-
1
-
-
82855166026
-
-
UCI machine learning repository. University of California. Irvine. School of Information and Computer Science.
-
Asuncion, A., & Newman, D. J. (2007). UCI machine learning repository. University of California. Irvine. School of Information and Computer Science. http://www.ics.uci.edu/~mlearn/MLRepository.html.
-
(2007)
-
-
Asuncion, A.1
Newman, D.J.2
-
2
-
-
0032645080
-
An empirical comparison of voting classification algorithms: bagging, boosting, and variants
-
Bauer E., Kohavi R. An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Machine Learning 1999, 36:105-139.
-
(1999)
Machine Learning
, vol.36
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
3
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Machine Learning 1996, 24:123-140.
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
5
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Machine Learning 2001, 45:5-32.
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
6
-
-
0003802343
-
-
Chapman & Hall, New York
-
Breiman L., Friedman J.H., Olshen R.A., Stone C.J. Classification and regression trees 1984, Chapman & Hall, New York.
-
(1984)
Classification and regression trees
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.A.3
Stone, C.J.4
-
7
-
-
32544431928
-
Evolving hybrid ensembles of learning machines for better generalisation
-
Chandra A., Yao X. Evolving hybrid ensembles of learning machines for better generalisation. Neurocomputing 2006, 69:686-700.
-
(2006)
Neurocomputing
, vol.69
, pp. 686-700
-
-
Chandra, A.1
Yao, X.2
-
13
-
-
0003684449
-
-
Springer-Verlag, New York
-
Hastie T., Tibshirani R., Friedman J. The elements of statistical learning: data mining, inference, and prediction 2001, Springer-Verlag, New York.
-
(2001)
The elements of statistical learning: data mining, inference, and prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
16
-
-
0037410515
-
Double-bagging: combining classifiers by bootstrap aggregation
-
Hothorn T., Lausen B. Double-bagging: combining classifiers by bootstrap aggregation. Pattern Recognition 2003, 36:1303-1309.
-
(2003)
Pattern Recognition
, vol.36
, pp. 1303-1309
-
-
Hothorn, T.1
Lausen, B.2
-
22
-
-
24144490154
-
Diversity in multiple classifier systems
-
Kuncheva L. Diversity in multiple classifier systems. Information Fusion 2005, 6:3-4.
-
(2005)
Information Fusion
, vol.6
, pp. 3-4
-
-
Kuncheva, L.1
-
23
-
-
0031238275
-
Application of majority voting to pattern recognition: an analysis of its behavior and performancee
-
Lam L., Suen C.Y. Application of majority voting to pattern recognition: an analysis of its behavior and performancee. IEEE Transactions on Pattern Analysis and Machine Intelligence 1997, 27:553-568.
-
(1997)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, pp. 553-568
-
-
Lam, L.1
Suen, C.Y.2
-
24
-
-
78651532074
-
Improving the precision of classification trees
-
Loh W.-Y. Improving the precision of classification trees. The Annals of Applied Statistics 2009, 3:1710-1737.
-
(2009)
The Annals of Applied Statistics
, vol.3
, pp. 1710-1737
-
-
Loh, W.-Y.1
-
25
-
-
33744793789
-
Multi-sensor fusion: an evolutionary algorithm approach
-
Maslov I.V., Gertner I. Multi-sensor fusion: an evolutionary algorithm approach. Information Fusion 2006, 7:304-330.
-
(2006)
Information Fusion
, vol.7
, pp. 304-330
-
-
Maslov, I.V.1
Gertner, I.2
-
27
-
-
84947791171
-
Multiple classifier combination for character recognition: revisiting the majority voting system and its variations
-
Document analysis systems V
-
Rahman A.F.R., Alam H., Fairhurst M.C. Multiple classifier combination for character recognition: revisiting the majority voting system and its variations. Lecture notes in computer science 2002, Vol. 2423:167-178.
-
(2002)
Lecture notes in computer science
, vol.2423
, pp. 167-178
-
-
Rahman, A.F.R.1
Alam, H.2
Fairhurst, M.C.3
-
29
-
-
69449097857
-
Taxonomy for characterizing ensemble methods in classification tasks: a review and annotated bibliography
-
Rokach L. Taxonomy for characterizing ensemble methods in classification tasks: a review and annotated bibliography. Computational Statistics and Data Analysis 2009, 53:4046-4072.
-
(2009)
Computational Statistics and Data Analysis
, vol.53
, pp. 4046-4072
-
-
Rokach, L.1
-
30
-
-
0025448521
-
The strength of weak learnability
-
Schapire R.E. The strength of weak learnability. Machine Learning 1990, 5:197-227.
-
(1990)
Machine Learning
, vol.5
, pp. 197-227
-
-
Schapire, R.E.1
-
31
-
-
82855179377
-
-
Statlib. Datasets archive. Carnegie Mellon University. Department of Statistics.
-
Statlib. 2010. Datasets archive. Carnegie Mellon University. Department of Statistics. http://lib.stat.cmu.edu.
-
(2010)
-
-
-
32
-
-
0028164038
-
Geographical variation of harp seal underwater vocalisations
-
Terhune J.M. Geographical variation of harp seal underwater vocalisations. Canadian Journal of Zoology 1994, 72:892-897.
-
(1994)
Canadian Journal of Zoology
, vol.72
, pp. 892-897
-
-
Terhune, J.M.1
-
33
-
-
0034247206
-
Multiboosting: a technique for combining boosting and wagging
-
Webb G.I. Multiboosting: a technique for combining boosting and wagging. Machine Learning 2000, 40:159-196.
-
(2000)
Machine Learning
, vol.40
, pp. 159-196
-
-
Webb, G.I.1
-
35
-
-
77958028886
-
Multi-class adaboost
-
Zhu J., Zou H., Rosset S., Hastie T. Multi-class adaboost. Statistics and its Interface 2009, 2:349-360.
-
(2009)
Statistics and its Interface
, vol.2
, pp. 349-360
-
-
Zhu, J.1
Zou, H.2
Rosset, S.3
Hastie, T.4
|