메뉴 건너뛰기




Volumn 2096, Issue , 2001, Pages 238-247

Input decimation ensembles: Decorrelation through dimensionality reduction

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTER SCIENCE; COMPUTERS;

EID: 84944215019     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-48219-9_24     Document Type: Conference Paper
Times cited : (73)

References (17)
  • 2
    • 0003092797 scopus 로고    scopus 로고
    • Combining nearest neighbor classifiers through multiple feature subsets
    • Morgan Kaufmann
    • S.D. Bay. Combining nearest neighbor classifiers through multiple feature subsets. In Proc. 15th ICML, pages 415-425. Morgan Kaufmann, 1998.
    • (1998) Proc. 15th ICML , pp. 415-425
    • Bay, S.D.1
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 5
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • T.G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting output codes. Journal of AI Research, 2:263-286, 1995.
    • (1995) Journal of AI Research , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 6
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees
    • Thomas G. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40:139-158, Aug. 2000.
    • (2000) Bagging, Boosting, and Randomization. Machine Learning , vol.40 , pp. 139-158
    • Dietterich, T.G.1
  • 7
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm
    • Bari, Italy, Morgan Kaufmann
    • Y. Freund and R. Schapire. Experiments with a new boosting algorithm. In Proc. 13th ICML, pages 148-156, Bari, Italy, 1996. Morgan Kaufmann.
    • (1996) Proc. 13th ICML , pp. 148-156
    • Freund, Y.1    Schapire, R.2
  • 9
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation and active learning
    • G. Tesauro, D.S. Touretzky, and T.K. Leen, editors, M.I.T. Press
    • A. Krogh and J. Vedelsby. Neural network ensembles, cross validation and active learning. In G. Tesauro, D.S. Touretzky, and T.K. Leen, editors, Advances in Neural Information Processing Systems-7, pages 231-238. M.I.T. Press, 1995.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 12
    • 0001595997 scopus 로고
    • Neural network classifiers estimate Bayesian a posteriori probabilities
    • M.D. Richard and R.P. Lippmann. Neural network classifiers estimate Bayesian a posteriori probabilities. Neural Computation, 3(4):461-483, 1991.
    • (1991) Neural Computation , vol.3 , Issue.4 , pp. 461-483
    • Richard, M.D.1    Lippmann, R.P.2
  • 13
    • 0030085913 scopus 로고    scopus 로고
    • Analysis of decision boundaries in linearly combined neural classifiers
    • February
    • K. Tumer and J. Ghosh. Analysis of decision boundaries in linearly combined neural classifiers. Pattern Recognition, 29(2):341-348, February 1996.
    • (1996) Pattern Recognition , vol.29 , Issue.2 , pp. 341-348
    • Tumer, K.1    Ghosh, J.2
  • 16
    • 0026692226 scopus 로고
    • Stacked generalization
    • D. H. Wolpert. Stacked generalization. Neural Networks, 5:241-259, 1992.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.