메뉴 건너뛰기




Volumn 43, Issue 3, 2005, Pages 492-501

Investigation of the random forest framework for classification of hyperspectral data

Author keywords

Binary hierarchical classifier (BHC); Classification; Classification and regression trees (CART); Hyperion; Hyperspectral; Okavango Delta; Random forests; Random subspace feature selection

Indexed keywords

CLASSIFICATION (OF INFORMATION); FEATURE EXTRACTION; FORESTRY; IMAGE ANALYSIS; IMAGE SENSORS; PERSONNEL TRAINING; SHRINKAGE; SOCIETIES AND INSTITUTIONS;

EID: 14644421528     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2004.842481     Document Type: Conference Paper
Times cited : (1043)

References (26)
  • 2
    • 85032751896 scopus 로고    scopus 로고
    • Hyperspectral image data analysis as a high dimensional signal processing problem
    • Jan.
    • D. Landgrebe, "Hyperspectral image data analysis as a high dimensional signal processing problem," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 17-28, Jan. 2002.
    • (2002) IEEE Signal Process. Mag. , vol.19 , Issue.1 , pp. 17-28
    • Landgrebe, D.1
  • 3
    • 0026120032 scopus 로고
    • Small sample size effects in statistical pattern recognition: Recommendations for practitioners
    • Mar.
    • S. J. Raudys and A. K. Jain, "Small sample size effects in statistical pattern recognition: Recommendations for practitioners," IEEE Trans. Pattern Anal. Mach. Intell., vol. 13, no. 3, pp. 252-264, Mar. 1991.
    • (1991) IEEE Trans. Pattern Anal. Mach. Intell. , vol.13 , Issue.3 , pp. 252-264
    • Raudys, S.J.1    Jain, A.K.2
  • 4
    • 0032633354 scopus 로고    scopus 로고
    • Covariance estimation with limited training samples
    • Jul.
    • S. Tadjudin and D. A. Landgrebe, "Covariance estimation with limited training samples," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 4, pp. 2113-2118, Jul. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.4 , pp. 2113-2118
    • Tadjudin, S.1    Landgrebe, D.A.2
  • 5
    • 0035391615 scopus 로고    scopus 로고
    • A new search algorithm for feature selection in hyperspectral remote sensing images
    • Jul.
    • S. B. Serpico and L. Bruzzone, "A new search algorithm for feature selection in hyperspectral remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 7, pp. 1360-1367, Jul. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.7 , pp. 1360-1367
    • Serpico, S.B.1    Bruzzone, L.2
  • 6
    • 0035694667 scopus 로고    scopus 로고
    • An adaptive classifier design for high-dimensional data analysis with a limited training data set
    • Dec.
    • Q. Jackson and D. Landgrebe, "An adaptive classifier design for high-dimensional data analysis with a limited training data set," IEEE Trans. Geosci.Remote Sens., vol. 39, no. 12, pp. 2664-2679, Dec. 2001.
    • (2001) IEEE Trans. Geosci.Remote Sens. , vol.39 , Issue.12 , pp. 2664-2679
    • Jackson, Q.1    Landgrebe, D.2
  • 8
    • 0030855587 scopus 로고    scopus 로고
    • Decision boundary feature extraction for neural networks
    • Jan.
    • C. Lee and D. Landgrebe, "Decision boundary feature extraction for neural networks," IEEE Trans. Neural Networks, vol. 8, no. 1, pp. 75-83, Jan. 1997.
    • (1997) IEEE Trans. Neural Networks , vol.8 , Issue.1 , pp. 75-83
    • Lee, C.1    Landgrebe, D.2
  • 9
    • 0032737410 scopus 로고    scopus 로고
    • Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification
    • Jan.
    • X. Jia and J. A. Richards, "Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 1, pp. 538-542, Jan. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.1 , pp. 538-542
    • Jia, X.1    Richards, J.A.2
  • 10
    • 0035391738 scopus 로고    scopus 로고
    • Best basis feature extraction algorithms for classification of hyperspectral data
    • Jul.
    • S. Kumar, J. Ghosh, and M. M. Crawford, "Best basis feature extraction algorithms for classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 29, no. 7, pp. 1368-1379, Jul. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.29 , Issue.7 , pp. 1368-1379
    • Kumar, S.1    Ghosh, J.2    Crawford, M.M.3
  • 13
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors," Mach. Learning, vol. 24, no. 2, pp. 123-140, 1996.
    • (1996) Mach. Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 14
    • 0030365938 scopus 로고    scopus 로고
    • Error correlation and error reduction in ensemble classifiers
    • K. Turner and J. Ghosh, "Error correlation and error reduction in ensemble classifiers," Connection Sci., vol. 8, no. 3/4, pp. 385-404, 1996.
