메뉴 건너뛰기




Volumn 1, Issue 2, 2001, Pages 113-141

Reducing multiclass to binary: A unifying approach for margin classifiers

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE BOOSTING; DECISION TREES; LOGISTIC REGRESSION; SUPPORT VECTOR MACHINES; SUPPORT VECTOR REGRESSION;

EID: 24044435942     PISSN: 15324435     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (1482)

References (28)
  • 1
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
    • Bartlett, P. L. (1998). The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Transactions on Information Theory, 44(2), 525-536.
    • (1998) IEEE Transactions on Information Theory , vol.44 , Issue.2 , pp. 525-536
    • Bartlett, P.L.1
  • 2
    • 0004198448 scopus 로고    scopus 로고
    • Tech. rep. 486, Statistics Department, University of California at Berkeley
    • Breiman, L. (1997a). Arcing the edge. Tech. rep. 486, Statistics Department, University of California at Berkeley.
    • (1997) Arcing the Edge
    • Breiman, L.1
  • 3
    • 0003929807 scopus 로고    scopus 로고
    • Tech. rep. 504, Statistics Department, University of California at Berkeley
    • Breiman, L. (1997b). Prediction games and arcing classifiers. Tech. rep. 504, Statistics Department, University of California at Berkeley.
    • (1997) Prediction Games and Arcing Classifiers
    • Breiman, L.1
  • 6
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 10
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • Dietterich, T. G., & Bakiri, G. (1995). Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence Research, 2, 263-286.
    • (1995) Journal of Artificial Intelligence Research , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 12
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119-139.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 13
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a statistical view of boosting. The Annals of Statistics, 38(2), 337-374.
    • (2000) The Annals of Statistics , vol.38 , Issue.2 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 15
    • 0032355984 scopus 로고    scopus 로고
    • Classification by pairwise coupling
    • Hastie, T., & Tibshirani, R. (1998). Classification by pairwise coupling. The Annals of Statistics, 26(2), 451-471.
    • (1998) The Annals of Statistics , vol.26 , Issue.2 , pp. 451-471
    • Hastie, T.1    Tibshirani, R.2
  • 16
    • 84947403595 scopus 로고
    • Probability inequalities for sums of bounded random variables
    • Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58(301), 13-30.
    • (1963) Journal of the American Statistical Association , vol.58 , Issue.301 , pp. 13-30
    • Hoeffding, W.1
  • 20
    • 0002550596 scopus 로고    scopus 로고
    • Functional gradient techniques for combining hypotheses
    • Smola, A. J., Bartlett, P. J., Schölkopf, B., & Schuurmans, D. (Eds.), MIT Press
    • Mason, L., Baxter, J., Bartlett, P., & Frean, M. (1999). Functional gradient techniques for combining hypotheses. In Smola, A. J., Bartlett, P. J., Schölkopf, B., & Schuurmans, D. (Eds.), Advances in Large Margin Classifiers. MIT Press.
    • (1999) Advances in Large Margin Classifiers
    • Mason, L.1    Baxter, J.2    Bartlett, P.3    Frean, M.4
  • 25
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S. (1998). Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics, 26(5), 1651-1686.
    • (1998) The Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 26
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Schapire, R. E., & Singer, Y. (1999). Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37(3), 297-336.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.