메뉴 건너뛰기




Volumn 40, Issue 2, 2000, Pages 159-196

MultiBoosting: a technique for combining boosting and wagging

Author keywords

[No Author keywords available]

Indexed keywords

DATA STRUCTURES; DECISION THEORY; ERRORS; LEARNING ALGORITHMS; POISSON DISTRIBUTION; RANDOM PROCESSES; STATISTICAL METHODS;

EID: 0034247206     PISSN: 08856125     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1007659514849     Document Type: Article
Times cited : (611)

References (26)
  • 2
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer, E. & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36, 105-139.
    • (1999) Machine Learning , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 3
    • 0003408496 scopus 로고    scopus 로고
    • Machine-readable data repository. University of California, Department of Information and Computer Science, Irvine, CA
    • Blake, C., Keogh, E., & Merz, C. J. (1999). UCI repository of machine learning databases. [Machine-readable data repository]. University of California, Department of Information and Computer Science, Irvine, CA.
    • (1999) UCI Repository of Machine Learning Databases
    • Blake, C.1    Keogh, E.2    Merz, C.J.3
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996a). Bagging predictors. Machine Learning, 24, 123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 5
    • 0003619255 scopus 로고    scopus 로고
    • Bias, variance, and arcing classifiers
    • Berkeley, CA, Department of Statistics, University of California
    • Breiman, L. (1996b). Bias, variance, and arcing classifiers. Technical report 460. Berkeley, CA, Department of Statistics, University of California.
    • (1996) Technical Report 460
    • Breiman, L.1
  • 6
    • 0004198448 scopus 로고    scopus 로고
    • Arcing the edge
    • Berkeley, CA, Department of Statistics, University of California
    • Breiman, L. (1997). Arcing the edge. Technical report 486. Berkeley, CA, Department of Statistics, University of California.
    • (1997) Technical Report 486
    • Breiman, L.1
  • 8
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10(7), 1895-1923.
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1923
    • Dietterich, T.G.1
  • 9
    • 0031211090 scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y. & Schapire, R. E. (1995). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55, 119-139.
    • (1995) Journal of Computer and System Sciences , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 11
    • 21744462998 scopus 로고    scopus 로고
    • On bias, variance, 0/1-loss, and the curse-of-dimensionality
    • Friedman, J. H. (1997). On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data Mining and Knowledge Discovery, 1, 55-77.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , pp. 55-77
    • Friedman, J.H.1
  • 16
    • 0000749354 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • G. Tesauro, D. Touretzky, & T. Leen (Eds.), Boston, MA: MIT Press
    • Krogh, A. & Vedelsby, J. (1995). Neural network ensembles, cross validation, and active learning. G. Tesauro, D. Touretzky, & T. Leen (Eds.), Advances in Neural Information Processing Systems (Vol. 7). Boston, MA: MIT Press.
    • (1995) Advances in Neural Information Processing Systems , vol.7
    • Krogh, A.1    Vedelsby, J.2
  • 20
    • 85115704629 scopus 로고
    • For every generalization action is there really an equal and opposite reaction? Analysis of the conservation law for generalization performance
    • Taho City, CA: Morgan Kaufmann
    • Rao, R. B., Gordon, D., & Spears, W. (1995). For every generalization action is there really an equal and opposite reaction? Analysis of the conservation law for generalization performance. In Proceedings of the Twelfth International Conference on Machine Learning (pp. 471-479). Taho City, CA: Morgan Kaufmann.
    • (1995) Proceedings of the Twelfth International Conference on Machine Learning , pp. 471-479
    • Rao, R.B.1    Gordon, D.2    Spears, W.3
  • 21
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers: Pitfalls to avoid and a recommended approach
    • Salzberg, S. L. (1997). On comparing classifiers: Pitfalls to avoid and a recommended approach. Data Mining and Knowledge Discovery, 1, 317-327.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , pp. 317-327
    • Salzberg, S.L.1
  • 23
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S. (1998). Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics, 26, 1651-1686.
    • (1998) The Annals of Statistics , vol.26 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 24
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5, 241-259.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 25
    • 0008917292 scopus 로고
    • Off-training set error and a priori distinctions between learning algorithms
    • Santa Fe, NM, The Santa Fe Institute
    • Wolpert, D. H. (1995). Off-training set error and a priori distinctions between learning algorithms. Technical Report SFI TR 95-01-003. Santa Fe, NM, The Santa Fe Institute.
    • (1995) Technical Report SFI TR 95-01-003
    • Wolpert, D.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.