메뉴 건너뛰기




Volumn 28, Issue 4, 2010, Pages 583-593

Classifier ensembles for fMRI data analysis: an experiment

Author keywords

Classifier ensembles; FMRI; Pattern recognition; Random oracle; Random subspace; Rotation forest

Indexed keywords

ACCURACY; ARTICLE; AUTOMATED PATTERN RECOGNITION; BRAIN COMPUTER INTERFACE; CLASSIFICATION; CLASSIFIER; CONTROLLED STUDY; DATA ANALYSIS; EXPERIMENT; FUNCTIONAL MAGNETIC RESONANCE IMAGING; IMAGE ANALYSIS; PRIORITY JOURNAL; RELIABILITY; SUPPORT VECTOR MACHINE; VISUAL STIMULATION;

EID: 77952293118     PISSN: 0730725X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.mri.2009.12.021     Document Type: Article
Times cited : (77)

References (58)
  • 1
    • 33748178966 scopus 로고    scopus 로고
    • Beyond mind-reading: multi-voxel pattern analysis of fMRI data
    • Norman K.A., Polyn A.M., Detre G.J., Haxby J.V. Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn Sci 2006, 10:424-430.
    • (2006) Trends Cogn Sci , vol.10 , pp. 424-430
    • Norman, K.A.1    Polyn, A.M.2    Detre, G.J.3    Haxby, J.V.4
  • 2
    • 0035964792 scopus 로고    scopus 로고
    • Distributed and overlapping representation of faces and objects in ventral temporal cortex
    • Haxby J.V., Gobbini M., Furey M.L., Ishal A., Schouten J.L., Pietrini P. Distributed and overlapping representation of faces and objects in ventral temporal cortex. Science 2001, 293:2425-2430.
    • (2001) Science , vol.293 , pp. 2425-2430
    • Haxby, J.V.1    Gobbini, M.2    Furey, M.L.3    Ishal, A.4    Schouten, J.L.5    Pietrini, P.6
  • 3
    • 41149148634 scopus 로고    scopus 로고
    • Identifying natural images from human brain activity
    • Kay K.N., Naselaris T., Prenger R.J., Gallant J.L. Identifying natural images from human brain activity. Nat Lett 2008, 452:352-355.
    • (2008) Nat Lett , vol.452 , pp. 352-355
    • Kay, K.N.1    Naselaris, T.2    Prenger, R.J.3    Gallant, J.L.4
  • 5
    • 34548537654 scopus 로고    scopus 로고
    • Unsupervised analysis of fMRI data using kernel canonical correlation
    • Hardoon D.R., Mourao-Miranda J., Brammer M., Shawe-Taylor J. Unsupervised analysis of fMRI data using kernel canonical correlation. NeuroImage 2007, 37(4):1250-1259.
    • (2007) NeuroImage , vol.37 , Issue.4 , pp. 1250-1259
    • Hardoon, D.R.1    Mourao-Miranda, J.2    Brammer, M.3    Shawe-Taylor, J.4
  • 6
    • 65549168742 scopus 로고    scopus 로고
    • Machine learning classifiers and fMRI: a tutorial overview
    • Pereira F., Mitchell T., Botvinick M. Machine learning classifiers and fMRI: a tutorial overview. NeuroImage 2009, 45(1, Supplement 1):S199-S209.
    • (2009) NeuroImage , vol.45 , Issue.1 SUPPL. 1
    • Pereira, F.1    Mitchell, T.2    Botvinick, M.3
  • 8
    • 52049116700 scopus 로고    scopus 로고
    • Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns
    • De Martino F., Valente G., Staeren N., Ashburner J., Goebel R., Formisano E. Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. NeuroImage 2008, 43(1):44-58.
    • (2008) NeuroImage , vol.43 , Issue.1 , pp. 44-58
    • De Martino, F.1    Valente, G.2    Staeren, N.3    Ashburner, J.4    Goebel, R.5    Formisano, E.6
  • 9
    • 77952290162 scopus 로고    scopus 로고
    • Academic Press, London, K. Friston, J. Ashburner, S. Kiebel, T. Nichols, W. Penny (Eds.)
    • Statistical Parametric Mapping: The Analysis of Functional Brain Images 2007, 465-469. Academic Press, London. K. Friston, J. Ashburner, S. Kiebel, T. Nichols, W. Penny (Eds.).
    • (2007) Statistical Parametric Mapping: The Analysis of Functional Brain Images , pp. 465-469
