메뉴 건너뛰기




Volumn 97, Issue 1-2, 1997, Pages 273-324

Wrappers for feature subset selection

Author keywords

Classification; Feature selection; Filter; Wrapper

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; DATA STRUCTURES; DECISION THEORY; FORMAL LOGIC; LEARNING ALGORITHMS; TREES (MATHEMATICS);

EID: 0031381525     PISSN: 00043702     EISSN: None     Source Type: Journal    
DOI: 10.1016/s0004-3702(97)00043-x     Document Type: Article
Times cited : (7316)

References (123)
  • 1
    • 0000217085 scopus 로고
    • Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithms
    • D.W. Aha, Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithms, Internat. J. Man-Machine Studies 36 (1992) 267-287.
    • (1992) Internat. J. Man-machine Studies , vol.36 , pp. 267-287
    • Aha, D.W.1
  • 2
    • 0001918655 scopus 로고
    • Feature selection for case-based classification of cloud types: An empirical comparison
    • Seattle, WA
    • D.W. Aha and R.L. Bankert, Feature selection for case-based classification of cloud types: an empirical comparison, in: Working Notes of the AAAI-94 Workshop on Case-Based Reasoning, Seattle, WA (1994) 106-112.
    • (1994) Working Notes of the AAAI-94 Workshop on Case-based Reasoning , pp. 106-112
    • Aha, D.W.1    Bankert, R.L.2
  • 5
    • 85099479344 scopus 로고
    • Learning with many irrelevant features
    • Anaheim, CA MIT Press, Cambridge, MA
    • H. Almuallim and T.G. Dietterich, Learning with many irrelevant features, in: Proceedings AAAI-91, Anaheim, CA (MIT Press, Cambridge, MA, 1991) 547-552.
    • (1991) Proceedings AAAI-91 , pp. 547-552
    • Almuallim, H.1    Dietterich, T.G.2
  • 6
    • 0028496468 scopus 로고
    • Learning boolean concepts in the presence of many irrelevant features
    • H. Almuallim and T.G. Dietterich, Learning Boolean concepts in the presence of many irrelevant features, Artificial Intelligence 69 (1994) 279-306.
    • (1994) Artificial Intelligence , vol.69 , pp. 279-306
    • Almuallim, H.1    Dietterich, T.G.2
  • 7
    • 0039794215 scopus 로고
    • Explorations of an incremental, Bayesian algorithm for categorization
    • J.R. Anderson and M. Matessa, Explorations of an incremental, Bayesian algorithm for categorization, Machine Learning 9 (1992) 275-308.
    • (1992) Machine Learning , vol.9 , pp. 275-308
    • Anderson, J.R.1    Matessa, M.2
  • 9
    • 0002640910 scopus 로고
    • Hybrid learning using genetic algorithms and decision trees for pattern classification
    • C.S. Mellish, ed., Montreal, Que. Morgan Kaufmann, Los Altos, CA
    • J. Bala, K.A.D. Jong, J. Haung, H. Vafaie and H. Wechsler, Hybrid learning using genetic algorithms and decision trees for pattern classification, in: C.S. Mellish, ed., Proceedings IJCAI-95, Montreal, Que. (Morgan Kaufmann, Los Altos, CA, 1995) 719-724.
    • (1995) Proceedings IJCAI-95 , pp. 719-724
    • Bala, J.1    Jong, K.A.D.2    Haung, J.3    Vafaie, H.4    Wechsler, H.5
  • 10
    • 70350346892 scopus 로고
    • Use of distance measures, information measures and error bounds in feature evaluation
    • P.R. Krishnaiah and L.N. Kanal, eds., North-Holland, Amsterdam
    • M. Ben-Bassat, Use of distance measures, information measures and error bounds in feature evaluation, in: P.R. Krishnaiah and L.N. Kanal, eds., Handbook of Statistics, Vol. 2 (North-Holland, Amsterdam, 1982) 773-791.
