-
1
-
-
5744226870
-
WHO global strategy on diet, physical activity and health
-
Waxman A. WHO global strategy on diet, physical activity and health. Food Nutr Bull. 2004;25(3):292-302. (Pubitemid 39379377)
-
(2004)
Food and Nutrition Bulletin
, vol.25
, Issue.3
, pp. 292-302
-
-
Waxman, A.1
-
2
-
-
0012685220
-
Blood sugar levels, glycosuria, and body weight related to development of diabetes mellitus. The Oxford epidemiologic study 17 years later
-
O'Sullivan JB, Mahan CM. Blood sugar levels, glycosuria, and body weight related to development of diabetes mellitus. The Oxford epidemiologic study 17 years later. JAMA. 1965;194(6):587-92.
-
(1965)
JAMA
, vol.194
, Issue.6
, pp. 587-592
-
-
O'Sullivan, J.B.1
Mahan, C.M.2
-
3
-
-
0019814499
-
Obesity, very low density lipoproteins, and glucose intolerance over fourteen years. The Framingham study
-
Wilson PW, McGee DL, Kannel WB. Obesity, very low density lipoproteins, and glucose intolerance over fourteen years: the Framingham study. Am J Epidemiol. 1981;114(5):697-704. (Pubitemid 12241742)
-
(1981)
American Journal of Epidemiology
, vol.114
, Issue.5
, pp. 697-704
-
-
Wilson, P.W.1
McGee, D.L.2
Kannel, W.B.3
-
4
-
-
0034999667
-
Hypoadiponectinemia in obesity and type 2 diabetes: Close association with insulin resistance and hyperinsulinemia
-
DOI 10.1210/jc.86.5.1930
-
Weyer C et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2001;86(5):1930-5. (Pubitemid 32472900)
-
(2001)
Journal of Clinical Endocrinology and Metabolism
, vol.86
, Issue.5
, pp. 1930-1935
-
-
Weyer, C.1
Funahashi, T.2
Tanaka, S.3
Hotta, K.4
Matsuzawa, Y.5
Pratley, R.E.6
Tataranni, P.A.7
-
5
-
-
80455176656
-
Tipping the balance: The pathophysiology of obesity and type 2 diabetes mellitus
-
McKenney RL, Short DK. Tipping the balance: the pathophysiology of obesity and type 2 diabetes mellitus. Surg Clin N Am. 2011;91(6):1139-48. vii.
-
(2011)
Surg Clin N Am
, vol.91
, Issue.6
-
-
McKenney, R.L.1
Short, D.K.2
-
6
-
-
78649842241
-
Genomics, type 2 diabetes, and obesity
-
McCarthy MI. Genomics, type 2 diabetes, and obesity. N Engl J Med. 2010;363(24):2339-50.
-
(2010)
N Engl J Med
, vol.363
, Issue.24
, pp. 2339-2350
-
-
McCarthy, M.I.1
-
7
-
-
30044443649
-
Diabetes and obesity: The twin epidemics
-
DOI 10.1038/nm0106-75
-
Smyth S, Heron A. Diabetes and obesity: the twin epidemics. Nat Med. 2006;12(1):75-80. (Pubitemid 43050080)
-
(2006)
Nature Medicine
, vol.12
, Issue.1
, pp. 75-80
-
-
Smyth, S.1
Heron, A.2
-
8
-
-
0026021161
-
Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease
-
DeFronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991;14(3):173-94.
-
(1991)
Diabetes Care
, vol.14
, Issue.3
, pp. 173-194
-
-
DeFronzo, R.A.1
Ferrannini, E.2
-
9
-
-
84857861919
-
Mechanisms for insulin resistance: Common threads and missing links
-
Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell. 2012;148(5):852-71.
-
(2012)
Cell
, vol.148
, Issue.5
, pp. 852-871
-
-
Samuel, V.T.1
Shulman, G.I.2
-
10
-
-
42949088997
-
The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance
-
DOI 10.1016/j.physbeh.2007.10.010, PII S0031938407004027
-
Goossens GH. The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiol Behav. 2008;94(2):206-18. (Pubitemid 351615418)
-
(2008)
Physiology and Behavior
, vol.94
, Issue.2
, pp. 206-218
-
-
Goossens, G.H.1
-
11
-
-
34250773451
-
Mechanisms of obesity-associated insulin resistance: Many choices on the menu
-
DOI 10.1101/gad.1550907
-
Qatanani M, Lazar MA. Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev. 2007;21(12):1443-55. (Pubitemid 46955717)
-
(2007)
Genes and Development
, vol.21
, Issue.12
, pp. 1443-1455
-
-
Qatanani, M.1
Lazar, M.A.2
-
12
-
-
34248581989
-
Disordered lipid metabolism and the pathogenesis of insulin resistance
-
DOI 10.1152/physrev.00024.2006
-
Savage DB, Petersen KF, Shulman GI. Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol Rev. 2007;87(2):507-20. (Pubitemid 47084679)
-
(2007)
Physiological Reviews
, vol.87
, Issue.2
, pp. 507-520
-
-
Savage, D.B.1
Petersen, K.F.2
Shulman, G.I.3
-
14
-
-
0000803875
-
Plasma free fatty acid concentrations in obesity
-
Opie LH, Walfish PG. Plasma free fatty acid concentrations in obesity. N Engl J Med. 1963;268:757-60.
-
(1963)
N Engl J Med
, vol.268
, pp. 757-760
-
-
Opie, L.H.1
Walfish, P.G.2
-
15
-
-
0014501849
-
Plasma free fatty acid turnover rate in obesity
-
Bjorntorp P, Bergman H, Varnauskas E. Plasma free fatty acid turnover rate in obesity. Acta Med Scand. 1969;185(4):351-6.
-
(1969)
Acta Med Scand
, vol.185
, Issue.4
, pp. 351-356
-
-
Bjorntorp, P.1
Bergman, H.2
Varnauskas, E.3
-
16
-
-
80053408094
-
Fatty acids, obesity, and insulin resistance: Time for a reevaluation
-
Karpe F, Dickmann JR, Frayn KN. Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes. 2011;60(10):2441-9.
-
(2011)
Diabetes
, vol.60
, Issue.10
, pp. 2441-2449
-
-
Karpe, F.1
Dickmann, J.R.2
Frayn, K.N.3
-
17
-
-
79952451443
-
Obesity, insulin resistance and free fatty acids
-
Boden G. Obesity, insulin resistance and free fatty acids. Curr Opin Endocrinol Diabetes Obes. 2011;18(2):139-43.