  • 10
    • 62049084375 scopus 로고    scopus 로고
    • Local pattern classification differentiates processes of economic valuation
    • Clithero J.A., Carter R.M., Huettel S.A. Local pattern classification differentiates processes of economic valuation. NeuroImage 2009, 45(4):1329-1338.
    • (2009) NeuroImage , vol.45 , Issue.4 , pp. 1329-1338
    • Clithero, J.A.1    Carter, R.M.2    Huettel, S.A.3
  • 11
    • 17844380475 scopus 로고    scopus 로고
    • Decoding the visual and subjective contents of the human brain
    • Kamitani Y., Tong F. Decoding the visual and subjective contents of the human brain. Nat Neurosci 2005, 8:679-685.
    • (2005) Nat Neurosci , vol.8 , pp. 679-685
    • Kamitani, Y.1    Tong, F.2
  • 13
    • 28644431673 scopus 로고    scopus 로고
    • Self-regulation of local brain activity using real-time functional magnetic resonance imaging (fMRI)
    • Weiskopf N., Scharnowski F., Veit R., Goebel R., Birbaumer N., Mathiak K. Self-regulation of local brain activity using real-time functional magnetic resonance imaging (fMRI). J Physiol 2004, 98(4-6):357-373.
    • (2004) J Physiol , vol.98 , Issue.4-6 , pp. 357-373
    • Weiskopf, N.1    Scharnowski, F.2    Veit, R.3    Goebel, R.4    Birbaumer, N.5    Mathiak, K.6
  • 15
    • 0041737619 scopus 로고    scopus 로고
    • Functional magnetic resonance imaging (fmri): detecting and classifying distributed patterns of fmri activity in human visual cortex
    • Cox D.D., Savoy R.L. Functional magnetic resonance imaging (fmri): detecting and classifying distributed patterns of fmri activity in human visual cortex. NeuroImage 2003, 19(2):261-270.
    • (2003) NeuroImage , vol.19 , Issue.2 , pp. 261-270
    • Cox, D.D.1    Savoy, R.L.2
  • 17
    • 48549099795 scopus 로고    scopus 로고
    • Comparison of pattern recognition methods in classifying high-resolution BOLD signals obtained at high magnetic field in monkeys
    • Ku S.-P., Gretton A., Macke J., Logothetis N.K. Comparison of pattern recognition methods in classifying high-resolution BOLD signals obtained at high magnetic field in monkeys. Magn Reson Imaging 2008, 26(7):1007-1014.
    • (2008) Magn Reson Imaging , vol.26 , Issue.7 , pp. 1007-1014
    • Ku, S.-P.1    Gretton, A.2    Macke, J.3    Logothetis, N.K.4
  • 18
    • 55349089531 scopus 로고    scopus 로고
    • Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns
    • Yamashita O., Sato M.-A., Yoshioka T., Tong F., Kamitani Y. Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns. NeuroImage 2008, 42:1414-1429.
    • (2008) NeuroImage , vol.42 , pp. 1414-1429
    • Yamashita, O.1    Sato, M.-A.2    Yoshioka, T.3    Tong, F.4    Kamitani, Y.5
  • 19
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 1998, 2(2):121-167.
    • (1998) Data Min Knowl Discov , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 22
    • 77952072972 scopus 로고    scopus 로고
    • Ensemble learning
    • Springer, C. Sammut, G. Webb (Eds.)
    • Brown G. Ensemble learning. Encyclopedia of Machine Learning 2009, Springer, http://www.springer.com/computer/artificial/book/978-0-387-30768-8. C. Sammut, G. Webb (Eds.).
    • (2009) Encyclopedia of Machine Learning
    • Brown, G.1
  • 23
    • 1942418620 scopus 로고    scopus 로고
    • On discriminative vs. generative classifiers: a comparison of logistic regression and naive Bayes
    • Ng A., Jordan M. On discriminative vs. generative classifiers: a comparison of logistic regression and naive Bayes. Advances in Neural Information Processing Systems (NIPS) 2001, 841-848.