    • (1982) Handbook of Statistics , vol.2 , pp. 773-791
    • Ben-Bassat, M.1
  • 11
    • 0018466321 scopus 로고
    • The B* tree search algorithm: A best-first proof procedure
    • H. Berliner, The B* tree search algorithm: a best-first proof procedure, Artificial Intelligence 12 (1979) 23-40; reprinted in: B. Webber and N.J. Nilsson, eds., Readings in Artificial Intelligence (Morgan Kaufmann, Los Altos, CA, 1981) 79-87.
    • (1979) Artificial Intelligence , vol.12 , pp. 23-40
    • Berliner, H.1
  • 12
    • 0018466321 scopus 로고
    • Morgan Kaufmann, Los Altos, CA
    • H. Berliner, The B* tree search algorithm: a best-first proof procedure, Artificial Intelligence 12 (1979) 23-40; reprinted in: B. Webber and N.J. Nilsson, eds., Readings in Artificial Intelligence (Morgan Kaufmann, Los Altos, CA, 1981) 79-87.
    • (1981) Readings in Artificial Intelligence , pp. 79-87
    • Webber, B.1    Nilsson, N.J.2
  • 13
    • 0026453958 scopus 로고
    • Training a 3-node neural network is NP-complete
    • A.L. Blum and R.L. Rivest, Training a 3-node neural network is NP-complete, Neural Networks 5 (1992) 117-127.
    • (1992) Neural Networks , vol.5 , pp. 117-127
    • Blum, A.L.1    Rivest, R.L.2
  • 14
    • 0001854509 scopus 로고
    • Solving time-dependent planning problems
    • N.S. Sridharan, ed., Detroit, MI Morgan Kaufmann, Los Altos, CA
    • M. Boddy and T. Dean, Solving time-dependent planning problems, in: N.S. Sridharan, ed., Proceedings IJCAI-89, Detroit, MI (Morgan Kaufmann, Los Altos, CA, 1989) 979-984.
    • (1989) Proceedings IJCAI-89 , pp. 979-984
    • Boddy, M.1    Dean, T.2
  • 15
    • 0013110143 scopus 로고
    • Characterizing the applicability of classification algorithms using meta-level learning
    • F. Bergadano and L.D. Raedt, eds.
    • P. Brazdil, J. Gama and B. Henery, Characterizing the applicability of classification algorithms using meta-level learning, in: F. Bergadano and L.D. Raedt, eds., Proceedings European Conference on Machine Learning (1994).
    • (1994) Proceedings European Conference on Machine Learning
    • Brazdil, P.1    Gama, J.2    Henery, B.3
  • 16
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, Bagging predictors, Machine Learning 24 (1996) 123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 18
    • 0002980086 scopus 로고
    • Learning classification trees
    • W. Buntine, Learning classification trees, Statist. and Comput. 2 (1992) 63-73.
    • (1992) Statist. and Comput. , vol.2 , pp. 63-73
    • Buntine, W.1
  • 19
    • 33845629152 scopus 로고
    • Using decision trees to improve case-based learning
    • Amherst, MA Morgan Kaufmann, Los Altos
    • C. Cardie, Using decision trees to improve case-based learning, in: Proceedings 10th International Conference on Machine Learning, Amherst, MA (Morgan Kaufmann, Los Altos, 1993) 25-32.
    • (1993) Proceedings 10th International Conference on Machine Learning , pp. 25-32
    • Cardie, C.1
  • 20
    • 0006500676 scopus 로고
    • Greedy attribute selection
    • W.W. Cohen and H. Hirsh, eds., New Brunswick, NJ Morgan Kaufmann, Los Altos, CA
    • R. Caruana and D. Freitag, Greedy attribute selection, in: W.W. Cohen and H. Hirsh, eds., Proceedings 11th International Conference on Machine Learning, New Brunswick, NJ (Morgan Kaufmann, Los Altos, CA, 1994) 28-36.
