-
1
-
-
0346786584
-
Arcing classifiers (with discussion)
-
Breiman, L.: Arcing classifiers (with discussion). Ann. Stat. 26, 801-849 (1998).
-
(1998)
Ann. Stat.
, vol.26
, pp. 801-849
-
-
Breiman, L.1
-
2
-
-
0000275022
-
Prediction games & arcing algorithms
-
Breiman, L.: Prediction games & arcing algorithms. Neural Comput. 11, 1493-1517 (1999).
-
(1999)
Neural Comput.
, vol.11
, pp. 1493-1517
-
-
Breiman, L.1
-
3
-
-
0035478854
-
Random forests
-
Breiman, L.: Random forests. Mach. Learn. 45, 5-32 (2001).
-
(2001)
Mach. Learn.
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
4
-
-
33745157294
-
Boosting for high-dimensional linear models
-
Bühlmann, P.: Boosting for high-dimensional linear models. Ann. Stat. 34, 559-583 (2006).
-
(2006)
Ann. Stat.
, vol.34
, pp. 559-583
-
-
Bühlmann, P.1
-
5
-
-
41549141939
-
Boosting algorithms: Regularization, prediction and model fitting (with discussion)
-
Bühlmann, P., Hothorn, T.: Boosting algorithms: regularization, prediction and model fitting (with discussion). Stat. Sci. 22, 477-505 (2007).
-
(2007)
Stat. Sci.
, vol.22
, pp. 477-505
-
-
Bühlmann, P.1
Hothorn, T.2
-
6
-
-
51049123885
-
Discussion of "One-step sparse estimates in nonconcave penalized likelihood models" (H. Zou and R. Li, auths.)
-
Bühlmann, P., Meier, L.: Discussion of "One-step sparse estimates in nonconcave penalized likelihood models" (H. Zou and R. Li, auths.). Ann. Stat. 36, 1534-1541 (2008).
-
(2008)
Ann. Stat.
, vol.36
, pp. 1534-1541
-
-
Bühlmann, P.1
Meier, L.2
-
7
-
-
0043245810
-
2 loss: Regression and classification
-
2 loss: regression and classification. J. Am. Stat. Assoc. 98, 324-339 (2003).
-
(2003)
J. Am. Stat. Assoc.
, vol.98
, pp. 324-339
-
-
Bühlmann, P.1
Yu, B.2
-
9
-
-
0037453009
-
Integrating regulatory motif discovery and genome-wide expression analysis
-
Conlon, E., Liu, X., Lieb, J., Liu, J.: Integrating regulatory motif discovery and genome-wide expression analysis. Proc. Natl. Acad. Sci. USA 100, 3339-3344 (2003).
-
(2003)
Proc. Natl. Acad. Sci. USA
, vol.100
, pp. 3339-3344
-
-
Conlon, E.1
Liu, X.2
Lieb, J.3
Liu, J.4
-
10
-
-
0016794660
-
Partial likelihood
-
Cox, D.: Partial likelihood. Biometrika 62, 269-276 (1975).
-
(1975)
Biometrika
, vol.62
, pp. 269-276
-
-
Cox, D.1
-
11
-
-
3242708140
-
Least angle regression (with discussion)
-
Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression (with discussion). Ann. Stat. 32, 407-451 (2004).
-
(2004)
Ann. Stat.
, vol.32
, pp. 407-451
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
13
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119-139 (1997).
-
(1997)
J. Comput. Syst. Sci.
, vol.55
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.2
-
14
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
Friedman, J.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189-1232 (2001).
-
(2001)
Ann. Stat.
, vol.29
, pp. 1189-1232
-
-
Friedman, J.1
-
15
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting (with discussion)
-
Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting (with discussion). Ann. Stat. 28, 337-407 (2000).
-
(2000)
Ann. Stat.
, vol.28
, pp. 337-407
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
16
-
-
33745891586
-
-
Heidelberg: Springer
-
Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.: Feature Extraction, Foundations and Applications, Studies in Fuzziness and Soft Computing. Springer, Heidelberg (2006).
-
(2006)
Feature Extraction, Foundations and Applications, Studies in Fuzziness and Soft Computing
-
-
Guyon, I.1
Gunn, S.2
Nikravesh, M.3
Zadeh, L.4
-
17
-
-
33745886270
-
Classifier technology and the illusion of progress (with discussion)
-
Hand, D.: Classifier technology and the illusion of progress (with discussion). Stat. Sci. 21, 1-34 (2006).
-
(2006)
Stat. Sci.