    • (2001) Advances in Neural Information Processing Systems (NIPS) , pp. 841-848
    • Ng, A.1    Jordan, M.2
  • 26
    • 19344370474 scopus 로고    scopus 로고
    • Support vector machines for temporal classification of block design fmri data
    • LaConte S., Strother S., Cherkassky V., Anderson J., Hu X. Support vector machines for temporal classification of block design fmri data. NeuroImage 2005, 26(2):317-329.
    • (2005) NeuroImage , vol.26 , Issue.2 , pp. 317-329
    • LaConte, S.1    Strother, S.2    Cherkassky, V.3    Anderson, J.4    Hu, X.5
  • 27
    • 28244492778 scopus 로고    scopus 로고
    • Classifying brain states and determining the discriminating activation patterns: support vector machine on functional mri data
    • Mourao-Miranda J., Bokde A.L., Born C., Hampel H., Stetter M. Classifying brain states and determining the discriminating activation patterns: support vector machine on functional mri data. NeuroImage 2005, 28(4):980-995.
    • (2005) NeuroImage , vol.28 , Issue.4 , pp. 980-995
    • Mourao-Miranda, J.1    Bokde, A.L.2    Born, C.3    Hampel, H.4    Stetter, M.5
  • 28
    • 33750737054 scopus 로고    scopus 로고
    • The impact of temporal compression and space selection on SVM analysis of single-subject and multi- subject fMRI data
    • Mourao-Miranda J., Reynaud E., McGlone F., Calvert G., Brammer M. The impact of temporal compression and space selection on SVM analysis of single-subject and multi- subject fMRI data. NeuroImage 2006, 33(4):1055-1065.
    • (2006) NeuroImage , vol.33 , Issue.4 , pp. 1055-1065
    • Mourao-Miranda, J.1    Reynaud, E.2    McGlone, F.3    Calvert, G.4    Brammer, M.5
  • 30
    • 0035528674 scopus 로고    scopus 로고
    • Idiot's Bayes - not so stupid after all?
    • Hand D.J., Yu K. Idiot's Bayes - not so stupid after all?. Int Stat Rev 2001, 69:385-398.
    • (2001) Int Stat Rev , vol.69 , pp. 385-398
    • Hand, D.J.1    Yu, K.2
  • 32
    • 24044435942 scopus 로고    scopus 로고
    • Reducing multiclass to binary: a unifying approach for margin classifiers
    • Allwein E.L., Schapire R.E., Singer Y. Reducing multiclass to binary: a unifying approach for margin classifiers. J Mach Learn Res 2000, 1:113-141.
    • (2000) J Mach Learn Res , vol.1 , pp. 113-141
    • Allwein, E.L.1    Schapire, R.E.2    Singer, Y.3
  • 33
    • 0030365938 scopus 로고    scopus 로고
    • Error correlation and error reduction in ensemble classifiers
    • Tumer K., Ghosh J. Error correlation and error reduction in ensemble classifiers. Connect Sci 1996, 8(3/4):385-404.
    • (1996) Connect Sci , vol.8 , Issue.3-4 , pp. 385-404
    • Tumer, K.1    Ghosh, J.2
  • 34
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles
    • Kuncheva L.I., Whitaker C.J. Measures of diversity in classifier ensembles. Mach Learn 2003, 51:181-207.
    • (2003) Mach Learn , vol.51 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 35
    • 0038133019 scopus 로고    scopus 로고
    • Limits on the majority vote accuracy in classifier fusion
    • Kuncheva L., Whitaker C., Shipp C., Duin R. Limits on the majority vote accuracy in classifier fusion. Pattern Anal Appl 2003, 6:22-31.
    • (2003) Pattern Anal Appl , vol.6 , pp. 22-31
    • Kuncheva, L.1    Whitaker, C.2    Shipp, C.3    Duin, R.4
  • 36
  • 37
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach Learn 1996, 26(2):123-140.
    • (1996) Mach Learn , vol.26 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 38