    • (1994) Proceedings 11th International Conference on Machine Learning , pp. 28-36
    • Caruana, R.1    Freitag, D.2
  • 21
    • 0003006556 scopus 로고
    • Estimating probabilities: A crucial task in machine learning
    • L.C. Aiello, ed., Stockholm, Sweden
    • B. Cestnik, Estimating probabilities: a crucial task in machine learning, in: L.C. Aiello, ed., Proceedings ECAI-90, Stockholm, Sweden (1990) 147-149.
    • (1990) Proceedings ECAI-90 , pp. 147-149
    • Cestnik, B.1
  • 22
    • 0017368046 scopus 로고
    • On the possible orderings in the measurement selection problem
    • T.M. Cover and J.M.V. Campenhout, On the possible orderings in the measurement selection problem, IEEE Trans. Systems Man Cybernet. 7 (1977) 657-661.
    • (1977) IEEE Trans. Systems Man Cybernet. , vol.7 , pp. 657-661
    • Cover, T.M.1    Campenhout, J.M.V.2
  • 24
    • 0025798330 scopus 로고
    • A distance-based attribute selection measure for decision tree induction
    • R.L. De Mántaras, A distance-based attribute selection measure for decision tree induction, Machine Learning 6 (1991) 81-92.
    • (1991) Machine Learning , vol.6 , pp. 81-92
    • De Mántaras, R.L.1
  • 27
    • 0002419948 scopus 로고    scopus 로고
    • Beyond independence: Conditions for the optimality of the simple Bayesian classifier
    • L. Saitta, ed., Bari, Italy Morgan Kaufmann, Los Altos, CA
    • P. Domingos and M. Pazzani, Beyond independence: conditions for the optimality of the simple Bayesian classifier, in: L. Saitta, ed., Proceedings 13th International Conference on Machine Learning, Bari, Italy (Morgan Kaufmann, Los Altos, CA, 1996) 105-112.
    • (1996) Proceedings 13th International Conference on Machine Learning , pp. 105-112
    • Domingos, P.1    Pazzani, M.2
  • 28
    • 85139983802 scopus 로고
    • Supervised and unsupervised discretization of continuous features
    • A. Prieditis and S. Russell, eds., Lake Tahoe, CA Morgan Kaufmann, Los Altos, CA
    • J. Dougherty, R. Kohavi and M. Sahami, Supervised and unsupervised discretization of continuous features, in: A. Prieditis and S. Russell, eds., Proceedings 12th International Conference on Machine Learning, Lake Tahoe, CA (Morgan Kaufmann, Los Altos, CA, 1995) 194-202.
    • (1995) Proceedings 12th International Conference on Machine Learning , pp. 194-202
    • Dougherty, J.1    Kohavi, R.2    Sahami, M.3
  • 32
    • 0027002165 scopus 로고
    • The attribute selection problem in decision tree generation
    • San Jose, CA MIT Press, Cambridge, MA
    • U.M. Fayyad and K.B. Irani, The attribute selection problem in decision tree generation, in: Proceedings AAAI-92, San Jose, CA (MIT Press, Cambridge, MA, 1992) 104-110.
    • (1992) Proceedings AAAI-92 , pp. 104-110
    • Fayyad, U.M.1    Irani, K.B.2
  • 33
    • 78650606637 scopus 로고
    • A quantitative study of hypothesis selection
    • A. Prieditis and S. Russell, eds., Lake Tahoe, CA Morgan Kaufmann, Los Altos, CA
    • P.W.L. Fong, A quantitative study of hypothesis selection, in: A. Prieditis and S. Russell, eds., Proceedings 12th International Conference on Machine Learning, Lake Tahoe, CA (Morgan Kaufmann, Los Altos, CA, 1995) 226-234.
    • (1995) Proceedings 12th International Conference on Machine Learning , pp. 226-234
    • Fong, P.W.L.1
  • 34
    • 85043515682 scopus 로고
    • Boosting a weak learning algorithm by majority
    • San Francisco, CA also: Inform. and Comput., to appear
    • Y. Freund, Boosting a weak learning algorithm by majority, in: Proceedings 3rd Annual Workshop on Computational Learning Theory, San Francisco, CA (1990) 202-216; also: Inform. and Comput., to appear.