-
(2011)
Curr Opin Endocrinol Diabetes Obes
, vol.18
, Issue.2
, pp. 139-143
-
-
Boden, G.1
-
18
-
-
50549202600
-
The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus
-
Randle PJ et al. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963;1(7285):785-9.
-
(1963)
Lancet
, vol.1
, Issue.7285
, pp. 785-789
-
-
Randle, P.J.1
-
19
-
-
0030969532
-
Skeletal muscle triglyceride levels are inversely related to insulin action
-
Pan DA et al. Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes. 1997;46(6):983-8. (Pubitemid 27220998)
-
(1997)
Diabetes
, vol.46
, Issue.6
, pp. 983-988
-
-
Pan, D.A.1
Lillioja, S.2
Kriketos, A.D.3
Milner, M.R.4
Baur, L.A.5
Bogardus, C.6
Jenkins, A.B.7
Storlien, L.H.8
-
20
-
-
0029948212
-
Mechanism of free fatty acid-induced insulin resistance in humans
-
Roden M et al. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest. 1996;97(12):2859-65. (Pubitemid 26197099)
-
(1996)
Journal of Clinical Investigation
, vol.97
, Issue.12
, pp. 2859-2865
-
-
Roden, M.1
Price, T.B.2
Perseghin, G.3
Petersen, K.F.4
Rothman, D.L.5
Cline, G.W.6
Shulman, G.I.7
-
23
-
-
78649462104
-
Taurine prevents free fatty acid-induced hepatic insulin resistance in association with inhibiting JNK1 activation and improving insulin signaling in vivo
-
Wu N et al. Taurine prevents free fatty acid-induced hepatic insulin resistance in association with inhibiting JNK1 activation and improving insulin signaling in vivo. Diabetes Res Clin Pract. 2010;90(3):288-96.
-
(2010)
Diabetes Res Clin Pract
, vol.90
, Issue.3
, pp. 288-296
-
-
Wu, N.1
-
24
-
-
84864015694
-
Effect of exposure to non-esterified fatty acid on progressive deterioration of insulin secretion in patients with Type 2 diabetes: A long-term follow-up study
-
Morita S, et al. Effect of exposure to non-esterified fatty acid on progressive deterioration of insulin secretion in patients with Type 2 diabetes: a long-term follow-up study. Diabet Med. 2012;29(8):980-5.
-
(2012)
Diabet Med
, vol.29
, Issue.8
, pp. 980-985
-
-
Morita, S.1
-
25
-
-
0030720085
-
Tissue triglycerides, insulin resistance, and insulin production: Implications for hyperinsulinemia of obesity
-
Koyama K et al. Tissue triglycerides, insulin resistance, and insulin production: implications for hyperinsulinemia of obesity. Am J Physiol. 1997;273(4 Pt 1):E708-13.
-
(1997)
Am J Physiol
, vol.273
, Issue.4 PART 1
-
-
Koyama, K.1
-
26
-
-
36649027086
-
Free fatty acid-induced reduction in glucose-stimulated insulin secretion: Evidence for a role of oxidative stress in vitro and in vivo
-
DOI 10.2337/db07-0075
-
Oprescu AI et al. Free fatty acid-induced reduction in glucose-stimulated insulin secretion: evidence for a role of oxidative stress in vitro and in vivo. Diabetes. 2007;56(12):2927-37. (Pubitemid 350223627)
-
(2007)
Diabetes
, vol.56
, Issue.12
, pp. 2927-2937
-
-
Oprescu, A.I.1
Bikopoulos, G.2
Naassan, A.3
Allister, E.M.4
Tang, C.5
Park, E.6
Uchino, H.7
Lewis, G.F.8
Fantus, I.G.9
Rozakis-Adcock, M.10
Wheeler, M.B.11
Giacca, A.12
-
28
-
-
35348832340
-
Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance
-
DOI 10.1073/pnas.0706517104
-
Tremblay F et al. Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance. Proc Natl Acad Sci U S A. 2007;104(35):14056-61. (Pubitemid 350003334)
-
(2007)
Proceedings of the National Academy of Sciences of the United States of America
, vol.104
, Issue.35
, pp. 14056-14061
-
-
Tremblay, F.1
Brule, S.2
Sung, H.U.3
Li, Y.4
Masuda, K.5
Roden, M.6
Xiao, J.S.7
Krebs, M.8
Polakiewicz, R.D.9
Thomas, G.10
Marette, A.11
-
29
-
-
0025373728
-
Glucose transport and glucose transporters in muscle and their metabolic regulation
-
Klip A, Paquet MR. Glucose transport and glucose transporters in muscle and their metabolic regulation. Diabetes Care. 1990;13(3):228-43. (Pubitemid 20092110)
-
(1990)
Diabetes Care
, vol.13
, Issue.3
, pp. 228-243
-
-
Klip, A.1
Paquet, M.R.2
-
30
-
-
0014056238
-
Cell proliferation induced by insulin in organ culture of rat mammary carcinoma
-
Heuson JC, Coune A, Heimann R. Cell proliferation induced by insulin in organ culture of rat mammary carcinoma. Exp Cell Res. 1967;45(2):351-60.
-
(1967)
Exp Cell Res
, vol.45
, Issue.2
, pp. 351-360
-
-
Heuson, J.C.1
Coune, A.2
Heimann, R.3
-
31
-
-
65549113969
-
Mediator MED23 links insulin signaling to the adipogenesis transcription cascade
-
Wang W et al. Mediator MED23 links insulin signaling to the adipogenesis transcription cascade. Dev Cell. 2009;16(5):764-71.
-
(2009)
Dev Cell
, vol.16
, Issue.5
, pp. 764-771
-
-
Wang, W.1
-
32
-
-
0028034233
-
Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function
-
Pause A et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature. 1994;371(6500):762-7.
-
(1994)
Nature
, vol.371
, Issue.6500
, pp. 762-767
-
-
Pause, A.1
-
33
-
-
77955082747
-
Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition
-
Fulzele K et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell. 2010;142(2):309-19.
-
(2010)
Cell
, vol.142
, Issue.2
, pp. 309-319
-
-
Fulzele, K.1
-
34
-
-
0035856949
-
Insulin signalling and the regulation of glucose and lipid metabolism
-
DOI 10.1038/414799a
-
Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414(6865):799-806. (Pubitemid 34000783)
-
(2001)
Nature
, vol.414
, Issue.6865
, pp. 799-806
-
-
Saltiel, A.R.1
Kahn, C.R.2
-
35
-
-
0015691094
-
Insulin control of glucagon release from insulin-deficient rat islets
-
Buchanan KD, Mawhinney WA. Insulin control of glucagon release from insulin-deficient rat islets. Diabetes. 1973;22(11):801-3.
