-
1
-
-
0000217085
-
Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithms
-
D.W. Aha, Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithms, Internat. J. Man-Machine Studies 36 (1992) 267-287.
-
(1992)
Internat. J. Man-machine Studies
, vol.36
, pp. 267-287
-
-
Aha, D.W.1
-
2
-
-
0001918655
-
Feature selection for case-based classification of cloud types: An empirical comparison
-
Seattle, WA
-
D.W. Aha and R.L. Bankert, Feature selection for case-based classification of cloud types: an empirical comparison, in: Working Notes of the AAAI-94 Workshop on Case-Based Reasoning, Seattle, WA (1994) 106-112.
-
(1994)
Working Notes of the AAAI-94 Workshop on Case-based Reasoning
, pp. 106-112
-
-
Aha, D.W.1
Bankert, R.L.2
-
3
-
-
0013337086
-
A comparative evaluation of sequential feature selection algorithms
-
D. Fisher and H. Lenz, eds., Ft. Lauderdale, FL
-
D.W. Aha and R.L. Bankert, A comparative evaluation of sequential feature selection algorithms, in: D. Fisher and H. Lenz, eds., Proceedings 5th International Workshop on Artificial Intelligence and Statistics, Ft. Lauderdale, FL (1995) 1-7.
-
(1995)
Proceedings 5th International Workshop on Artificial Intelligence and Statistics
, pp. 1-7
-
-
Aha, D.W.1
Bankert, R.L.2
-
5
-
-
85099479344
-
Learning with many irrelevant features
-
Anaheim, CA MIT Press, Cambridge, MA
-
H. Almuallim and T.G. Dietterich, Learning with many irrelevant features, in: Proceedings AAAI-91, Anaheim, CA (MIT Press, Cambridge, MA, 1991) 547-552.
-
(1991)
Proceedings AAAI-91
, pp. 547-552
-
-
Almuallim, H.1
Dietterich, T.G.2
-
6
-
-
0028496468
-
Learning boolean concepts in the presence of many irrelevant features
-
H. Almuallim and T.G. Dietterich, Learning Boolean concepts in the presence of many irrelevant features, Artificial Intelligence 69 (1994) 279-306.
-
(1994)
Artificial Intelligence
, vol.69
, pp. 279-306
-
-
Almuallim, H.1
Dietterich, T.G.2
-
7
-
-
0039794215
-
Explorations of an incremental, Bayesian algorithm for categorization
-
J.R. Anderson and M. Matessa, Explorations of an incremental, Bayesian algorithm for categorization, Machine Learning 9 (1992) 275-308.
-
(1992)
Machine Learning
, vol.9
, pp. 275-308
-
-
Anderson, J.R.1
Matessa, M.2
-
9
-
-
0002640910
-
Hybrid learning using genetic algorithms and decision trees for pattern classification
-
C.S. Mellish, ed., Montreal, Que. Morgan Kaufmann, Los Altos, CA
-
J. Bala, K.A.D. Jong, J. Haung, H. Vafaie and H. Wechsler, Hybrid learning using genetic algorithms and decision trees for pattern classification, in: C.S. Mellish, ed., Proceedings IJCAI-95, Montreal, Que. (Morgan Kaufmann, Los Altos, CA, 1995) 719-724.
-
(1995)
Proceedings IJCAI-95
, pp. 719-724
-
-
Bala, J.1
Jong, K.A.D.2
Haung, J.3
Vafaie, H.4
Wechsler, H.5
-
10
-
-
70350346892
-
Use of distance measures, information measures and error bounds in feature evaluation
-
P.R. Krishnaiah and L.N. Kanal, eds., North-Holland, Amsterdam
-
M. Ben-Bassat, Use of distance measures, information measures and error bounds in feature evaluation, in: P.R. Krishnaiah and L.N. Kanal, eds., Handbook of Statistics, Vol. 2 (North-Holland, Amsterdam, 1982) 773-791.
-
(1982)
Handbook of Statistics
, vol.2
, pp. 773-791
-
-
Ben-Bassat, M.1
-
11
-
-
0018466321
-
The B* tree search algorithm: A best-first proof procedure
-
H. Berliner, The B* tree search algorithm: a best-first proof procedure, Artificial Intelligence 12 (1979) 23-40; reprinted in: B. Webber and N.J. Nilsson, eds., Readings in Artificial Intelligence (Morgan Kaufmann, Los Altos, CA, 1981) 79-87.
-
(1979)
Artificial Intelligence
, vol.12
, pp. 23-40
-
-
Berliner, H.1
-
12
-
-
0018466321
-
-
Morgan Kaufmann, Los Altos, CA
-
H. Berliner, The B* tree search algorithm: a best-first proof procedure, Artificial Intelligence 12 (1979) 23-40; reprinted in: B. Webber and N.J. Nilsson, eds., Readings in Artificial Intelligence (Morgan Kaufmann, Los Altos, CA, 1981) 79-87.
