메뉴 건너뛰기




Volumn 40, Issue 4, 2011, Pages 437-449

A weight-adjusted voting algorithm for ensembles of classifiers

Author keywords

Aggregation; Bagging; Boosting; Classification; Cross validation; Ensemble; Primary; Random Forest; Secondary; Voting

Indexed keywords


EID: 82855178868     PISSN: 12263192     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jkss.2011.03.002     Document Type: Article
Times cited : (106)

References (35)
  • 1
    • 82855166026 scopus 로고    scopus 로고
    • UCI machine learning repository. University of California. Irvine. School of Information and Computer Science.
    • Asuncion, A., & Newman, D. J. (2007). UCI machine learning repository. University of California. Irvine. School of Information and Computer Science. http://www.ics.uci.edu/~mlearn/MLRepository.html.
    • (2007)
    • Asuncion, A.1    Newman, D.J.2
  • 2
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: bagging, boosting, and variants
    • Bauer E., Kohavi R. An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Machine Learning 1999, 36:105-139.
    • (1999) Machine Learning , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 1996, 24:123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 5
  • 7
    • 32544431928 scopus 로고    scopus 로고
    • Evolving hybrid ensembles of learning machines for better generalisation
    • Chandra A., Yao X. Evolving hybrid ensembles of learning machines for better generalisation. Neurocomputing 2006, 69:686-700.
    • (2006) Neurocomputing , vol.69 , pp. 686-700
    • Chandra, A.1    Yao, X.2
  • 10
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: a statistical view of boosting
    • Friedman J., Hastie T., Tibshirani R. Additive logistic regression: a statistical view of boosting. The Annals of Statistics 2000, 28:337-407.
    • (2000) The Annals of Statistics , vol.28 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 16
    • 0037410515 scopus 로고    scopus 로고
    • Double-bagging: combining classifiers by bootstrap aggregation
    • Hothorn T., Lausen B. Double-bagging: combining classifiers by bootstrap aggregation. Pattern Recognition 2003, 36:1303-1309.
    • (2003) Pattern Recognition , vol.36 , pp. 1303-1309
    • Hothorn, T.1    Lausen, B.2
  • 19
  • 22
    • 24144490154 scopus 로고    scopus 로고
    • Diversity in multiple classifier systems
    • Kuncheva L. Diversity in multiple classifier systems. Information Fusion 2005, 6:3-4.
    • (2005) Information Fusion , vol.6 , pp. 3-4
    • Kuncheva, L.1
  • 23
    • 0031238275 scopus 로고    scopus 로고
    • Application of majority voting to pattern recognition: an analysis of its behavior and performancee
    • Lam L., Suen C.Y. Application of majority voting to pattern recognition: an analysis of its behavior and performancee. IEEE Transactions on Pattern Analysis and Machine Intelligence 1997, 27:553-568.
    • (1997) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , pp. 553-568
    • Lam, L.1    Suen, C.Y.2
  • 24
    • 78651532074 scopus 로고    scopus 로고
    • Improving the precision of classification trees
    • Loh W.-Y. Improving the precision of classification trees. The Annals of Applied Statistics 2009, 3:1710-1737.
    • (2009) The Annals of Applied Statistics , vol.3 , pp. 1710-1737
    • Loh, W.-Y.1
  • 25
    • 33744793789 scopus 로고    scopus 로고
    • Multi-sensor fusion: an evolutionary algorithm approach
    • Maslov I.V., Gertner I. Multi-sensor fusion: an evolutionary algorithm approach. Information Fusion 2006, 7:304-330.
    • (2006) Information Fusion , vol.7 , pp. 304-330
    • Maslov, I.V.1    Gertner, I.2
  • 27
    • 84947791171 scopus 로고    scopus 로고
    • Multiple classifier combination for character recognition: revisiting the majority voting system and its variations
    • Document analysis systems V
    • Rahman A.F.R., Alam H., Fairhurst M.C. Multiple classifier combination for character recognition: revisiting the majority voting system and its variations. Lecture notes in computer science 2002, Vol. 2423:167-178.
    • (2002) Lecture notes in computer science , vol.2423 , pp. 167-178
    • Rahman, A.F.R.1    Alam, H.2    Fairhurst, M.C.3
  • 29
    • 69449097857 scopus 로고    scopus 로고
    • Taxonomy for characterizing ensemble methods in classification tasks: a review and annotated bibliography
    • Rokach L. Taxonomy for characterizing ensemble methods in classification tasks: a review and annotated bibliography. Computational Statistics and Data Analysis 2009, 53:4046-4072.
    • (2009) Computational Statistics and Data Analysis , vol.53 , pp. 4046-4072
    • Rokach, L.1
  • 30
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire R.E. The strength of weak learnability. Machine Learning 1990, 5:197-227.
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 31
    • 82855179377 scopus 로고    scopus 로고
    • Statlib. Datasets archive. Carnegie Mellon University. Department of Statistics.
    • Statlib. 2010. Datasets archive. Carnegie Mellon University. Department of Statistics. http://lib.stat.cmu.edu.
    • (2010)
  • 32
    • 0028164038 scopus 로고
    • Geographical variation of harp seal underwater vocalisations
    • Terhune J.M. Geographical variation of harp seal underwater vocalisations. Canadian Journal of Zoology 1994, 72:892-897.
    • (1994) Canadian Journal of Zoology , vol.72 , pp. 892-897
    • Terhune, J.M.1
  • 33
    • 0034247206 scopus 로고    scopus 로고
    • Multiboosting: a technique for combining boosting and wagging
    • Webb G.I. Multiboosting: a technique for combining boosting and wagging. Machine Learning 2000, 40:159-196.
    • (2000) Machine Learning , vol.40 , pp. 159-196
    • Webb, G.I.1
  • 34


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.