-
(1973)
Diabetes
, vol.22
, Issue.11
, pp. 801-803
-
-
Buchanan, K.D.1
Mawhinney, W.A.2
-
36
-
-
45749158925
-
Central insulin action regulates peripheral glucose and fat metabolism in mice
-
DOI 10.1172/JCI31073
-
Koch L et al. Central insulin action regulates peripheral glucose and fat metabolism in mice. J Clin Invest. 2008;118(6):2132-47. (Pubitemid 351872332)
-
(2008)
Journal of Clinical Investigation
, vol.118
, Issue.6
, pp. 2132-2147
-
-
Koch, L.1
Wunderlich, F.T.2
Seibler, J.3
Konner, A.C.4
Hampel, B.5
Irlenbusch, S.6
Brabant, G.7
Kahn, C.R.8
Schwenk, F.9
Bruning, J.C.10
-
37
-
-
79958026765
-
Role for insulin signaling in catecholaminergic neurons in control of energy homeostasis
-
Konner AC et al. Role for insulin signaling in catecholaminergic neurons in control of energy homeostasis. Cell Metab. 2011;13(6):720-8.
-
(2011)
Cell Metab
, vol.13
, Issue.6
, pp. 720-728
-
-
Konner, A.C.1
-
38
-
-
0034703229
-
Role of brain insulin receptor in control of body weight and reproduction
-
Bruning JC et al. Role of brain insulin receptor in control of body weight and reproduction. Science. 2000;289(5487):2122-5.
-
(2000)
Science
, vol.289
, Issue.5487
, pp. 2122-2125
-
-
Bruning, J.C.1
-
39
-
-
17844391064
-
Insulin signaling in the central nervous system is critical for the normal sympathoadrenal response to hypoglycemia
-
DOI 10.2337/diabetes.54.5.1447
-
Fisher SJ et al. Insulin signaling in the central nervous system is critical for the normal sympathoadrenal response to hypoglycemia. Diabetes. 2005;54(5):1447-51. (Pubitemid 40586676)
-
(2005)
Diabetes
, vol.54
, Issue.5
, pp. 1447-1451
-
-
Fisher, S.J.1
Bruning, J.C.2
Lannon, S.3
Kahn, C.R.4
-
40
-
-
77950264425
-
Direct insulin and leptin action on pro-opiomelanocortin neurons is required for normal glucose homeostasis and fertility
-
Hill JW et al. Direct insulin and leptin action on pro-opiomelanocortin neurons is required for normal glucose homeostasis and fertility. Cell Metab. 2010;11(4):286-97.
-
(2010)
Cell Metab
, vol.11
, Issue.4
, pp. 286-297
-
-
Hill, J.W.1
-
41
-
-
34249651956
-
Insulin Action in AgRP-Expressing Neurons Is Required for Suppression of Hepatic Glucose Production
-
DOI 10.1016/j.cmet.2007.05.004, PII S1550413107001313
-
Konner AC et al. Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab. 2007;5(6):438-49. (Pubitemid 46825497)
-
(2007)
Cell Metabolism
, vol.5
, Issue.6
, pp. 438-449
-
-
Konner, A.C.1
Janoschek, R.2
Plum, L.3
Jordan, S.D.4
Rother, E.5
Ma, X.6
Xu, C.7
Enriori, P.8
Hampel, B.9
Barsh, G.S.10
Kahn, C.R.11
Cowley, M.A.12
Ashcroft, F.M.13
Bruning, J.C.14
-
42
-
-
0017112852
-
Effects of insulin on cardiac muscle contraction and responsiveness to norepinephrine
-
Lee JC, Downing SE. Effects of insulin on cardiac muscle contraction and responsiveness to norepinephrine. Am J Physiol. 1976;230(5):1360-5.
-
(1976)
Am J Physiol
, vol.230
, Issue.5
, pp. 1360-1365
-
-
Lee, J.C.1
Downing, S.E.2
-
43
-
-
0033231854
-
2+ current in human atrial myocytes by insulin
-
DOI 10.1016/S0008-6363(99)00229-1, PII S0008636399002291
-
Maier S et al. Stimulation of L-type Ca2+ current in human atrial myocytes by insulin. Cardiovasc Res. 1999;44(2):390-7. (Pubitemid 29474100)
-
(1999)
Cardiovascular Research
, vol.44
, Issue.2
, pp. 390-397
-
-
Maier, S.1
Aulbach, F.2
Simm, A.3
Lange, V.4
Langenfeld, H.5
Behre, H.6
Kersting, U.7
Walter, U.8
Kirstein, M.9
-
44
-
-
0026513742
-
Effects of insulin on renal sodium excretion
-
Gupta AK, Clark RV, Kirchner KA. Effects of insulin on renal sodium excretion. Hypertension. 1992;19(1 Suppl):I78-82.
-
(1992)
Hypertension
, vol.19
, Issue.1 SUPPL.
-
-
Gupta, A.K.1
Clark, R.V.2
Kirchner, K.A.3
-
46
-
-
79955640848
-
Effects of insulin on the vasculature
-
Breen DM, Giacca A. Effects of insulin on the vasculature. Curr Vasc Pharmacol. 2011;9(3):321-32.
-
(2011)
Curr Vasc Pharmacol
, vol.9
, Issue.3
, pp. 321-332
-
-
Breen, D.M.1
Giacca, A.2
-
48
-
-
33750889630
-
Identification of insulin signaling elements in human beta-cells: Autocrine regulation of insulin gene expression
-
DOI 10.2337/db06-0532
-
Muller D et al. Identification of insulin signaling elements in human beta-cells: autocrine regulation of insulin gene expression. Diabetes. 2006;55(10):2835-42. (Pubitemid 44923684)
-
(2006)
Diabetes
, vol.55
, Issue.10
, pp. 2835-2842
-
-
Muller, D.1
Guo, C.H.2
Amiel, S.3
Jones, P.M.4
Persaud, S.J.5
-
49
-
-
0033524937
-
Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes
-
DOI 10.1016/S0092-8674(00)80546-2
-
Kulkarni RN et al. Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell. 1999;96(3):329-39. (Pubitemid 29077587)
-
(1999)
Cell
, vol.96
, Issue.3
, pp. 329-339
-
-
Kulkarni, R.N.1
Bruning, J.C.2
Winnay, J.N.3
Postic, C.4
Magnuson, M.A.5
Ronald, K.C.6
-
50
-
-
59649088932
-
Insulin regulates glucagon-like peptide-1 secretion from the enteroendocrine L cell
-
Lim GE et al. Insulin regulates glucagon-like peptide-1 secretion from the enteroendocrine L cell. Endocrinology. 2009;150(2):580-91.