-
(1981)
Readings in Artificial Intelligence
, pp. 79-87
-
-
Webber, B.1
Nilsson, N.J.2
-
13
-
-
0026453958
-
Training a 3-node neural network is NP-complete
-
A.L. Blum and R.L. Rivest, Training a 3-node neural network is NP-complete, Neural Networks 5 (1992) 117-127.
-
(1992)
Neural Networks
, vol.5
, pp. 117-127
-
-
Blum, A.L.1
Rivest, R.L.2
-
14
-
-
0001854509
-
Solving time-dependent planning problems
-
N.S. Sridharan, ed., Detroit, MI Morgan Kaufmann, Los Altos, CA
-
M. Boddy and T. Dean, Solving time-dependent planning problems, in: N.S. Sridharan, ed., Proceedings IJCAI-89, Detroit, MI (Morgan Kaufmann, Los Altos, CA, 1989) 979-984.
-
(1989)
Proceedings IJCAI-89
, pp. 979-984
-
-
Boddy, M.1
Dean, T.2
-
15
-
-
0013110143
-
Characterizing the applicability of classification algorithms using meta-level learning
-
F. Bergadano and L.D. Raedt, eds.
-
P. Brazdil, J. Gama and B. Henery, Characterizing the applicability of classification algorithms using meta-level learning, in: F. Bergadano and L.D. Raedt, eds., Proceedings European Conference on Machine Learning (1994).
-
(1994)
Proceedings European Conference on Machine Learning
-
-
Brazdil, P.1
Gama, J.2
Henery, B.3
-
16
-
-
0030211964
-
Bagging predictors
-
L. Breiman, Bagging predictors, Machine Learning 24 (1996) 123-140.
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
17
-
-
0003802343
-
-
Wadsworth, Belmont, CA
-
L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone, Classification and Regression Trees (Wadsworth, Belmont, CA, 1984).
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.A.3
Stone, C.J.4
-
18
-
-
0002980086
-
Learning classification trees
-
W. Buntine, Learning classification trees, Statist. and Comput. 2 (1992) 63-73.
-
(1992)
Statist. and Comput.
, vol.2
, pp. 63-73
-
-
Buntine, W.1
-
19
-
-
33845629152
-
Using decision trees to improve case-based learning
-
Amherst, MA Morgan Kaufmann, Los Altos
-
C. Cardie, Using decision trees to improve case-based learning, in: Proceedings 10th International Conference on Machine Learning, Amherst, MA (Morgan Kaufmann, Los Altos, 1993) 25-32.
-
(1993)
Proceedings 10th International Conference on Machine Learning
, pp. 25-32
-
-
Cardie, C.1
-
20
-
-
0006500676
-
Greedy attribute selection
-
W.W. Cohen and H. Hirsh, eds., New Brunswick, NJ Morgan Kaufmann, Los Altos, CA
-
R. Caruana and D. Freitag, Greedy attribute selection, in: W.W. Cohen and H. Hirsh, eds., Proceedings 11th International Conference on Machine Learning, New Brunswick, NJ (Morgan Kaufmann, Los Altos, CA, 1994) 28-36.
-
(1994)
Proceedings 11th International Conference on Machine Learning
, pp. 28-36
-
-
Caruana, R.1
Freitag, D.2
-
21
-
-
0003006556
-
Estimating probabilities: A crucial task in machine learning
-
L.C. Aiello, ed., Stockholm, Sweden
-
B. Cestnik, Estimating probabilities: a crucial task in machine learning, in: L.C. Aiello, ed., Proceedings ECAI-90, Stockholm, Sweden (1990) 147-149.
-
(1990)
Proceedings ECAI-90
, pp. 147-149
-
-
Cestnik, B.1
-
24
-
-
0025798330
-
A distance-based attribute selection measure for decision tree induction
-
R.L. De Mántaras, A distance-based attribute selection measure for decision tree induction, Machine Learning 6 (1991) 81-92.
-
(1991)
Machine Learning
, vol.6
, pp. 81-92
-
-
De Mántaras, R.L.1
-
25
-
-
84928746885
-
-
Prentice-Hall, Englewood, Cliffs, NJ
-
P.A. Devijver and J. Kittler, Pattern Recognition: A Statistical Approach (Prentice-Hall, Englewood, Cliffs, NJ, 1982).
-
(1982)
Pattern Recognition: A Statistical Approach
-
-
Devijver, P.A.1
Kittler, J.2
-
27
-
-
0002419948
-
Beyond independence: Conditions for the optimality of the simple Bayesian classifier
-
L. Saitta, ed., Bari, Italy Morgan Kaufmann, Los Altos, CA
-
P. Domingos and M. Pazzani, Beyond independence: conditions for the optimality of the simple Bayesian classifier, in: L. Saitta, ed., Proceedings 13th International Conference on Machine Learning, Bari, Italy (Morgan Kaufmann, Los Altos, CA, 1996) 105-112.