    • (1990) Proceedings 3rd Annual Workshop on Computational Learning Theory , pp. 202-216
    • Freund, Y.1
  • 36
    • 0016128505 scopus 로고
    • Regression by leaps and bounds
    • G.M. Furnival and R.W. Wilson, Regression by leaps and bounds, Technometrics 16 (1974) 499-511.
    • (1974) Technometrics , vol.16 , pp. 499-511
    • Furnival, G.M.1    Wilson, R.W.2
  • 37
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • S. Geman, E. Bienenstock and R. Doursat, Neural networks and the bias/variance dilemma, Neural Comput. 4 (1992) 1-48.
    • (1992) Neural Comput. , vol.4 , pp. 1-48
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 42
    • 30244466448 scopus 로고
    • Probabilistic hill climbing: Theory and applications
    • J. Glasgow and R. Hadley, eds., Vancouver, BC Morgan Kaufmann, Los Altos, CA
    • R. Greiner, Probabilistic hill climbing: theory and applications, in: J. Glasgow and R. Hadley, eds., Proceedings 9th Canadian Conference on Artificial Intelligence, Vancouver, BC (Morgan Kaufmann, Los Altos, CA, 1992) 60-67.
    • (1992) Proceedings 9th Canadian Conference on Artificial Intelligence , pp. 60-67
    • Greiner, R.1
  • 44
    • 84947403595 scopus 로고
    • Probability inequalities for sums of bounded random variables
    • W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc. 58 (1963) 13-30.
    • (1963) J. Amer. Statist. Assoc. , vol.58 , pp. 13-30
    • Hoeffding, W.1
  • 46
    • 0001815269 scopus 로고
    • Constructing optimal binary decision trees is NP-complete
    • L. Hyafil and R.L. Rivest, Constructing optimal binary decision trees is NP-complete, Inform. Process. Lett. 5 (1976) 15-17.
    • (1976) Inform. Process. Lett. , vol.5 , pp. 15-17
    • Hyafil, L.1    Rivest, R.L.2
  • 47
    • 0003650666 scopus 로고    scopus 로고
    • Ph.D. Thesis, Computer Science Department, Stanford University, CA
    • G.H. John, Enhancements to the data mining process, Ph.D. Thesis, Computer Science Department, Stanford University, CA (1997).
    • (1997) Enhancements to the Data Mining Process
    • John, G.H.1
  • 49
    • 0001626107 scopus 로고
    • On the complexity of loading shallow neural networks
    • S. Judd, On the complexity of loading shallow neural networks, J. Complexity 4 (1988) 177-192.
    • (1988) J. Complexity , vol.4 , pp. 177-192
    • Judd, S.1
  • 51
    • 0027002164 scopus 로고
    • The feature selection problem: Traditional methods and a new algorithm
    • San Jose, CA MIT Press, Cambridge, MA
    • K. Kira and L.A. Rendell, The feature selection problem: Traditional methods and a new algorithm, in: Proceedings AAAI-92, San Jose, CA (MIT Press, Cambridge, MA, 1992) 129-134.
    • (1992) Proceedings AAAI-92 , pp. 129-134
    • Kira, K.1    Rendell, L.A.2
  • 55
    • 0003010245 scopus 로고
    • Feature subset selection as search with probabilistic estimates
    • New Orleans, LA
    • R. Kohavi, Feature subset selection as search with probabilistic estimates, in: Proceedings AAAI Fall Symposium on Relevance, New Orleans, LA (1994) 122-126.
    • (1994) Proceedings AAAI Fall Symposium on Relevance , pp. 122-126
    • Kohavi, R.1
  • 56
    • 84948977233 scopus 로고
    • The power of decision tables
    • N. Lavrac and S. Wrobel, eds., Lecture Notes in Artificial Intelligence, Springer, Berlin
    • R. Kohavi, The power of decision tables, in: N. Lavrac and S. Wrobel, eds., Proceedings European Conference on Machine Learning, Lecture Notes in Artificial Intelligence, Vol. 914 (Springer, Berlin, 1995) 174-189.