-
(2009)
Endocrinology
, vol.150
, Issue.2
, pp. 580-591
-
-
Lim, G.E.1
-
51
-
-
0028897477
-
Characterization of the endogenous insulin receptor-related receptor in neuroblastomas
-
Kovacina KS, Roth RA. Characterization of the endogenous insulin receptor-related receptor in neuroblastomas. J Biol Chem. 1995;270(4):1881-7.
-
(1995)
J Biol Chem
, vol.270
, Issue.4
, pp. 1881-1887
-
-
Kovacina, K.S.1
Roth, R.A.2
-
52
-
-
85047682715
-
Tissue-specific versus generalized gene targeting of the IGF1 and IGF1R genes and their roles in insulin-like growth factor physiology
-
DOI 10.1210/en.142.5.1685
-
Butler AA, LeRoith D. Minireview: tissue-specific versus generalized gene targeting of the igf1 and igf1r genes and their roles in insulin-like growth factor physiology. Endocrinology. 2001;142(5):1685-8. (Pubitemid 32405920)
-
(2001)
Endocrinology
, vol.142
, Issue.5
, pp. 1685-1688
-
-
Butler, A.A.1
LeRoith, D.2
-
54
-
-
0036782071
-
Structural biology of insulin and IGF1 receptors: Implications for drug design
-
DOI 10.1038/nrd917
-
De Meyts P, Whittaker J. Structural biology of insulin and IGF1 receptors: implications for drug design. Nat Rev Drug Discov. 2002;1(10):769-83. (Pubitemid 37361561)
-
(2002)
Nature Reviews Drug Discovery
, vol.1
, Issue.10
, pp. 769-783
-
-
De Meyts, P.1
Whittaker, J.2
-
55
-
-
0037007124
-
The insulin signalling pathway
-
Lizcano JM, Alessi DR. The insulin signalling pathway. Curr Biol. 2002;12(7):R236-8.
-
(2002)
Curr Biol
, vol.12
, Issue.7
-
-
Lizcano, J.M.1
Alessi, D.R.2
-
56
-
-
0029995773
-
A 60-kilodalton protein in rat hepatoma cells overexpressing insulin receptor was tyrosine phosphorylated and associated with Syp, phophatidylinositol 3-kinase, and Grb2 in an insulin-dependent manner
-
Zhang-Sun G et al. A 60-kilodalton protein in rat hepatoma cells overexpressing insulin receptor was tyrosine phosphorylated and associated with Syp, phophatidylinositol 3-kinase, and Grb2 in an insulin-dependent manner. Endocrinology. 1996;137(7):2649-58.
-
(1996)
Endocrinology
, vol.137
, Issue.7
, pp. 2649-2658
-
-
Zhang-Sun, G.1
-
57
-
-
0033574585
-
Identification of the APS protein as a novel insulin receptor substrate
-
Moodie SA, Alleman-Sposeto J, Gustafson TA. Identification of the APS protein as a novel insulin receptor substrate. J Biol Chem. 1999;274(16):11186- 93.
-
(1999)
J Biol Chem
, vol.274
, Issue.16
, pp. 11186-11193
-
-
Moodie, S.A.1
Alleman-Sposeto, J.2
Gustafson, T.A.3
-
59
-
-
21444460644
-
Differential contribution of insulin receptor substrates 1 versus 2 to insulin signaling and glucose uptake in L6 myotubes
-
DOI 10.1074/jbc.M412317200
-
Huang C et al. Differential contribution of insulin receptor substrates 1 versus 2 to insulin signaling and glucose uptake in l6 myotubes. J Biol Chem. 2005;280(19):19426-35. (Pubitemid 41379651)
-
(2005)
Journal of Biological Chemistry
, vol.280
, Issue.19
, pp. 19426-19435
-
-
Huang, C.1
Thirone, A.C.P.2
Huang, X.3
Klip, A.4
-
61
-
-
0033966768
-
Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2
-
Kido Y et al. Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2. J Clin Invest. 2000;105(2):199-205. (Pubitemid 30054359)
-
(2000)
Journal of Clinical Investigation
, vol.105
, Issue.2
, pp. 199-205
-
-
Kido, Y.1
Burks, D.J.2
Withers, D.3
Bruning, J.C.4
Kahn, C.R.5
White, M.F.6
Accili, D.7
-
64
-
-
0032567937
-
Disruption of IRS-2 causes type 2 diabetes in mice
-
DOI 10.1038/36116
-
Withers DJ et al. Disruption of IRS-2 causes type 2 diabetes inmice. Nature. 1998;391(6670):900-4. (Pubitemid 28157668)
-
(1998)
Nature
, vol.391
, Issue.6670
, pp. 900-904
-
-
Withers, D.J.1
Gutierrez, J.S.2
Towery, H.3
Burks, D.J.4
Ren, J.-M.5
Previs, S.6
Zhang, Y.7
Bernal, D.8
Pons, S.9
Shulman, G.I.10
Bonner-Weir, S.11
White, M.F.12
-
65
-
-
0029897280
-
Insulin signalling and insulin actions in the muscles and livers of insulin-resistant, insulin receptor substrate 1-deficient mice
-
Yamauchi T et al. Insulin signalling and insulin actions in the muscles and livers of insulin-resistant, insulin receptor substrate 1-deficient mice. Mol Cell Biol. 1996;16(6):3074-84.
-
(1996)
Mol Cell Biol
, vol.16
, Issue.6
, pp. 3074-3084
-
-
Yamauchi, T.1
-
66
-
-
0028032894
-
Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1
-
DOI 10.1038/372182a0
-
Tamemoto H et al. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature. 1994;372(6502):182-6. (Pubitemid 24347838)
-
(1994)
Nature
, vol.372
, Issue.6502
, pp. 182-186
-
-
Tamemoto, H.1
Kadowaki, T.2
Tobe, K.3
Yagi, T.4
Sakura, H.5
Hayakawa, T.6
Terauchi, Y.7
Ueki, K.8
Kaburagi, Y.9
Satoh, S.10
Sekihara, H.11
Yoshioka, S.12
Horikoshi, H.13
Furuta, Y.14
Ikawa, Y.15
Kasuga, M.16
Yazaki, Y.17
Aizawa, S.18
-
67
-
-
0028032895
-
Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene
-
DOI 10.1038/372186a0
-
Araki E et al. Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature. 1994;372(6502):186-90. (Pubitemid 24347839)
-
(1994)
Nature
, vol.372
, Issue.6502
, pp. 186-190
-
-
Araki, E.1
Lipes, M.A.2
Patti, M.-E.3
Bruning, J.C.4
Haag III, B.5
Johnson, R.S.6
Kahn, C.R.7
-
68
-
-
45549087567
-
Dynamic Functional Relay between Insulin Receptor Substrate 1 and 2 in Hepatic Insulin Signaling during Fasting and Feeding
-
DOI 10.1016/j.cmet.2008.05.007, PII S155041310800171X
-
Kubota N et al. Dynamic functional relay between insulin receptor substrate 1 and 2 in hepatic insulin signaling during fasting and feeding. Cell Metab. 2008;8(1):49-64. (Pubitemid 351859226)
-
(2008)
Cell Metabolism
, vol.8
, Issue.1
, pp. 49-64
-
-
Kubota, N.1
Kubota, T.2
Itoh, S.3
Kumagai, H.4
Kozono, H.5
Takamoto, I.6
Mineyama, T.7
Ogata, H.8
Tokuyama, K.9
Ohsugi, M.10
Sasako, T.11
Moroi, M.12
Sugi, K.13
Kakuta, S.14
Iwakura, Y.15
Noda, T.16
Ohnishi, S.17
Nagai, R.18
Tobe, K.19
Terauchi, Y.20
Ueki, K.21
Kadowaki, T.22
more..