-
(1996)
Proceedings 13th International Conference on Machine Learning
, pp. 105-112
-
-
Domingos, P.1
Pazzani, M.2
-
28
-
-
85139983802
-
Supervised and unsupervised discretization of continuous features
-
A. Prieditis and S. Russell, eds., Lake Tahoe, CA Morgan Kaufmann, Los Altos, CA
-
J. Dougherty, R. Kohavi and M. Sahami, Supervised and unsupervised discretization of continuous features, in: A. Prieditis and S. Russell, eds., Proceedings 12th International Conference on Machine Learning, Lake Tahoe, CA (Morgan Kaufmann, Los Altos, CA, 1995) 194-202.
-
(1995)
Proceedings 12th International Conference on Machine Learning
, pp. 194-202
-
-
Dougherty, J.1
Kohavi, R.2
Sahami, M.3
-
32
-
-
0027002165
-
The attribute selection problem in decision tree generation
-
San Jose, CA MIT Press, Cambridge, MA
-
U.M. Fayyad and K.B. Irani, The attribute selection problem in decision tree generation, in: Proceedings AAAI-92, San Jose, CA (MIT Press, Cambridge, MA, 1992) 104-110.
-
(1992)
Proceedings AAAI-92
, pp. 104-110
-
-
Fayyad, U.M.1
Irani, K.B.2
-
33
-
-
78650606637
-
A quantitative study of hypothesis selection
-
A. Prieditis and S. Russell, eds., Lake Tahoe, CA Morgan Kaufmann, Los Altos, CA
-
P.W.L. Fong, A quantitative study of hypothesis selection, in: A. Prieditis and S. Russell, eds., Proceedings 12th International Conference on Machine Learning, Lake Tahoe, CA (Morgan Kaufmann, Los Altos, CA, 1995) 226-234.
-
(1995)
Proceedings 12th International Conference on Machine Learning
, pp. 226-234
-
-
Fong, P.W.L.1
-
34
-
-
85043515682
-
Boosting a weak learning algorithm by majority
-
San Francisco, CA also: Inform. and Comput., to appear
-
Y. Freund, Boosting a weak learning algorithm by majority, in: Proceedings 3rd Annual Workshop on Computational Learning Theory, San Francisco, CA (1990) 202-216; also: Inform. and Comput., to appear.
-
(1990)
Proceedings 3rd Annual Workshop on Computational Learning Theory
, pp. 202-216
-
-
Freund, Y.1
-
36
-
-
0016128505
-
Regression by leaps and bounds
-
G.M. Furnival and R.W. Wilson, Regression by leaps and bounds, Technometrics 16 (1974) 499-511.
-
(1974)
Technometrics
, vol.16
, pp. 499-511
-
-
Furnival, G.M.1
Wilson, R.W.2
-
42
-
-
30244466448
-
Probabilistic hill climbing: Theory and applications
-
J. Glasgow and R. Hadley, eds., Vancouver, BC Morgan Kaufmann, Los Altos, CA
-
R. Greiner, Probabilistic hill climbing: theory and applications, in: J. Glasgow and R. Hadley, eds., Proceedings 9th Canadian Conference on Artificial Intelligence, Vancouver, BC (Morgan Kaufmann, Los Altos, CA, 1992) 60-67.
-
(1992)
Proceedings 9th Canadian Conference on Artificial Intelligence
, pp. 60-67
-
-
Greiner, R.1
-
44
-
-
84947403595
-
Probability inequalities for sums of bounded random variables
-
W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc. 58 (1963) 13-30.
-
(1963)
J. Amer. Statist. Assoc.
, vol.58
, pp. 13-30
-
-
Hoeffding, W.1
-
46
-
-
0001815269
-
Constructing optimal binary decision trees is NP-complete
-
L. Hyafil and R.L. Rivest, Constructing optimal binary decision trees is NP-complete, Inform. Process. Lett. 5 (1976) 15-17.
-
(1976)
Inform. Process. Lett.
, vol.5
, pp. 15-17
-
-
Hyafil, L.1
Rivest, R.L.2
-
47
-
-
0003650666
-
-
Ph.D. Thesis, Computer Science Department, Stanford University, CA
-
G.H. John, Enhancements to the data mining process, Ph.D. Thesis, Computer Science Department, Stanford University, CA (1997).
-
(1997)
Enhancements to the Data Mining Process
-
-
John, G.H.1
-
48
-
-
85099325734
-
Irrelevant features and the subset selection problem
-
New Brunswick, NJ Morgan Kaufmann, Los Altos, CA
-
G. John, R. Kohavi and K. Pfleger, Irrelevant features and the subset selection problem, in: Proceedings 11th International Conference on Machine Learning, New Brunswick, NJ (Morgan Kaufmann, Los Altos, CA, 1994) 121-129.