, vol.21
, pp. 1-34
-
-
Hand, D.1
-
18
-
-
51049096710
-
Adaptive Lasso for sparse high-dimensional regression models
-
Huang, J., Ma, S., Zhang, C.-H.: Adaptive Lasso for sparse high-dimensional regression models. Stat. Sin. 18, 1603-1618 (2008).
-
(2008)
Stat. Sin.
, vol.18
, pp. 1603-1618
-
-
Huang, J.1
Ma, S.2
Zhang, C.-H.3
-
20
-
-
40649094544
-
-
Lutz, R.: Logitboost with trees applied to the WCCI 2006 performance prediction challenge datasets. In: Proceedings of the IJCNN 2006.
-
-
-
-
23
-
-
33747163541
-
High-dimensional graphs and variable selection with the Lasso
-
Meinshausen, N., Bühlmann, P.: High-dimensional graphs and variable selection with the Lasso. Ann. Stat. 34, 1436-1462 (2006).
-
(2006)
Ann. Stat.
, vol.34
, pp. 1436-1462
-
-
Meinshausen, N.1
Bühlmann, P.2
-
24
-
-
35248862907
-
An introduction to boosting and leveraging
-
Lecture Notes in Computer Science, S. Mendelson and A. Smola (Eds.), Berlin: Springer
-
Meir, R., Rätsch, G.: An introduction to boosting and leveraging. In: Mendelson, S., Smola, A. (eds.) Advanced Lectures on Machine Learning. Lecture Notes in Computer Science. Springer, Berlin (2003).
-
(2003)
Advanced Lectures on Machine Learning
-
-
Meir, R.1
Rätsch, G.2
-
25
-
-
0342502195
-
Soft margins for AdaBoost
-
Rätsch, G., Onoda, T., Müller, K.: Soft margins for AdaBoost. Mach. Learn. 42, 287-320 (2001).
-
(2001)
Mach. Learn.
, vol.42
, pp. 287-320
-
-
Rätsch, G.1
Onoda, T.2
Müller, K.3
-
26
-
-
0008562342
-
The state of boosting
-
Ridgeway, G.: The state of boosting. Comput. Sci. Stat. 31, 172-181 (1999).
-
(1999)
Comput. Sci. Stat.
, vol.31
, pp. 172-181
-
-
Ridgeway, G.1
-
27
-
-
0037806811
-
The boosting approach to machine learning: An overview
-
D. Denison, M. Hansen, C. Holmes, B. Mallick, and B. Yu (Eds.), Berlin: Springer
-
Schapire, R.: The boosting approach to machine learning: an overview. In: Denison, D., Hansen, M., Holmes, C., Mallick, B., Yu, B. (eds.) MSRI Workshop on Nonlinear Estimation and Classification. Springer, Berlin (2002).
-
(2002)
MSRI Workshop on Nonlinear Estimation and Classification
-
-
Schapire, R.1
-
28
-
-
85194972808
-
Regression shrinkage and selection via the Lasso
-
Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc., Ser. B 58, 267-288 (1996).
-
(1996)
J. R. Stat. Soc., Ser. B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
29
-
-
33845509035
-
Generalized additive modeling with implicit variable selection by likelihood-based boosting
-
Tutz, G., Binder, H.: Generalized additive modeling with implicit variable selection by likelihood-based boosting. Biometrics 62, 961-971 (2006).
-
(2006)
Biometrics
, vol.62
, pp. 961-971
-
-
Tutz, G.1
Binder, H.2
-
30
-
-
34249879561
-
A boosting approach to flexible semiparametric mixed models
-
Tutz, G., Reithinger, F.: A boosting approach to flexible semiparametric mixed models. Stat. Med. 26, 2872-2900 (2007).
-
(2007)
Stat. Med.
, vol.26
, pp. 2872-2900
-
-
Tutz, G.1
Reithinger, F.2
-
31
-
-
33845263263
-
On model selection consistency of Lasso
-
Zhao, P., Yu, B.: On model selection consistency of Lasso. J. Mach. Learn. Res. 7, 2541-2563 (2006).
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 2541-2563
-
-
Zhao, P.1
Yu, B.2
-
32
-
-
33846114377
-
The adaptive Lasso and its oracle properties
-
Zou, H.: The adaptive Lasso and its oracle properties. J. Am. Stat. Assoc. 101, 1418-1429 (2006).
-
(2006)
J. Am. Stat. Assoc.
, vol.101
, pp. 1418-1429
-
-
Zou, H.1
-
33
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc., Ser. B 67, 301-320 (2005).
-
(2005)
J. R. Stat. Soc., Ser. B
, vol.67
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
|