-
69
-
-
0034750801
-
Insulin receptor substrate 3 (IRS-3) and IRS-4 impair IRS-1- and IRS-2-mediated signaling
-
Tsuruzoe K et al. Insulin receptor substrate 3 (IRS-3) and IRS-4 impair IRS-1- and IRS-2-mediated signaling. Mol Cell Biol. 2001;21(1):26-38.
-
(2001)
Mol Cell Biol
, vol.21
, Issue.1
, pp. 26-38
-
-
Tsuruzoe, K.1
-
70
-
-
0031918624
-
The IRS-signalling system: A network of docking proteins that mediate insulin action
-
DOI 10.1023/A:1006806722619
-
White MF. The IRS-signalling system: a network of docking proteins that mediate insulin action. Mol Cell Biochem. 1998;182(1-2):3-11. (Pubitemid 28181643)
-
(1998)
Molecular and Cellular Biochemistry
, vol.182
, Issue.1-2
, pp. 3-11
-
-
White, M.F.1
-
71
-
-
0026544517
-
Insulin stimulation of phosphatidylinositol 3-kinase activity maps to insulin receptor regions required for endogenous substrate phosphorylation
-
Backer JM et al. Insulin stimulation of phosphatidylinositol 3-kinase activity maps to insulin receptor regions required for endogenous substrate phosphorylation. J Biol Chem. 1992;267(2):1367-74.
-
(1992)
J Biol Chem
, vol.267
, Issue.2
, pp. 1367-1374
-
-
Backer, J.M.1
-
72
-
-
0033634785
-
Structural basis of 3-phosphoinositide recognition by pleckstrin homology domains
-
Lietzke SE et al. Structural basis of 3-phosphoinositide recognition by pleckstrin homology domains. Mol Cell. 2000;6(2):385-94.
-
(2000)
Mol Cell
, vol.6
, Issue.2
, pp. 385-394
-
-
Lietzke, S.E.1
-
73
-
-
0033565773
-
Kinase phosphorylation: Keeping it all in the family
-
DOI 10.1016/S0960-9822(99)80326-1
-
Peterson RT, Schreiber SL. Kinase phosphorylation: keeping it all in the family. Curr Biol. 1999;9(14):R521-4. (Pubitemid 29350845)
-
(1999)
Current Biology
, vol.9
, Issue.14
-
-
Peterson, R.T.1
Schreiber, S.L.2
-
75
-
-
0027481312
-
Molecular cloning and characterization of a novel receptor protein tyrosine kinase from human placenta
-
Ziegler SF et al. Molecular cloning and characterization of a novel receptor protein tyrosine kinase from human placenta. Oncogene. 1993;8(3):663-70. (Pubitemid 23093129)
-
(1993)
Oncogene
, vol.8
, Issue.3
, pp. 663-670
-
-
Ziegler, S.F.1
Bird, T.A.2
Schneringer, J.A.3
Schooley, K.A.4
Baum, P.R.5
-
76
-
-
0031127305
-
Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha
-
Alessi DR et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol. 1997;7(4):261-9. (Pubitemid 27176852)
-
(1997)
Current Biology
, vol.7
, Issue.4
, pp. 261-269
-
-
Alessi, D.R.1
James, S.R.2
Downes, C.P.3
Holmes, A.B.4
Gaffney, P.R.J.5
Reese, C.B.6
Cohen, P.7
-
77
-
-
0032578999
-
Prohtein kinase B kinases that mediate phosphatidylinositol 3,4,5- trisphosphate-dependent activation of protein kinase B
-
DOI 10.1126/science.279.5351.710
-
Stephens L et al. Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science. 1998;279(5351):710-4. (Pubitemid 28144551)
-
(1998)
Science
, vol.279
, Issue.5351
, pp. 710-714
-
-
Stephens, L.1
Anderson, K.2
Stokoe, D.3
Erdjument-Bromage, H.4
Painter, G.F.5
Holmes, A.B.6
Gaffney, P.R.J.7
Reese, C.B.8
McCormick, F.9
Tempst, P.10
Coadwell, J.11
Hawkins, P.T.12
-
78
-
-
13844312400
-
Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
-
DOI 10.1126/science.1106148
-
Sarbassov DD et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307(5712):1098-101. (Pubitemid 40262113)
-
(2005)
Science
, vol.307
, Issue.5712
, pp. 1098-1101
-
-
Sarbassov, D.D.1
Guertin, D.A.2
Ali, S.M.3
Sabatini, D.M.4
-
79
-
-
0033214461
-
Phosphorylation of insulin receptor substrate-1 (IRS-1) by protein kinase B positively regulates IRS-1 function
-
Paz K et al. Phosphorylation of insulin receptor substrate-1 (IRS-1) by protein kinase B positively regulates IRS-1 function. J Biol Chem. 1999;274(40):28816-22.