-
(1994)
Proceedings 11th International Conference on Machine Learning
, pp. 121-129
-
-
John, G.1
Kohavi, R.2
Pfleger, K.3
-
49
-
-
0001626107
-
On the complexity of loading shallow neural networks
-
S. Judd, On the complexity of loading shallow neural networks, J. Complexity 4 (1988) 177-192.
-
(1988)
J. Complexity
, vol.4
, pp. 177-192
-
-
Judd, S.1
-
51
-
-
0027002164
-
The feature selection problem: Traditional methods and a new algorithm
-
San Jose, CA MIT Press, Cambridge, MA
-
K. Kira and L.A. Rendell, The feature selection problem: Traditional methods and a new algorithm, in: Proceedings AAAI-92, San Jose, CA (MIT Press, Cambridge, MA, 1992) 129-134.
-
(1992)
Proceedings AAAI-92
, pp. 129-134
-
-
Kira, K.1
Rendell, L.A.2
-
52
-
-
85146422424
-
A practical approach to feature selection
-
Aberdeen, Scotland Morgan Kaufmann, Los Altos, CA
-
K. Kira and L.A. Rendell, A practical approach to feature selection, in: Proceedings 9th International Conference on Machine Learning, Aberdeen, Scotland (Morgan Kaufmann, Los Altos, CA, 1992).
-
(1992)
Proceedings 9th International Conference on Machine Learning
-
-
Kira, K.1
Rendell, L.A.2
-
55
-
-
0003010245
-
Feature subset selection as search with probabilistic estimates
-
New Orleans, LA
-
R. Kohavi, Feature subset selection as search with probabilistic estimates, in: Proceedings AAAI Fall Symposium on Relevance, New Orleans, LA (1994) 122-126.
-
(1994)
Proceedings AAAI Fall Symposium on Relevance
, pp. 122-126
-
-
Kohavi, R.1
-
56
-
-
84948977233
-
The power of decision tables
-
N. Lavrac and S. Wrobel, eds., Lecture Notes in Artificial Intelligence, Springer, Berlin
-
R. Kohavi, The power of decision tables, in: N. Lavrac and S. Wrobel, eds., Proceedings European Conference on Machine Learning, Lecture Notes in Artificial Intelligence, Vol. 914 (Springer, Berlin, 1995) 174-189.
-
(1995)
Proceedings European Conference on Machine Learning
, vol.914
, pp. 174-189
-
-
Kohavi, R.1
-
57
-
-
0001122762
-
A study of cross-validation and bootstrap for accuracy estimation and model selection
-
C.S. Mellish, ed., Montreal, Que. Morgan Kaufmann, Los Altos, CA
-
R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, in: C.S. Mellish, ed., Proceedings IJCAI-95, Montreal, Que. (Morgan Kaufmann, Los Altos, CA, 1995) 1137-1143.
-
(1995)
Proceedings IJCAI-95
, pp. 1137-1143
-
-
Kohavi, R.1
-
58
-
-
0003763626
-
-
Ph.D. Thesis, Stanford University, Computer Science Department, STAN-CS-TR-95-1560
-
R. Kohavi, Wrappers for performance enhancement and oblivious decision graphs, Ph.D. Thesis, Stanford University, Computer Science Department, STAN-CS-TR-95-1560 (1995); ftp:// starry.stanford.edu/pub/ronnyk/teza.ps.
-
(1995)
Wrappers for Performance Enhancement and Oblivious Decision Graphs
-
-
Kohavi, R.1
-
60
-
-
33747419508
-
Automatic parameter selection by minimizing estimated error
-
A. Prieditis and S. Russell, eds., Lake Tahoe, CA Morgan Kaufmann, Los Altos, CA
-
R. Kohavi and G. John, Automatic parameter selection by minimizing estimated error, in: A. Prieditis and S. Russell, eds., Proceedings 12th International Conference on Machine Learning, Lake Tahoe, CA (Morgan Kaufmann, Los Altos, CA, 1995) 304-312.
-
(1995)
Proceedings 12th International Conference on Machine Learning
, pp. 304-312
-
-
Kohavi, R.1
John, G.2
-
62
-
-
0002872346
-
Bias plus variance decomposition for zero-one loss functions
-
L. Saitta, ed., Bari, Italy Morgan Kaufmann, Los Altos, CA
-
R. Kohavi and D.H. Wolpert, Bias plus variance decomposition for zero-one loss functions, in: L. Saitta, ed., Proceedings 13th International Conference on Machine Learning, Bari, Italy (Morgan Kaufmann, Los Altos, CA, 1996) 275-283; available at: http://robotics.stanford.edu/users/ronnyk.