    • (1995) Proceedings European Conference on Machine Learning , vol.914 , pp. 174-189
    • Kohavi, R.1
  • 57
    • 0001122762 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • C.S. Mellish, ed., Montreal, Que. Morgan Kaufmann, Los Altos, CA
    • R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, in: C.S. Mellish, ed., Proceedings IJCAI-95, Montreal, Que. (Morgan Kaufmann, Los Altos, CA, 1995) 1137-1143.
    • (1995) Proceedings IJCAI-95 , pp. 1137-1143
    • Kohavi, R.1
  • 58
    • 0003763626 scopus 로고
    • Ph.D. Thesis, Stanford University, Computer Science Department, STAN-CS-TR-95-1560
    • R. Kohavi, Wrappers for performance enhancement and oblivious decision graphs, Ph.D. Thesis, Stanford University, Computer Science Department, STAN-CS-TR-95-1560 (1995); ftp:// starry.stanford.edu/pub/ronnyk/teza.ps.
    • (1995) Wrappers for Performance Enhancement and Oblivious Decision Graphs
    • Kohavi, R.1
  • 60
    • 33747419508 scopus 로고
    • Automatic parameter selection by minimizing estimated error
    • A. Prieditis and S. Russell, eds., Lake Tahoe, CA Morgan Kaufmann, Los Altos, CA
    • R. Kohavi and G. John, Automatic parameter selection by minimizing estimated error, in: A. Prieditis and S. Russell, eds., Proceedings 12th International Conference on Machine Learning, Lake Tahoe, CA (Morgan Kaufmann, Los Altos, CA, 1995) 304-312.
    • (1995) Proceedings 12th International Conference on Machine Learning , pp. 304-312
    • Kohavi, R.1    John, G.2
  • 62
    • 0002872346 scopus 로고    scopus 로고
    • Bias plus variance decomposition for zero-one loss functions
    • L. Saitta, ed., Bari, Italy Morgan Kaufmann, Los Altos, CA
    • R. Kohavi and D.H. Wolpert, Bias plus variance decomposition for zero-one loss functions, in: L. Saitta, ed., Proceedings 13th International Conference on Machine Learning, Bari, Italy (Morgan Kaufmann, Los Altos, CA, 1996) 275-283; available at: http://robotics.stanford.edu/users/ronnyk.
    • (1996) Proceedings 13th International Conference on Machine Learning , pp. 275-283
    • Kohavi, R.1    Wolpert, D.H.2
  • 63
    • 0030422272 scopus 로고    scopus 로고
    • Data mining using MLC++: A machine learning library in C++
    • IEEE Computer Society Press, Rockville, MD
    • R. Kohavi, D. Sommerfield and J. Dougherty, Data mining using MLC++: A machine learning library in C++, in: Tools with Artificial Intelligence (IEEE Computer Society Press, Rockville, MD, 1996) 234-245; http://www.sgi.com/Technology/mlc.
    • (1996) Tools with Artificial Intelligence , pp. 234-245
    • Kohavi, R.1    Sommerfield, D.2    Dougherty, J.3
  • 64
    • 0001832882 scopus 로고
    • Estimating attributes: Analysis and extensions of relief
    • F. Bergadano and L. De Raedt, eds.
    • I. Kononenko, Estimating attributes: analysis and extensions of Relief, in: F. Bergadano and L. De Raedt, eds., Proceedings European Conference on Machine Learning (1994).
    • (1994) Proceedings European Conference on Machine Learning
    • Kononenko, I.1
  • 65
    • 0001796836 scopus 로고
    • On biases in estimating multi-valued attributes
    • C.S. Mellish, ed., Montreal, Que. Morgan Kaufmann, Los Altos, CA
    • I. Kononenko, On biases in estimating multi-valued attributes, in: C.S. Mellish, ed., Proceedings IJCAI-95, Montreal, Que. (Morgan Kaufmann, Los Altos, CA, 1995) 1034-1040.