-
(1999)
J Biol Chem
, vol.274
, Issue.40
, pp. 28816-28822
-
-
Paz, K.1
-
80
-
-
0030810216
-
Protein kinase C-zeta as a downstream effector of phosphatidylinositol 3- kinase during insulin stimulation in rat adipocytes. Potential role in glucose transport
-
DOI 10.1074/jbc.272.48.30075
-
Standaert ML et al. Protein kinase C-zeta as a downstream effector of phosphatidylinositol 3-kinase during insulin stimulation in rat adipocytes. Potential role in glucose transport. J Biol Chem. 1997;272(48):30075-82. (Pubitemid 27512203)
-
(1997)
Journal of Biological Chemistry
, vol.272
, Issue.48
, pp. 30075-30082
-
-
Standaert, M.L.1
Galloway, L.2
Karnam, P.3
Bandyopadhyay, G.4
Moscat, J.5
Farese, R.V.6
-
81
-
-
0032563936
-
Regulation of protein kinase C zeta by PI 3-kinase and PDK-1
-
Chou MM et al. Regulation of protein kinase C zeta by PI 3-kinase and PDK-1. Curr Biol. 1998;8(19):1069-77. (Pubitemid 28451031)
-
(1998)
Current Biology
, vol.8
, Issue.19
, pp. 1069-1077
-
-
Chou, M.M.1
Hou, W.2
Johnson, J.3
Graham, L.K.4
Lee, M.H.5
Chen, C.-S.6
Newton, A.C.7
Schaffhausen, B.S.8
Toker, A.9
-
83
-
-
0029587224
-
Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B
-
DOI 10.1038/378785a0
-
Cross DA et al. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995;378(6559):785-9. (Pubitemid 26004411)
-
(1995)
Nature
, vol.378
, Issue.6559
, pp. 785-789
-
-
Cross, D.A.E.1
Alessi, D.R.2
Cohen, P.3
Andjelkovich, M.4
Hemmings, B.A.5
-
84
-
-
34250740323
-
Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator
-
LiXet al. Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator. Nature. 2007;447(7147):1012-6.
-
(2007)
Nature
, vol.447
, Issue.7147
, pp. 1012-1016
-
-
Li, X.1
-
85
-
-
0033522897
-
Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a Wortmannin-sensitive pathway
-
Nakae J, Park BC, Accili D. Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a Wortmannin-sensitive pathway. J Biol Chem. 1999;274(23):15982-5.
-
(1999)
J Biol Chem
, vol.274
, Issue.23
, pp. 15982-15985
-
-
Nakae, J.1
Park, B.C.2
Accili, D.3
-
87
-
-
0035855858
-
Control of hepatic gluconeogenesis through the transcriptional coaotivator PGC-1
-
DOI 10.1038/35093050
-
Yoon JC et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature. 2001;413(6852):131-8. (Pubitemid 32867868)
-
(2001)
Nature
, vol.413
, Issue.6852
, pp. 131-138
-
-
Yoon, J.C.1
Puigserver, P.2
Chen, G.3
Donovan, J.4
Wu, Z.5
Rhee, J.6
Adelmant, G.7
Stafford, J.8
Kahn, C.R.9
Granner, D.K.10
Newgard, C.B.11
Spiegelman, B.M.12
-
88
-
-
0038187621
-
Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction
-
DOI 10.1038/nature01667
-
Puigserver P et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature. 2003;423(6939):550-5. (Pubitemid 36648580)
-
(2003)
Nature
, vol.423
, Issue.6939
, pp. 550-555
-
-
Puigserver, P.1
Rhee, J.2
Donovan, J.3
Walkey, C.J.4
Yoon, J.C.5
Oriente, F.6
Kitamura, Y.7
Altomonte, J.8
Dong, H.9
Accili, D.10
Spiegelman, B.M.11
-
89
-
-
0025823448
-
ERKs: A family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF
-
Boulton TG et al. ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell. 1991;65(4):663-75.
-
(1991)
Cell
, vol.65
, Issue.4
, pp. 663-675
-
-
Boulton, T.G.1
-
90
-
-
0029131895
-
Mitogen-activated protein kinase kinase inhibition does not block the stimulation of glucose utilization by insulin
-
Lazar DF et al. Mitogen-activated protein kinase kinase inhibition does not block the stimulation of glucose utilization by insulin. J Biol Chem. 1995;270(35):20801-7.
-
(1995)
J Biol Chem
, vol.270
, Issue.35
, pp. 20801-20807
-
-
Lazar, D.F.1
-
91
-
-
0028124504
-
Role of SH-PTP2, a protein-tyrosine phosphatase with Src homology 2 domains, in insulin-stimulated Ras activation
-
Noguchi T et al. Role of SH-PTP2, a protein-tyrosine phosphatase with Src homology 2 domains, in insulin-stimulated Ras activation. Mol Cell Biol. 1994;14(10):6674-82. (Pubitemid 24299736)
-
(1994)
Molecular and Cellular Biology
, vol.14
, Issue.10
, pp. 6674-6682
-
-
Noguchi, T.1
Matozaki, T.2
Horita, K.3
Fujioka, Y.4
Kasuga, M.5
-
92
-
-
0028242350
-
Evidence for a functional role of Shc proteins in mitogenic signaling induced by insulin, insulin-like growth factor-1, and epidermal growth factor
-
Sasaoka T et al. Evidence for a functional role of Shc proteins in mitogenic signaling induced by insulin, insulin-like growth factor-1, and epidermal growth factor. J Biol Chem. 1994;269(18):13689-94. (Pubitemid 24206151)
-
(1994)
Journal of Biological Chemistry
, vol.269
, Issue.18
, pp. 13689-13694
-
-
Sasaoka, T.1
Rose, D.W.2
Jhun, B.H.3
Saltiel, A.R.4
Draznin, B.5
Olefsky, J.M.6
-
93
-
-
81055140893
-
Feedback on fat: P62-mTORC1-autophagy connections
-
Moscat J, Diaz-Meco MT. Feedback on fat: p62-mTORC1-autophagy connections. Cell. 2011;147(4):724-7.
-
(2011)
Cell
, vol.147
, Issue.4
, pp. 724-727
-
-
Moscat, J.1
Diaz-Meco, M.T.2
-
95
-
-
32044465506
-
TOR signaling in growth and metabolism
-
DOI 10.1016/j.cell.2006.01.016, PII S0092867406001085
-
Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124(3):471-84. (Pubitemid 43199434)
-
(2006)
Cell
, vol.124
, Issue.3
, pp. 471-484
-
-
Wullschleger, S.1
Loewith, R.2
Hall, M.N.3
-
96
-
-
67349241955
-
DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival
-
Peterson TR et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell. 2009;137(5):873-86.
-
(2009)
Cell
, vol.137
, Issue.5
, pp. 873-886
-
-
Peterson, T.R.1
-
97
-
-
60149091189
-
Regulation of translation initiation in eukaryotes: Mechanisms and biological targets
-
Sonenberg N, Hinnebusch AG. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell. 2009;136(4):731-45.
-
(2009)
Cell
, vol.136
, Issue.4
, pp. 731-745
-
-
Sonenberg, N.1
Hinnebusch, A.G.2
-
99
-
-
70450204007
-
An emerging role of mTOR in lipid biosynthesis
-
Laplante M, Sabatini DM. An emerging role of mTOR in lipid biosynthesis. Curr Biol. 2009;19(22):R1046-52.