-
(1996)
Proceedings 13th International Conference on Machine Learning
, pp. 275-283
-
-
Kohavi, R.1
Wolpert, D.H.2
-
63
-
-
0030422272
-
Data mining using MLC++: A machine learning library in C++
-
IEEE Computer Society Press, Rockville, MD
-
R. Kohavi, D. Sommerfield and J. Dougherty, Data mining using MLC++: A machine learning library in C++, in: Tools with Artificial Intelligence (IEEE Computer Society Press, Rockville, MD, 1996) 234-245; http://www.sgi.com/Technology/mlc.
-
(1996)
Tools with Artificial Intelligence
, pp. 234-245
-
-
Kohavi, R.1
Sommerfield, D.2
Dougherty, J.3
-
64
-
-
0001832882
-
Estimating attributes: Analysis and extensions of relief
-
F. Bergadano and L. De Raedt, eds.
-
I. Kononenko, Estimating attributes: analysis and extensions of Relief, in: F. Bergadano and L. De Raedt, eds., Proceedings European Conference on Machine Learning (1994).
-
(1994)
Proceedings European Conference on Machine Learning
-
-
Kononenko, I.1
-
65
-
-
0001796836
-
On biases in estimating multi-valued attributes
-
C.S. Mellish, ed., Montreal, Que. Morgan Kaufmann, Los Altos, CA
-
I. Kononenko, On biases in estimating multi-valued attributes, in: C.S. Mellish, ed., Proceedings IJCAI-95, Montreal, Que. (Morgan Kaufmann, Los Altos, CA, 1995) 1034-1040.
-
(1995)
Proceedings IJCAI-95
, pp. 1034-1040
-
-
Kononenko, I.1
-
67
-
-
0000749354
-
Neural network ensembles, cross validation, and active learning
-
MIT Press, Cambridge, MA
-
A. Krogh and J. Vedelsby, Neural network ensembles, cross validation, and active learning, in: Advances in Neural Information Processing Systems, Vol. 7 (MIT Press, Cambridge, MA, 1995).
-
(1995)
Advances in Neural Information Processing Systems
, vol.7
-
-
Krogh, A.1
Vedelsby, J.2
-
68
-
-
85012686183
-
Multiple decision trees
-
R.D. Schachter, T.S. Levitt, L.N. Kanal and J.F. Lemmer, eds., Elsevier, Amsterdam
-
S.W. Kwok and C. Carter, Multiple decision trees, in: R.D. Schachter, T.S. Levitt, L.N. Kanal and J.F. Lemmer, eds., Uncertainty in Artificial Intelligence (Elsevier, Amsterdam, 1990) 327-335.
-
(1990)
Uncertainty in Artificial Intelligence
, pp. 327-335
-
-
Kwok, S.W.1
Carter, C.2
-
70
-
-
0001977664
-
Selection of relevant features in machine learning
-
New Orleans, LA
-
P. Langley, Selection of relevant features in machine learning, in: Proceedings AAAI Fall Symposium on Relevance, New Orleans, LA (1994) 140-144.
-
(1994)
Proceedings AAAI Fall Symposium on Relevance
, pp. 140-144
-
-
Langley, P.1
-
71
-
-
0001901666
-
Induction of selective Bayesian classifiers
-
Seattle, WA Morgan Kaufmann, San Mateo, CA
-
P. Langley and S. Sage, Sage, Induction of selective Bayesian classifiers, in: Proceedings 10th Conference on Uncertainty in Artificial Intelligence, Seattle, WA (Morgan Kaufmann, San Mateo, CA, 1994) 399-406.
-
(1994)
Proceedings 10th Conference on Uncertainty in Artificial Intelligence
, pp. 399-406
-
-
Langley, P.1
Sage, S.2
Sage3
-
73
-
-
0026992322
-
An analysis of bayesian classifiers
-
Seattle, WA AAAI Press and MIT Press
-
P. Langley, W. Iba and K. Thompson, An analysis of Bayesian classifiers, in: Proceedings AAAI-94, Seattle, WA (AAAI Press and MIT Press, 1992) 223-228.
-
(1992)
Proceedings AAAI-94
, pp. 223-228
-
-
Langley, P.1
Iba, W.2
Thompson, K.3
-
77
-
-
84914813506
-
On the effectiveness of receptors in recognition systems
-
T. Marill and D.M. Green, On the effectiveness of receptors in recognition systems, IEEE Trans. Inform. Theory 9 (1963) 11-17.
-
(1963)
IEEE Trans. Inform. Theory
, vol.9
, pp. 11-17
-
-
Marill, T.1
Green, D.M.2
-
78
-
-
0001923944
-
Hoeffding races: Accelerating model selection search for classification and function approximation
-
Morgan Kaufmann, Los Altos, CA
-
O. Maron and A.W. Moore, Hoeffding races: accelerating model selection search for classification and function approximation, in: Advances in Neural Information Processing Systems, Vol. 6 (Morgan Kaufmann, Los Altos, CA, 1994).