    • (1995) Proceedings IJCAI-95 , pp. 1034-1040
    • Kononenko, I.1
  • 67
    • 0000749354 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • MIT Press, Cambridge, MA
    • A. Krogh and J. Vedelsby, Neural network ensembles, cross validation, and active learning, in: Advances in Neural Information Processing Systems, Vol. 7 (MIT Press, Cambridge, MA, 1995).
    • (1995) Advances in Neural Information Processing Systems , vol.7
    • Krogh, A.1    Vedelsby, J.2
  • 68
    • 85012686183 scopus 로고
    • Multiple decision trees
    • R.D. Schachter, T.S. Levitt, L.N. Kanal and J.F. Lemmer, eds., Elsevier, Amsterdam
    • S.W. Kwok and C. Carter, Multiple decision trees, in: R.D. Schachter, T.S. Levitt, L.N. Kanal and J.F. Lemmer, eds., Uncertainty in Artificial Intelligence (Elsevier, Amsterdam, 1990) 327-335.
    • (1990) Uncertainty in Artificial Intelligence , pp. 327-335
    • Kwok, S.W.1    Carter, C.2
  • 70
    • 0001977664 scopus 로고
    • Selection of relevant features in machine learning
    • New Orleans, LA
    • P. Langley, Selection of relevant features in machine learning, in: Proceedings AAAI Fall Symposium on Relevance, New Orleans, LA (1994) 140-144.
    • (1994) Proceedings AAAI Fall Symposium on Relevance , pp. 140-144
    • Langley, P.1
  • 73
    • 0026992322 scopus 로고
    • An analysis of bayesian classifiers
    • Seattle, WA AAAI Press and MIT Press
    • P. Langley, W. Iba and K. Thompson, An analysis of Bayesian classifiers, in: Proceedings AAAI-94, Seattle, WA (AAAI Press and MIT Press, 1992) 223-228.
    • (1992) Proceedings AAAI-94 , pp. 223-228
    • Langley, P.1    Iba, W.2    Thompson, K.3
  • 77
    • 84914813506 scopus 로고
    • On the effectiveness of receptors in recognition systems
    • T. Marill and D.M. Green, On the effectiveness of receptors in recognition systems, IEEE Trans. Inform. Theory 9 (1963) 11-17.
    • (1963) IEEE Trans. Inform. Theory , vol.9 , pp. 11-17
    • Marill, T.1    Green, D.M.2
  • 78
    • 0001923944 scopus 로고
    • Hoeffding races: Accelerating model selection search for classification and function approximation
    • Morgan Kaufmann, Los Altos, CA
    • O. Maron and A.W. Moore, Hoeffding races: accelerating model selection search for classification and function approximation, in: Advances in Neural Information Processing Systems, Vol. 6 (Morgan Kaufmann, Los Altos, CA, 1994).
    • (1994) Advances in Neural Information Processing Systems , vol.6
    • Maron, O.1    Moore, A.W.2
  • 80
    • 0000187970 scopus 로고
    • Selection of subsets of regression variables
    • A.J. Miller, Selection of subsets of regression variables, J. Roy. Statist. Soc. A 147 (1984) 389-425.
    • (1984) J. Roy. Statist. Soc. A , vol.147 , pp. 389-425
    • Miller, A.J.1
  • 84
    • 85028883788 scopus 로고
    • Feature selection using rough sets theory
    • P.B. Brazdil, ed., Springer, Berlin
    • M. Modrzejewski, Feature selection using rough sets theory, in: P.B. Brazdil, ed., Proceedings European Conference on Machine Learning (Springer, Berlin, 1993) 213-226.
    • (1993) Proceedings European Conference on Machine Learning , pp. 213-226
    • Modrzejewski, M.1
  • 85
    • 85104260032 scopus 로고
    • Efficient algorithms for minimizing cross validation error
    • W.W. Cohen and H. Hirsh, eds., New Brunswick, NJ Morgan Kaufmann, Los Altos, CA
    • A.W. Moore and M.S. Lee, Efficient algorithms for minimizing cross validation error, in: W.W. Cohen and H. Hirsh, eds., Proceedings 11th International Conference on Machine Learning, New Brunswick, NJ (Morgan Kaufmann, Los Altos, CA, 1994).