-
(2009)
Curr Biol
, vol.19
, Issue.22
-
-
Laplante, M.1
Sabatini, D.M.2
-
100
-
-
65649128580
-
Amino acid regulation of TOR complex 1
-
Avruch J et al. Amino acid regulation of TOR complex 1. Am J Physiol Endocrinol Metab. 2009;296(4):E592-602.
-
(2009)
Am J Physiol Endocrinol Metab
, vol.296
, Issue.4
-
-
Avruch, J.1
-
101
-
-
0347716759
-
Rheb fills a GAP between TSC and TOR
-
DOI 10.1016/j.tibs.2003.09.003, PII S0968000403002275
-
Manning BD, Cantley LC. Rheb fills a GAP between TSC and TOR. Trends Biochem Sci. 2003;28(11):573-6. (Pubitemid 38352801)
-
(2003)
Trends in Biochemical Sciences
, vol.28
, Issue.11
, pp. 573-576
-
-
Manning, B.D.1
Cantley, L.C.2
-
102
-
-
0033429554
-
Mammalian target of rapamycin is a direct target for protein kinase B: Identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation
-
DOI 10.1042/0264-6021:3440427
-
Nave BT et al. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J. 1999;344(Pt 2):427-31. (Pubitemid 30011599)
-
(1999)
Biochemical Journal
, vol.344
, Issue.2
, pp. 427-431
-
-
Nave, B.T.1
Ouwens, D.M.2
Withers, D.J.3
Alessi, D.R.4
Shepherd, P.R.5
-
103
-
-
33644886769
-
Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation
-
Tzatsos A, Kandror KV. Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation. Mol Cell Biol. 2006;26(1):63-76.
-
(2006)
Mol Cell Biol
, vol.26
, Issue.1
, pp. 63-76
-
-
Tzatsos, A.1
Kandror, K.V.2
-
104
-
-
0035851205
-
Amino acid and insulin signaling via the mTOR/p70 S6 kinase pathway. A negative feedback mechanism leading to insulin resistance in skeletal muscle cells
-
Tremblay F, Marette A. Amino acid and insulin signaling via the mTOR/p70 S6 kinase pathway. A negative feedback mechanism leading to insulin resistance in skeletal muscle cells. J Biol Chem. 2001;276(41):38052-60.
-
(2001)
J Biol Chem
, vol.276
, Issue.41
, pp. 38052-38060
-
-
Tremblay, F.1
Marette, A.2
-
105
-
-
14244252683
-
Activation of the mammalian target of rapamycin pathway acutely inhibits insulin signaling to Akt and glucose transport in 3T3-L1 and human adipocytes
-
DOI 10.1210/en.2004-0777
-
Tremblay F et al. Activation of the mammalian target of rapamycin pathway acutely inhibits insulin signaling to Akt and glucose transport in 3T3-L1 and human adipocytes. Endocrinology. 2005;146(3):1328-37. (Pubitemid 40289320)
-
(2005)
Endocrinology
, vol.146
, Issue.3
, pp. 1328-1337
-
-
Tremblay, F.1
Gagnon, A.2
Veilleux, A.3
Sorisky, A.4
Marette, A.5
-
106
-
-
0033927667
-
Cellular mechanisms of insulin resistance
-
Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest. 2000;106(2):171-6. (Pubitemid 30483118)
-
(2000)
Journal of Clinical Investigation
, vol.106
, Issue.2
, pp. 171-176
-
-
Shulman, G.I.1
-
107
-
-
0032587240
-
The role of TNFalpha and TNF receptors in obesity and insulin resistance
-
DOI 10.1046/j.1365-2796.1999.00490.x
-
Hotamisligil GS. The role of TNFalpha and TNF receptors in obesity and insulin resistance. J Intern Med. 1999;245(6):621-5. (Pubitemid 29278870)
-
(1999)
Journal of Internal Medicine
, vol.245
, Issue.6
, pp. 621-625
-
-
Hotamisligil, G.S.1
-
108
-
-
0032238299
-
The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway
-
Ogg S, Ruvkun G. The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway. Mol Cell. 1998;2(6):887-93. (Pubitemid 128378996)
-
(1998)
Molecular Cell
, vol.2
, Issue.6
, pp. 887-893
-
-
Ogg, S.1
Ruvkun, G.2
-
109
-
-
0033304860
-
Role of the Src homology 2 (SH2) domain and c-terminus tyrosine phosphorylation sites of SH2-containing inositol phosphatase (SHIP) in the regulation of insulin-induced mitogenesis
-
Wada T et al. Role of the Src homology 2 (SH2) domain and C-terminus tyrosine phosphorylation sites of SH2-containing inositol phosphatase (SHIP) in the regulation of insulin-induced mitogenesis. Endocrinology. 1999;140(10):4585-94. (Pubitemid 30666124)
-
(1999)
Endocrinology
, vol.140
, Issue.10
, pp. 4585-4594
-
-
Wada, T.1
Sasaoka, T.2
Ishiki, M.3
Hori, H.4
Haruta, T.5
Ishihara, H.6
Kobayashi, M.7
-
110
-
-
33645466144
-
Lipid phosphatases as drug discovery targets for type 2 diabetes
-
Lazar DF, Saltiel AR. Lipid phosphatases as drug discovery targets for type 2 diabetes. Nat Rev Drug Discov. 2006;5(4):333-42.
-
(2006)
Nat Rev Drug Discov
, vol.5
, Issue.4
, pp. 333-342
-
-
Lazar, D.F.1
Saltiel, A.R.2
-
111
-
-
17744367455
-
Integral membrane lipid phosphatases/phosphotransferases: Common structure and diverse functions
-
DOI 10.1042/BJ20041771
-
Sigal YJ, McDermott MI, Morris AJ. Integral membrane lipid phosphatases/phosphotransferases: common structure and diverse functions. Biochem J. 2005;387(Pt 2):281-93. (Pubitemid 40575751)
-
(2005)
Biochemical Journal
, vol.387
, Issue.2
, pp. 281-293
-
-
Sigal, Y.J.1
McDermott, M.I.2
Morris, A.J.3
-
112
-
-
77956236967
-
Purinergic receptor-mediated rapid depletion of nuclear phosphorylated Akt depends on pleckstrin homology domain leucine-rich repeat phosphatase, calcineurin, protein phosphatase 2A, and PTEN phosphatases
-
Mistafa O et al. Purinergic receptor-mediated rapid depletion of nuclear phosphorylated Akt depends on pleckstrin homology domain leucine-rich repeat phosphatase, calcineurin, protein phosphatase 2A, and PTEN phosphatases. J Biol Chem. 2010;285(36):27900-10.