-
(1994)
Advances in Neural Information Processing Systems
, vol.6
-
-
Maron, O.1
Moore, A.W.2
-
80
-
-
0000187970
-
Selection of subsets of regression variables
-
A.J. Miller, Selection of subsets of regression variables, J. Roy. Statist. Soc. A 147 (1984) 389-425.
-
(1984)
J. Roy. Statist. Soc. A
, vol.147
, pp. 389-425
-
-
Miller, A.J.1
-
82
-
-
0003716586
-
-
MIT Press, Cambridge, MA, expanded ed.
-
M.L. Minsky and S. Papert, Perceptrons: an Introduction to Computational Geometry (MIT Press, Cambridge, MA, expanded ed., 1988)
-
(1988)
Perceptrons: An Introduction to Computational Geometry
-
-
Minsky, M.L.1
Papert, S.2
-
84
-
-
85028883788
-
Feature selection using rough sets theory
-
P.B. Brazdil, ed., Springer, Berlin
-
M. Modrzejewski, Feature selection using rough sets theory, in: P.B. Brazdil, ed., Proceedings European Conference on Machine Learning (Springer, Berlin, 1993) 213-226.
-
(1993)
Proceedings European Conference on Machine Learning
, pp. 213-226
-
-
Modrzejewski, M.1
-
85
-
-
85104260032
-
Efficient algorithms for minimizing cross validation error
-
W.W. Cohen and H. Hirsh, eds., New Brunswick, NJ Morgan Kaufmann, Los Altos, CA
-
A.W. Moore and M.S. Lee, Efficient algorithms for minimizing cross validation error, in: W.W. Cohen and H. Hirsh, eds., Proceedings 11th International Conference on Machine Learning, New Brunswick, NJ (Morgan Kaufmann, Los Altos, CA, 1994).
-
(1994)
Proceedings 11th International Conference on Machine Learning
-
-
Moore, A.W.1
Lee, M.S.2
-
86
-
-
0020300879
-
Decision trees and diagrams
-
B.M.E. Moret, Decision trees and diagrams, ACM Comput. Surveys 14 (1982) 593-623.
-
(1982)
ACM Comput. Surveys
, vol.14
, pp. 593-623
-
-
Moret, B.M.E.1
-
87
-
-
0343109320
-
Lookahead and pathology in decision tree induction
-
C.S. Mellish, ed., Montreal, Que. Morgan Kaufmann, Los Altos, CA
-
S. Murthy and S. Salzberg, Lookahead and pathology in decision tree induction, in: C.S. Mellish, ed., Proceedings IJCAI-95, Montreal, Que. (Morgan Kaufmann, Los Altos, CA, 1995) 1025-1031.
-
(1995)
Proceedings IJCAI-95
, pp. 1025-1031
-
-
Murthy, S.1
Salzberg, S.2
-
88
-
-
0017535866
-
A branch and bound algorithm for feature subset selection
-
M.P. Narendra and K. Fukunaga, A branch and bound algorithm for feature subset selection, IEEE Trans. Comput. 26 (1977) 917-922.
-
(1977)
IEEE Trans. Comput.
, vol.26
, pp. 917-922
-
-
Narendra, M.P.1
Fukunaga, K.2
-
89
-
-
0004149270
-
-
Irwin, Homewood, IL, 3rd ed.
-
J. Neter, W. Wasserman and M.H. Kutner, Applied Linear Statistical Models (Irwin, Homewood, IL, 3rd ed., 1990).
-
(1990)
Applied Linear Statistical Models
-
-
Neter, J.1
Wasserman, W.2
Kutner, M.H.3
-
90
-
-
0004174560
-
-
Kluwer Academic Publishers, Dordrecht
-
Z. Pawlak, Rough Sets (Kluwer Academic Publishers, Dordrecht, 1991).
-
(1991)
Rough Sets
-
-
Pawlak, Z.1
-
91
-
-
0006275671
-
Rough sets: Present state and the future
-
Z. Pawlak, Rough sets: present state and the future, Found. Comput. Decision Sci. 18 (1993) 157-166.
-
(1993)
Found. Comput. Decision Sci.
, vol.18
, pp. 157-166
-
-
Pawlak, Z.1
-
92
-
-
0008155075
-
Searching for dependencies in bayesian classifiers
-
D. Fisher and H. Lenz, eds., Ft. Lauderdale, FL
-
M.J. Pazzani, Searching for dependencies in Bayesian classifiers, in: D. Fisher and H. Lenz, eds., Proceedings 5th International Workshop on Artificial Intelligence and Statistics, Ft. Lauderdale, FL, 1995.