    • (1994) Proceedings 11th International Conference on Machine Learning
    • Moore, A.W.1    Lee, M.S.2
  • 86
    • 0020300879 scopus 로고
    • Decision trees and diagrams
    • B.M.E. Moret, Decision trees and diagrams, ACM Comput. Surveys 14 (1982) 593-623.
    • (1982) ACM Comput. Surveys , vol.14 , pp. 593-623
    • Moret, B.M.E.1
  • 87
    • 0343109320 scopus 로고
    • Lookahead and pathology in decision tree induction
    • C.S. Mellish, ed., Montreal, Que. Morgan Kaufmann, Los Altos, CA
    • S. Murthy and S. Salzberg, Lookahead and pathology in decision tree induction, in: C.S. Mellish, ed., Proceedings IJCAI-95, Montreal, Que. (Morgan Kaufmann, Los Altos, CA, 1995) 1025-1031.
    • (1995) Proceedings IJCAI-95 , pp. 1025-1031
    • Murthy, S.1    Salzberg, S.2
  • 88
    • 0017535866 scopus 로고
    • A branch and bound algorithm for feature subset selection
    • M.P. Narendra and K. Fukunaga, A branch and bound algorithm for feature subset selection, IEEE Trans. Comput. 26 (1977) 917-922.
    • (1977) IEEE Trans. Comput. , vol.26 , pp. 917-922
    • Narendra, M.P.1    Fukunaga, K.2
  • 90
    • 0004174560 scopus 로고
    • Kluwer Academic Publishers, Dordrecht
    • Z. Pawlak, Rough Sets (Kluwer Academic Publishers, Dordrecht, 1991).
    • (1991) Rough Sets
    • Pawlak, Z.1
  • 91
    • 0006275671 scopus 로고
    • Rough sets: Present state and the future
    • Z. Pawlak, Rough sets: present state and the future, Found. Comput. Decision Sci. 18 (1993) 157-166.
    • (1993) Found. Comput. Decision Sci. , vol.18 , pp. 157-166
    • Pawlak, Z.1
  • 96
    • 0001834468 scopus 로고
    • Inductive policy: The pragmatics of bias selection
    • F.J. Provost and B.G. Buchanan, Inductive policy: the pragmatics of bias selection, Machine Learning 20 (1995) 35-61.
    • (1995) Machine Learning , vol.20 , pp. 35-61
    • Provost, F.J.1    Buchanan, B.G.2
  • 97
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J.R. Quinlan, Induction of decision trees, Machine Learning 1 (1986) 81-106;
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 100
    • 0013114759 scopus 로고
    • Oversearching and layered search in empirical learning
    • C.S. Mellish, ed., Montreal, Que. Morgan Kaufmann, Los Altos, CA
    • J.R. Quinlan, Oversearching and layered search in empirical learning, in: C.S. Mellish, ed., Proceedings IJCAI-95, Montreal, Que. (Morgan Kaufmann, Los Altos, CA, 1995) 1019-1024.
    • (1995) Proceedings IJCAI-95 , pp. 1019-1024
    • Quinlan, J.R.1
  • 101
    • 0000686085 scopus 로고
    • Learning hard concepts through constructive induction: Framework and rationale
    • L. Rendell and R. Seshu, Learning hard concepts through constructive induction: Framework and rationale, Comput. Intell. 6 (1990) 247-270.
    • (1990) Comput. Intell. , vol.6 , pp. 247-270
    • Rendell, L.1    Seshu, R.2
  • 102
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain, Psychological Review 65 (1958) 386-408.
    • (1958) Psychological Review , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 104
    • 0000245470 scopus 로고
    • Selecting a classification method by cross-validation
    • C. Schaffer, Selecting a classification method by cross-validation, Machine Learning 13 (1993) 135-143.