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • Domingos P., Pazzani M. On the optimality of the simple Bayesian classifier under zero-one loss. Mach Learn 1997, 29:103-130.
    • (1997) Mach Learn , vol.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 39
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer E., Kohavi R. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Mach Learn 1999, 36:105-142.
    • (1999) Mach Learn , vol.36 , pp. 105-142
    • Bauer, E.1    Kohavi, R.2
  • 40
    • 26944501740 scopus 로고    scopus 로고
    • Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods
    • Valentini G., Dietterich T.G. Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods. J Mach Learn Res 2004, 725-775.
    • (2004) J Mach Learn Res , pp. 725-775
    • Valentini, G.1    Dietterich, T.G.2
  • 41
    • 35048868343 scopus 로고    scopus 로고
    • Random aggregated and bagged ensembles of SVMs: an empirical bias-variance analysis
    • F. Roli, J. Kittler, T. Windeatt (Eds.) Fifth International Workshop on Multiple Classifier Systems
    • Valentini G. Random aggregated and bagged ensembles of SVMs: an empirical bias-variance analysis. Lecture Notes in Computer Science 2004, Vol. 3077:263-272. F. Roli, J. Kittler, T. Windeatt (Eds.).
    • (2004) Lecture Notes in Computer Science , vol.3077 , pp. 263-272
    • Valentini, G.1
  • 43
    • 0032139235 scopus 로고    scopus 로고
    • The random space method for constructing decision forests
    • Ho T.K. The random space method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 1998, 20(8):832-844.
    • (1998) IEEE Trans Pattern Anal Mach Intell , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 44
    • 33646258047 scopus 로고    scopus 로고
    • Random subspace method for multivariate feature selection
    • Lai C., Reinders M.J., Wessels L. Random subspace method for multivariate feature selection. Pattern Recogn Lett 2006, 27(10):1067-1076.
    • (2006) Pattern Recogn Lett , vol.27 , Issue.10 , pp. 1067-1076
    • Lai, C.1    Reinders, M.J.2    Wessels, L.3
  • 45
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Learn 2001, 45:5-32.
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 47
    • 37249077843 scopus 로고    scopus 로고
    • Classifier ensembles with a random linear oracle
    • Kuncheva L., Rodríguez J.J. Classifier ensembles with a random linear oracle. IEEE Trans Knowl Data Eng 2007, 19(4):500-508.
    • (2007) IEEE Trans Knowl Data Eng , vol.19 , Issue.4 , pp. 500-508
    • Kuncheva, L.1    Rodríguez, J.J.2
  • 50
    • 0042847140 scopus 로고    scopus 로고
    • Inference for the generalization error
    • Nadeau C., Bengio Y. Inference for the generalization error. Mach Learn 2003, 62:239-281.
    • (2003) Mach Learn , vol.62 , pp. 239-281
    • Nadeau, C.1    Bengio, Y.2
  • 53
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston J., Barnhill S., Vapnik V. Gene selection for cancer classification using support vector machines. Mach Learn 2002, 46:389-422.
    • (2002) Mach Learn , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 55
    • 77952289835 scopus 로고    scopus 로고
    • Correlation-based feature subset selection for machine learning, Ph.D. thesis, University of Waikato, Hamilton, New Zealand
    • Hall MA. Correlation-based feature subset selection for machine learning, Ph.D. thesis, University of Waikato, Hamilton, New Zealand (1998).
    • (1998)
    • Hall, M.A.1
  • 57
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • Breiman L. Arcing classifiers. Ann Stat 1998, 26(3):801-849.
    • (1998) Ann Stat , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.