-
1
-
-
84880692677
-
On learning multiple descriptions of a concept
-
New Orleans, LA
-
Ali, K., Brunk, C., & Pazzani, M. (1994). On learning multiple descriptions of a concept. In Proceedings of Tools with Artificial Intelligence (pp. 476-483). New Orleans, LA.
-
(1994)
Proceedings of Tools with Artificial Intelligence
, pp. 476-483
-
-
Ali, K.1
Brunk, C.2
Pazzani, M.3
-
2
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
Bauer, E. & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36, 105-139.
-
(1999)
Machine Learning
, vol.36
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
3
-
-
0003408496
-
-
Machine-readable data repository. University of California, Department of Information and Computer Science, Irvine, CA
-
Blake, C., Keogh, E., & Merz, C. J. (1999). UCI repository of machine learning databases. [Machine-readable data repository]. University of California, Department of Information and Computer Science, Irvine, CA.
-
(1999)
UCI Repository of Machine Learning Databases
-
-
Blake, C.1
Keogh, E.2
Merz, C.J.3
-
4
-
-
0030211964
-
Bagging predictors
-
Breiman, L. (1996a). Bagging predictors. Machine Learning, 24, 123-140.
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
5
-
-
0003619255
-
Bias, variance, and arcing classifiers
-
Berkeley, CA, Department of Statistics, University of California
-
Breiman, L. (1996b). Bias, variance, and arcing classifiers. Technical report 460. Berkeley, CA, Department of Statistics, University of California.
-
(1996)
Technical Report 460
-
-
Breiman, L.1
-
6
-
-
0004198448
-
Arcing the edge
-
Berkeley, CA, Department of Statistics, University of California
-
Breiman, L. (1997). Arcing the edge. Technical report 486. Berkeley, CA, Department of Statistics, University of California.
-
(1997)
Technical Report 486
-
-
Breiman, L.1
-
7
-
-
0003802343
-
-
Belmont, CA: Wadsworth International
-
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and Regression Trees. Belmont, CA: Wadsworth International.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.A.3
Stone, C.J.4
-
8
-
-
0000259511
-
Approximate statistical tests for comparing supervised classification learning algorithms
-
Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10(7), 1895-1923.
-
(1998)
Neural Computation
, vol.10
, Issue.7
, pp. 1895-1923
-
-
Dietterich, T.G.1
-
9
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund, Y. & Schapire, R. E. (1995). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55, 119-139.
-
(1995)
Journal of Computer and System Sciences
, vol.55
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
11
-
-
21744462998
-
On bias, variance, 0/1-loss, and the curse-of-dimensionality
-
Friedman, J. H. (1997). On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data Mining and Knowledge Discovery, 1, 55-77.
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, pp. 55-77
-
-
Friedman, J.H.1
-
13
-
-
0001942829
-
Neural networks and the bias/variance dilemma
-
Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the bias/variance dilemma. Neural Computation, 4, 1-48.
-
(1992)
Neural Computation
, vol.4
, pp. 1-48
-
-
Geman, S.1
Bienenstock, E.2
Doursat, R.3
-
16
-
-
0000749354
-
Neural network ensembles, cross validation, and active learning
-
G. Tesauro, D. Touretzky, & T. Leen (Eds.), Boston, MA: MIT Press
-
Krogh, A. & Vedelsby, J. (1995). Neural network ensembles, cross validation, and active learning. G. Tesauro, D. Touretzky, & T. Leen (Eds.), Advances in Neural Information Processing Systems (Vol. 7). Boston, MA: MIT Press.
-
(1995)
Advances in Neural Information Processing Systems
, vol.7
-
-
Krogh, A.1
Vedelsby, J.2
-
20
-
-
85115704629
-
For every generalization action is there really an equal and opposite reaction? Analysis of the conservation law for generalization performance
-
Taho City, CA: Morgan Kaufmann
-
Rao, R. B., Gordon, D., & Spears, W. (1995). For every generalization action is there really an equal and opposite reaction? Analysis of the conservation law for generalization performance. In Proceedings of the Twelfth International Conference on Machine Learning (pp. 471-479). Taho City, CA: Morgan Kaufmann.
-
(1995)
Proceedings of the Twelfth International Conference on Machine Learning
, pp. 471-479
-
-
Rao, R.B.1
Gordon, D.2
Spears, W.3
-
21
-
-
27144463192
-
On comparing classifiers: Pitfalls to avoid and a recommended approach
-
Salzberg, S. L. (1997). On comparing classifiers: Pitfalls to avoid and a recommended approach. Data Mining and Knowledge Discovery, 1, 317-327.
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, pp. 317-327
-
-
Salzberg, S.L.1
-
23
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S. (1998). Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics, 26, 1651-1686.
-
(1998)
The Annals of Statistics
, vol.26
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
Lee, W.S.4
-
24
-
-
0026692226
-
Stacked generalization
-
Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5, 241-259.
-
(1992)
Neural Networks
, vol.5
, pp. 241-259
-
-
Wolpert, D.H.1
-
25
-
-
0008917292
-
Off-training set error and a priori distinctions between learning algorithms
-
Santa Fe, NM, The Santa Fe Institute
-
Wolpert, D. H. (1995). Off-training set error and a priori distinctions between learning algorithms. Technical Report SFI TR 95-01-003. Santa Fe, NM, The Santa Fe Institute.
-
(1995)
Technical Report SFI TR 95-01-003
-
-
Wolpert, D.H.1
|