    • (1993) Machine Learning , vol.13 , pp. 135-143
    • Schaffer, C.1
  • 105
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R.E. Schapire, The strength of weak learnability, Machine Learning 5 (1990) 197-227.
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 107
    • 0011225046 scopus 로고
    • A comparison of induction algorithms for selective and non-selective Bayesian classifiers
    • Lake Tahoe, CA Morgan Kaufmann, San Mateo, CA
    • M. Singh and G.M. Provan, A comparison of induction algorithms for selective and non-selective Bayesian classifiers, in: Proceedings 12th International Conference on Machine Learning, Lake Tahoe, CA (Morgan Kaufmann, San Mateo, CA, 1995) 497-505.
    • (1995) Proceedings 12th International Conference on Machine Learning , pp. 497-505
    • Singh, M.1    Provan, G.M.2
  • 108
    • 0012657799 scopus 로고
    • Prototype and feature selection by sampling and random mutation hill climbing algorithms
    • W.W. Cohen and H. Hirsh, eds., New Brunswick, NJ Morgan Kaufmann, Los Altos, CA
    • D.B. Skalak, Prototype and feature selection by sampling and random mutation hill climbing algorithms, in: W.W. Cohen and H. Hirsh, eds., Proceedings 11th International Conference on Machine Learning, New Brunswick, NJ (Morgan Kaufmann, Los Altos, CA, 1994).
    • (1994) Proceedings 11th International Conference on Machine Learning
    • Skalak, D.B.1
  • 113
    • 0010268509 scopus 로고    scopus 로고
    • The identification of context-sensitive features, a formal definition of context for concept learning
    • M. Kubat and G. Widmer, eds., also available as: National Research Council of Canada Tech. Rept. #39222
    • P.D. Turney, The identification of context-sensitive features, a formal definition of context for concept learning, in: M. Kubat and G. Widmer, eds., Proceedings Workshop on Learning in Context-Sensitive Domains (1996) 53-59; also available as: National Research Council of Canada Tech. Rept. #39222.
    • (1996) Proceedings Workshop on Learning in Context-sensitive Domains , pp. 53-59
    • Turney, P.D.1
  • 114
    • 85152519885 scopus 로고
    • An improved algorithm for incremental induction of decision trees
    • New Brunswick, NJ Morgan Kaufmann, Los Altos, CA
    • P.E. Utgoff, An improved algorithm for incremental induction of decision trees, in: Proceedings 11th International Conference on Machine Learning, New Brunswick, NJ (Morgan Kaufmann, Los Altos, CA, 1994) 318-325.
    • (1994) Proceedings 11th International Conference on Machine Learning , pp. 318-325
    • Utgoff, P.E.1
  • 118
    • 0002489083 scopus 로고
    • On the connection between in-sample testing and generalization error
    • D.H. Wolpert, On the connection between in-sample testing and generalization error, Complex Systems 6 (1992) 47-94.
    • (1992) Complex Systems , vol.6 , pp. 47-94
    • Wolpert, D.H.1
  • 119
    • 0026692226 scopus 로고
    • Stacked generalization
    • D.H. Wolpert, Stacked generalization, Neural Networks 5 (1992) 241-259.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 122
    • 0027610652 scopus 로고
    • A more efficient branch and bound algorithm for feature selection
    • B. Yu and B. Yuan, A more efficient branch and bound algorithm for feature selection, Pattern Recognition 26 (1993) 883-889.
    • (1993) Pattern Recognition , vol.26 , pp. 883-889
    • Yu, B.1    Yuan, B.2
  • 123
    • 0002211529 scopus 로고
    • The discovery, analysis and representation of data dependencies in databases
    • G. Piatetsky-Shapiro and W. Frawley, eds., MIT Press, Cambridge, MA
    • W. Ziarko, The discovery, analysis and representation of data dependencies in databases, in: G. Piatetsky-Shapiro and W. Frawley, eds., Knowledge Discovery in Databases (MIT Press, Cambridge, MA, 1991).
    • (1991) Knowledge Discovery in Databases
    • Ziarko, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.