-
(1995)
Proceedings 5th International Workshop on Artificial Intelligence and Statistics
-
-
Pazzani, M.J.1
-
93
-
-
0003512020
-
-
Ph.D. Thesis, Physics Department, Brown University, Providence, RI
-
M. Perrone, Improving regression estimation: averaging methods for variance reduction with extensions to general convex measure optimization, Ph.D. Thesis, Physics Department, Brown University, Providence, RI (1993).
-
(1993)
Improving Regression Estimation: Averaging Methods for Variance Reduction with Extensions to General Convex Measure Optimization
-
-
Perrone, M.1
-
94
-
-
0342461847
-
Learning Bayesian networks using feature selection
-
D. Fisher and H. Lenz, eds., Ft. Lauderdale, FL
-
G.M. Provan and M. Singh, Learning Bayesian networks using feature selection, in: D. Fisher and H. Lenz, eds., Proceedings 5th International Workshop on Artificial Intelligence and Statistics, Ft. Lauderdale, FL (1995) 450-456.
-
(1995)
Proceedings 5th International Workshop on Artificial Intelligence and Statistics
, pp. 450-456
-
-
Provan, G.M.1
Singh, M.2
-
96
-
-
0001834468
-
Inductive policy: The pragmatics of bias selection
-
F.J. Provost and B.G. Buchanan, Inductive policy: the pragmatics of bias selection, Machine Learning 20 (1995) 35-61.
-
(1995)
Machine Learning
, vol.20
, pp. 35-61
-
-
Provost, F.J.1
Buchanan, B.G.2
-
97
-
-
33744584654
-
Induction of decision trees
-
J.R. Quinlan, Induction of decision trees, Machine Learning 1 (1986) 81-106;
-
(1986)
Machine Learning
, vol.1
, pp. 81-106
-
-
Quinlan, J.R.1
-
100
-
-
0013114759
-
Oversearching and layered search in empirical learning
-
C.S. Mellish, ed., Montreal, Que. Morgan Kaufmann, Los Altos, CA
-
J.R. Quinlan, Oversearching and layered search in empirical learning, in: C.S. Mellish, ed., Proceedings IJCAI-95, Montreal, Que. (Morgan Kaufmann, Los Altos, CA, 1995) 1019-1024.
-
(1995)
Proceedings IJCAI-95
, pp. 1019-1024
-
-
Quinlan, J.R.1
-
101
-
-
0000686085
-
Learning hard concepts through constructive induction: Framework and rationale
-
L. Rendell and R. Seshu, Learning hard concepts through constructive induction: Framework and rationale, Comput. Intell. 6 (1990) 247-270.
-
(1990)
Comput. Intell.
, vol.6
, pp. 247-270
-
-
Rendell, L.1
Seshu, R.2
-
102
-
-
11144273669
-
The perceptron: A probabilistic model for information storage and organization in the brain
-
F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain, Psychological Review 65 (1958) 386-408.
-
(1958)
Psychological Review
, vol.65
, pp. 386-408
-
-
Rosenblatt, F.1
-
104
-
-
0000245470
-
Selecting a classification method by cross-validation
-
C. Schaffer, Selecting a classification method by cross-validation, Machine Learning 13 (1993) 135-143.
-
(1993)
Machine Learning
, vol.13
, pp. 135-143
-
-
Schaffer, C.1
-
105
-
-
0025448521
-
The strength of weak learnability
-
R.E. Schapire, The strength of weak learnability, Machine Learning 5 (1990) 197-227.
-
(1990)
Machine Learning
, vol.5
, pp. 197-227
-
-
Schapire, R.E.1
-
107
-
-
0011225046
-
A comparison of induction algorithms for selective and non-selective Bayesian classifiers
-
Lake Tahoe, CA Morgan Kaufmann, San Mateo, CA
-
M. Singh and G.M. Provan, A comparison of induction algorithms for selective and non-selective Bayesian classifiers, in: Proceedings 12th International Conference on Machine Learning, Lake Tahoe, CA (Morgan Kaufmann, San Mateo, CA, 1995) 497-505.
-
(1995)
Proceedings 12th International Conference on Machine Learning
, pp. 497-505
-
-
Singh, M.1
Provan, G.M.2
-
108
-
-
0012657799
-
Prototype and feature selection by sampling and random mutation hill climbing algorithms
-
W.W. Cohen and H. Hirsh, eds., New Brunswick, NJ Morgan Kaufmann, Los Altos, CA
-
D.B. Skalak, Prototype and feature selection by sampling and random mutation hill climbing algorithms, in: W.W. Cohen and H. Hirsh, eds., Proceedings 11th International Conference on Machine Learning, New Brunswick, NJ (Morgan Kaufmann, Los Altos, CA, 1994).
