메뉴 건너뛰기




Volumn 20, Issue 2, 2010, Pages 119-138

Twin Boosting: Improved feature selection and prediction

Author keywords

Classification; Gradient descent; High dimensional data; Regression; Regularization

Indexed keywords


EID: 77953318018     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11222-009-9148-5     Document Type: Article
Times cited : (48)

References (33)
  • 1
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers (with discussion)
    • Breiman, L.: Arcing classifiers (with discussion). Ann. Stat. 26, 801-849 (1998).
    • (1998) Ann. Stat. , vol.26 , pp. 801-849
    • Breiman, L.1
  • 2
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games & arcing algorithms
    • Breiman, L.: Prediction games & arcing algorithms. Neural Comput. 11, 1493-1517 (1999).
    • (1999) Neural Comput. , vol.11 , pp. 1493-1517
    • Breiman, L.1
  • 3
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L.: Random forests. Mach. Learn. 45, 5-32 (2001).
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 4
    • 33745157294 scopus 로고    scopus 로고
    • Boosting for high-dimensional linear models
    • Bühlmann, P.: Boosting for high-dimensional linear models. Ann. Stat. 34, 559-583 (2006).
    • (2006) Ann. Stat. , vol.34 , pp. 559-583
    • Bühlmann, P.1
  • 5
    • 41549141939 scopus 로고    scopus 로고
    • Boosting algorithms: Regularization, prediction and model fitting (with discussion)
    • Bühlmann, P., Hothorn, T.: Boosting algorithms: regularization, prediction and model fitting (with discussion). Stat. Sci. 22, 477-505 (2007).
    • (2007) Stat. Sci. , vol.22 , pp. 477-505
    • Bühlmann, P.1    Hothorn, T.2
  • 6
    • 51049123885 scopus 로고    scopus 로고
    • Discussion of "One-step sparse estimates in nonconcave penalized likelihood models" (H. Zou and R. Li, auths.)
    • Bühlmann, P., Meier, L.: Discussion of "One-step sparse estimates in nonconcave penalized likelihood models" (H. Zou and R. Li, auths.). Ann. Stat. 36, 1534-1541 (2008).
    • (2008) Ann. Stat. , vol.36 , pp. 1534-1541
    • Bühlmann, P.1    Meier, L.2
  • 7
    • 0043245810 scopus 로고    scopus 로고
    • 2 loss: Regression and classification
    • 2 loss: regression and classification. J. Am. Stat. Assoc. 98, 324-339 (2003).
    • (2003) J. Am. Stat. Assoc. , vol.98 , pp. 324-339
    • Bühlmann, P.1    Yu, B.2
  • 9
    • 0037453009 scopus 로고    scopus 로고
    • Integrating regulatory motif discovery and genome-wide expression analysis
    • Conlon, E., Liu, X., Lieb, J., Liu, J.: Integrating regulatory motif discovery and genome-wide expression analysis. Proc. Natl. Acad. Sci. USA 100, 3339-3344 (2003).
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 3339-3344
    • Conlon, E.1    Liu, X.2    Lieb, J.3    Liu, J.4
  • 10
    • 0016794660 scopus 로고
    • Partial likelihood
    • Cox, D.: Partial likelihood. Biometrika 62, 269-276 (1975).
    • (1975) Biometrika , vol.62 , pp. 269-276
    • Cox, D.1
  • 13
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119-139 (1997).
    • (1997) J. Comput. Syst. Sci. , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 14
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman, J.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189-1232 (2001).
    • (2001) Ann. Stat. , vol.29 , pp. 1189-1232
    • Friedman, J.1
  • 15
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting (with discussion)
    • Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting (with discussion). Ann. Stat. 28, 337-407 (2000).
    • (2000) Ann. Stat. , vol.28 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 17
    • 33745886270 scopus 로고    scopus 로고
    • Classifier technology and the illusion of progress (with discussion)
    • Hand, D.: Classifier technology and the illusion of progress (with discussion). Stat. Sci. 21, 1-34 (2006).
    • (2006) Stat. Sci. , vol.21 , pp. 1-34
