Lin, G.1    Wahba, Y.2    Zhang, H.3    Lee, Y.4
  • 10
    • 9444269961 scopus 로고    scopus 로고
    • On the Bayes risk consistency of regularized boosting methods
    • in press
    • Lugosi, G., & Vayatis, N. (in press). On the Bayes risk consistency of regularized boosting methods. Annals of Statistics.
    • Annals of Statistics
    • Lugosi, G.1    Vayatis, N.2
  • 11
    • 85050903079 scopus 로고    scopus 로고
    • A note on different covering numbers in learning theory
    • in press
    • Pontil, M. (in press). A note on different covering numbers in learning theory. J. Complexity.
    • J. Complexity
    • Pontil, M.1
  • 12
    • 0004267646 scopus 로고
    • Princeton, NJ: Princeton University Press
    • Rockafellar, R. (1970). Convex analysis. Princeton, NJ: Princeton University Press.
    • (1970) Convex Analysis
    • Rockafellar, R.1
  • 17
    • 4644257995 scopus 로고    scopus 로고
    • Statistical behavior and consistency of classification methods based on convex risk minimization
    • in press
    • Zhang, T. (in press). Statistical behavior and consistency of classification methods based on convex risk minimization. Annals of Statistics.
    • Annals of Statistics
    • Zhang, T.1
  • 18
    • 0036748375 scopus 로고    scopus 로고
    • The covering number in learning theory
    • Zhou, D. (2002). The covering number in learning theory. J. Complexity, 18, 739-767.
    • (2002) J. Complexity , vol.18 , pp. 739-767
    • Zhou, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.