    • (1996) Connection Sci. , vol.8 , Issue.3-4 , pp. 385-404
    • Turner, K.1    Ghosh, J.2
  • 15
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Aug.
    • T. K. Ho, "The random subspace method for constructing decision forests," IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8, pp. 832-844, Aug. 1998.
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 16
    • 0036080160 scopus 로고    scopus 로고
    • Bagging, boosting, and the random subspace method for linear classifiers
    • M. Skurichina and R. P. W. Duin, "Bagging, boosting, and the random subspace method for linear classifiers," Int. J. Pattern Anal. Appl., vol. 5, no. 2, pp. 121-135, 2002.
    • (2002) Int. J. Pattern Anal. Appl. , vol.5 , Issue.2 , pp. 121-135
    • Skurichina, M.1    Duin, R.P.W.2
  • 17
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, "Random forests," Mach. Learning, vol. 45, pp. 5-32, 2001.
    • (2001) Mach. Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 18
    • 19044382587 scopus 로고    scopus 로고
    • Round robin classification
    • J. Furnkranz, "Round robin classification," J. Mach. Learning Res., vol. 2, pp. 721-747, 2002.
    • (2002) J. Mach. Learning Res. , vol.2 , pp. 721-747
    • Furnkranz, J.1
  • 19
    • 0000406788 scopus 로고
    • Solving multiclass learning problems using error correcting output codes
    • T. G. Dietterich and R. Bakiri, "Solving multiclass learning problems using error correcting output codes," J. Artif. Intell. Res., vol. 2, no. 1, pp. 263-286, 1995.
    • (1995) J. Artif. Intell. Res. , vol.2 , Issue.1 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, R.2
  • 20
    • 0036080105 scopus 로고    scopus 로고
    • Hierarchical fusion of multiple classifiers for hyperspectral data analysis
    • S. Kumar, J. Ghosh, and M. M. Crawford, "Hierarchical fusion of multiple classifiers for hyperspectral data analysis," Int. J. Pattern Anal. Appl., vol. 5, no. 2, pp. 210-220, 2002.
    • (2002) Int. J. Pattern Anal. Appl. , vol.5 , Issue.2 , pp. 210-220
    • Kumar, S.1    Ghosh, J.2    Crawford, M.M.3
  • 21
    • 14644389113 scopus 로고    scopus 로고
    • Robust classifiers for hyperspectral data analysis using limited training data
    • Elba Island, Italy, Sep. 15-18
    • M. Crawford, J. Ham, and J. Ghosh, "Robust classifiers for hyperspectral data analysis using limited training data," presented at the 2003 Tyrrhenian International Workshop on Remote Sensing, Elba Island, Italy, Sep. 15-18, 2003.
    • (2003) 2003 Tyrrhenian International Workshop on Remote Sensing
    • Crawford, M.1    Ham, J.2    Ghosh, J.3
  • 22
    • 30344462709 scopus 로고    scopus 로고
    • Results of the EO-1 experiment - Use of earth observing-1 advanced land imager (ALI) data to assess the vegetational response to flooding in the Okavango Delta, Botswana
    • to be published
    • A. L. Neuenschwander, M. M. Crawford, and S. Ringrose, "Results of the EO-1 experiment - Use of Earth Observing-1 Advanced Land Imager (ALI) data to assess the vegetational response to flooding in the Okavango Delta, Botswana," Int. J. Remote Sens., 2005, to be published.
    • (2005) Int. J. Remote Sens.
    • Neuenschwander, A.L.1    Crawford, M.M.2    Ringrose, S.3
  • 23
    • 0032675380 scopus 로고    scopus 로고
    • GAMLS: A generalized framework for associative modular learning systems
    • Orlando, FL
    • S. Kumar and J. Ghosh, "GAMLS: A generalized framework for associative modular learning systems," in Proc. Applications and Science of Comp. Intelligence II, Orlando, FL, 1999, pp. 24-34.
    • (1999) Proc. Applications and Science of Comp. Intelligence II , pp. 24-34
    • Kumar, S.1    Ghosh, J.2
  • 25
    • 0028742731 scopus 로고
    • Geometric mixture analysis of imaging spectrometry data
    • J. W. Boardman, "Geometric mixture analysis of imaging spectrometry data," in Proc. IGARSS, vol. 4, 1994, pp. 2369-2371.
    • (1994) Proc. IGARSS , vol.4 , pp. 2369-2371
    • Boardman, J.W.1
  • 26
    • 0036378759 scopus 로고    scopus 로고
    • Spectral unmixirig of vegetation, soil, and dry carbon in arid regions: Comparing multi-spectral and hyperspectral observations
    • G. P. Asner and K. B. Heidebrecht, "Spectral unmixirig of vegetation, soil, and dry carbon in arid regions: Comparing multi-spectral and hyperspectral observations," Int. J. Remote Sens., vol. 23, pp. 3939-3958, 2002.
    • (2002) Int. J. Remote Sens. , vol.23 , pp. 3939-3958
    • Asner, G.P.1    Heidebrecht, K.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.