-
(1994)
Proceedings 11th International Conference on Machine Learning
-
-
Skalak, D.B.1
-
109
-
-
85043507102
-
An inductive learning approach to prognostic prediction
-
Lake Tahoe, CA Morgan Kaufmann, San Mateo, CA
-
W.N. Street, O.L. Mangasarian and W.H. Wolberg, An inductive learning approach to prognostic prediction, in: Proceedings 12th International Conference on Machine Learning, Lake Tahoe, CA (Morgan Kaufmann, San Mateo, CA, 1995).
-
(1995)
Proceedings 12th International Conference on Machine Learning
-
-
Street, W.N.1
Mangasarian, O.L.2
Wolberg, W.H.3
-
113
-
-
0010268509
-
The identification of context-sensitive features, a formal definition of context for concept learning
-
M. Kubat and G. Widmer, eds., also available as: National Research Council of Canada Tech. Rept. #39222
-
P.D. Turney, The identification of context-sensitive features, a formal definition of context for concept learning, in: M. Kubat and G. Widmer, eds., Proceedings Workshop on Learning in Context-Sensitive Domains (1996) 53-59; also available as: National Research Council of Canada Tech. Rept. #39222.
-
(1996)
Proceedings Workshop on Learning in Context-sensitive Domains
, pp. 53-59
-
-
Turney, P.D.1
-
114
-
-
85152519885
-
An improved algorithm for incremental induction of decision trees
-
New Brunswick, NJ Morgan Kaufmann, Los Altos, CA
-
P.E. Utgoff, An improved algorithm for incremental induction of decision trees, in: Proceedings 11th International Conference on Machine Learning, New Brunswick, NJ (Morgan Kaufmann, Los Altos, CA, 1994) 318-325.
-
(1994)
Proceedings 11th International Conference on Machine Learning
, pp. 318-325
-
-
Utgoff, P.E.1
-
116
-
-
85027109147
-
Genetic algorithms as a tool for feature selection in machine learning
-
IEEE Computer Society Press, Rockville, MD
-
H. Vafai and K. De Jong, Genetic algorithms as a tool for feature selection in machine learning, in: Proceedings 4th International Conference on Tools with Artificial Intelligence (IEEE Computer Society Press, Rockville, MD, 1992) 200-203.
-
(1992)
Proceedings 4th International Conference on Tools with Artificial Intelligence
, pp. 200-203
-
-
Vafai, H.1
De Jong, K.2
-
117
-
-
0027811983
-
Robust feature selection algorithms
-
IEEE Computer Society Press, Rockville, MD
-
H. Vafai and K. De Jong, Robust feature selection algorithms, in Proceedings 5th International Conference on Tools with Artificial Intelligence (IEEE Computer Society Press, Rockville, MD, 1993) 356-363.
-
(1993)
Proceedings 5th International Conference on Tools with Artificial Intelligence
, pp. 356-363
-
-
Vafai, H.1
De Jong, K.2
-
118
-
-
0002489083
-
On the connection between in-sample testing and generalization error
-
D.H. Wolpert, On the connection between in-sample testing and generalization error, Complex Systems 6 (1992) 47-94.
-
(1992)
Complex Systems
, vol.6
, pp. 47-94
-
-
Wolpert, D.H.1
-
119
-
-
0026692226
-
Stacked generalization
-
D.H. Wolpert, Stacked generalization, Neural Networks 5 (1992) 241-259.
-
(1992)
Neural Networks
, vol.5
, pp. 241-259
-
-
Wolpert, D.H.1
-
120
-
-
0024175265
-
Best first strategy for feature selection
-
IEEE Computer Society Press, Rockville, MD
-
L. Xu, P. Yan and T. Chang, Best first strategy for feature selection, in: Proceedings 9th International Conference on Pattern Recognition (IEEE Computer Society Press, Rockville, MD, 1989) 706-708.
-
(1989)
Proceedings 9th International Conference on Pattern Recognition
, pp. 706-708
-
-
Xu, L.1
Yan, P.2
Chang, T.3
-
122
-
-
0027610652
-
A more efficient branch and bound algorithm for feature selection
-
B. Yu and B. Yuan, A more efficient branch and bound algorithm for feature selection, Pattern Recognition 26 (1993) 883-889.
-
(1993)
Pattern Recognition
, vol.26
, pp. 883-889
-
-
Yu, B.1
Yuan, B.2
-
123
-
-
0002211529
-
The discovery, analysis and representation of data dependencies in databases
-
G. Piatetsky-Shapiro and W. Frawley, eds., MIT Press, Cambridge, MA
-
W. Ziarko, The discovery, analysis and representation of data dependencies in databases, in: G. Piatetsky-Shapiro and W. Frawley, eds., Knowledge Discovery in Databases (MIT Press, Cambridge, MA, 1991).
-
(1991)
Knowledge Discovery in Databases
-
-
Ziarko, W.1
|