    • Hand, D.1
  • 18
    • 51049096710 scopus 로고    scopus 로고
    • Adaptive Lasso for sparse high-dimensional regression models
    • Huang, J., Ma, S., Zhang, C.-H.: Adaptive Lasso for sparse high-dimensional regression models. Stat. Sin. 18, 1603-1618 (2008).
    • (2008) Stat. Sin. , vol.18 , pp. 1603-1618
    • Huang, J.1    Ma, S.2    Zhang, C.-H.3
  • 19
    • 19944378094 scopus 로고    scopus 로고
    • The naive Bayes mystery
    • Jamain, A., Hand, D.: The naive Bayes mystery. Pattern Recogn. Lett. 26, 1752-1760 (2005).
    • (2005) Pattern Recogn. Lett. , vol.26 , pp. 1752-1760
    • Jamain, A.1    Hand, D.2
  • 20
    • 40649094544 scopus 로고    scopus 로고
    • Lutz, R.: Logitboost with trees applied to the WCCI 2006 performance prediction challenge datasets. In: Proceedings of the IJCNN 2006.
  • 23
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the Lasso
    • Meinshausen, N., Bühlmann, P.: High-dimensional graphs and variable selection with the Lasso. Ann. Stat. 34, 1436-1462 (2006).
    • (2006) Ann. Stat. , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 24
    • 35248862907 scopus 로고    scopus 로고
    • An introduction to boosting and leveraging
    • Lecture Notes in Computer Science, S. Mendelson and A. Smola (Eds.), Berlin: Springer
    • Meir, R., Rätsch, G.: An introduction to boosting and leveraging. In: Mendelson, S., Smola, A. (eds.) Advanced Lectures on Machine Learning. Lecture Notes in Computer Science. Springer, Berlin (2003).
    • (2003) Advanced Lectures on Machine Learning
    • Meir, R.1    Rätsch, G.2
  • 26
    • 0008562342 scopus 로고    scopus 로고
    • The state of boosting
    • Ridgeway, G.: The state of boosting. Comput. Sci. Stat. 31, 172-181 (1999).
    • (1999) Comput. Sci. Stat. , vol.31 , pp. 172-181
    • Ridgeway, G.1
  • 27
    • 0037806811 scopus 로고    scopus 로고
    • The boosting approach to machine learning: An overview
    • D. Denison, M. Hansen, C. Holmes, B. Mallick, and B. Yu (Eds.), Berlin: Springer
    • Schapire, R.: The boosting approach to machine learning: an overview. In: Denison, D., Hansen, M., Holmes, C., Mallick, B., Yu, B. (eds.) MSRI Workshop on Nonlinear Estimation and Classification. Springer, Berlin (2002).
    • (2002) MSRI Workshop on Nonlinear Estimation and Classification
    • Schapire, R.1
  • 28
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc., Ser. B 58, 267-288 (1996).
    • (1996) J. R. Stat. Soc., Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 29
    • 33845509035 scopus 로고    scopus 로고
    • Generalized additive modeling with implicit variable selection by likelihood-based boosting
    • Tutz, G., Binder, H.: Generalized additive modeling with implicit variable selection by likelihood-based boosting. Biometrics 62, 961-971 (2006).
    • (2006) Biometrics , vol.62 , pp. 961-971
    • Tutz, G.1    Binder, H.2
  • 30
    • 34249879561 scopus 로고    scopus 로고
    • A boosting approach to flexible semiparametric mixed models
    • Tutz, G., Reithinger, F.: A boosting approach to flexible semiparametric mixed models. Stat. Med. 26, 2872-2900 (2007).
    • (2007) Stat. Med. , vol.26 , pp. 2872-2900
    • Tutz, G.1    Reithinger, F.2
  • 31
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of Lasso
    • Zhao, P., Yu, B.: On model selection consistency of Lasso. J. Mach. Learn. Res. 7, 2541-2563 (2006).
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2
  • 32
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive Lasso and its oracle properties
    • Zou, H.: The adaptive Lasso and its oracle properties. J. Am. Stat. Assoc. 101, 1418-1429 (2006).
    • (2006) J. Am. Stat. Assoc. , vol.101 , pp. 1418-1429
    • Zou, H.1
  • 33
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc., Ser. B 67, 301-320 (2005).
    • (2005) J. R. Stat. Soc., Ser. B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.