-
(2010)
J Biol Chem
, vol.285
, Issue.36
, pp. 27900-27910
-
-
Mistafa, O.1
-
113
-
-
33747853190
-
Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway
-
DOI 10.1016/j.cmet.2006.08.005, PII S1550413106002750
-
Finck BN et al. Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway. Cell Metab. 2006;4(3):199-210. (Pubitemid 44283957)
-
(2006)
Cell Metabolism
, vol.4
, Issue.3
, pp. 199-210
-
-
Finck, B.N.1
Gropler, M.C.2
Chen, Z.3
Leone, T.C.4
Croce, M.A.5
Harris, T.E.6
Lawrence Jr., J.C.7
Kelly, D.P.8
-
114
-
-
79961165137
-
mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
-
Peterson TR et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell. 2011;146(3):408-20.
-
(2011)
Cell
, vol.146
, Issue.3
, pp. 408-420
-
-
Peterson, T.R.1
-
115
-
-
0032535595
-
Identification of the separate domains in the hepatic glycogen-targeting subunit of protein phosphatase 1 that interact with phosphorylase a, glycogen and protein phosphatase 1
-
Armstrong CG, Doherty MJ, Cohen PT. Identification of the separate domains in the hepatic glycogen-targeting subunit of protein phosphatase 1 that interact with phosphorylase a, glycogen and protein phosphatase 1. Biochem J. 1998;336(Pt 3):699-704. (Pubitemid 29008030)
-
(1998)
Biochemical Journal
, vol.336
, Issue.3
, pp. 699-704
-
-
Armstrong, C.G.1
Doherty, M.J.2
Cohen, P.T.W.3
-
116
-
-
78149500681
-
Insulin signaling in fatty acid and fat synthesis: A transcriptional perspective
-
Wong RH, Sul HS. Insulin signaling in fatty acid and fat synthesis: a transcriptional perspective. Curr Opin Pharmacol. 2010;10(6):684-91.
-
(2010)
Curr Opin Pharmacol
, vol.10
, Issue.6
, pp. 684-691
-
-
Wong, R.H.1
Sul, H.S.2
-
117
-
-
80455174428
-
Free fatty acid-induced PP2A hyperactivity selectively impairs hepatic insulin action on glucose metabolism
-
Galbo T et al. Free fatty acid-induced PP2A hyperactivity selectively impairs hepatic insulin action on glucose metabolism. PLoS One. 2011;6(11):e27424.
-
(2011)
PLoS One
, vol.6
, Issue.11
-
-
Galbo, T.1
-
118
-
-
84860873833
-
The B55 α-containing PP2A holoenzyme dephosphorylates FOXO1 in islet β-cells under oxidative stress
-
Yan L, et al. The B55 α-containing PP2A holoenzyme dephosphorylates FOXO1 in islet β-cells under oxidative stress. Biochem J. 2012;444(2):239-47.
-
(2012)
Biochem J
, vol.444
, Issue.2
, pp. 239-247
-
-
Yan, L.1
-
119
-
-
79959686257
-
Increased levels of the Akt-specific phosphatase PH domain leucine-rich repeat protein phosphatase (PHLPP)-1 in obese participants are associated with insulin resistance
-
Andreozzi F et al. Increased levels of the Akt-specific phosphatase PH domain leucine-rich repeat protein phosphatase (PHLPP)-1 in obese participants are associated with insulin resistance. Diabetologia. 2011;54(7):1879-87.
-
(2011)
Diabetologia
, vol.54
, Issue.7
, pp. 1879-1887
-
-
Andreozzi, F.1
-
120
-
-
77955711839
-
Protein phosphatase-1 regulates Akt1 signal transduction pathway to control gene expression, cell survival and differentiation
-
Xiao L et al. Protein phosphatase-1 regulates Akt1 signal transduction pathway to control gene expression, cell survival and differentiation. Cell Death Differ. 2010;17(9):1448-62.
-
(2010)
Cell Death Differ
, vol.17
, Issue.9
, pp. 1448-1462
-
-
Xiao, L.1
-
122
-
-
15944406764
-
PHLPP: A phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth
-
DOI 10.1016/j.molcel.2005.03.008
-
Gao T, Furnari F, Newton AC. PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell. 2005;18(1):13-24. (Pubitemid 40444644)
-
(2005)
Molecular Cell
, vol.18
, Issue.1
, pp. 13-24
-
-
Gao, T.1
Furnari, F.2
Newton, A.C.3
-
123
-
-
0019877124
-
Phosphotyrosyl-protein phosphatase. Specific inhibition by Zn
-
Brautigan DL, Bornstein P, Gallis B. Phosphotyrosyl-protein phosphatase. Specific inhibition by Zn. J Biol Chem. 1981;256(13):6519-22.
-
(1981)
J Biol Chem
, vol.256
, Issue.13
, pp. 6519-6522
-
-
Brautigan, D.L.1
Bornstein, P.2
Gallis, B.3
-
124
-
-
0031282154
-
Receptor-like protein tyrosine phosphatases: Alike and yet so different
-
DOI 10.1023/A:1006870016238
-
Schaapveld R, Wieringa B, Hendriks W. Receptor-like protein tyrosine phosphatases: alike and yet so different. Mol Biol Rep. 1997;24(4):247-62. (Pubitemid 27506833)
-
(1997)
Molecular Biology Reports
, vol.24
, Issue.4
, pp. 247-262
-
-
Schaapveld, R.1
Wieringa, B.2
Hendriks, W.3
-
125
-
-
2942581416
-
Protein tyrosine phosphatases in the human genome
-
DOI 10.1016/j.cell.2004.05.018, PII S0092867404005343
-
Alonso A et al. Protein tyrosine phosphatases in the human genome. Cell. 2004;117(6):699-711. (Pubitemid 38748887)
-
(2004)
Cell
, vol.117
, Issue.6
, pp. 699-711
-
-
Alonso, A.1
Sasin, J.2
Bottini, N.3
Friedberg, I.4
Friedberg, I.5
Osterman, A.6
Godzik, A.7
Hunter, T.8
Dixon, J.9
Mustelin, T.10
-
126
-
-
36549059075
-
Inhibition of the protein tyrosine phosphatase PTP1B: Potential therapy for obesity, insulin resistance and type-2 diabetes mellitus
-
DOI 10.1016/j.beem.2007.08.004, PII S1521690X07000814, New Therapies for Diabetes
-
Koren S, Fantus IG. Inhibition of the protein tyrosine phosphatase PTP1B: potential therapy for obesity, insulin resistance and type-2 diabetes mellitus. Best Pract Res Clin Endocrinol Metab. 2007;21(4):621-40. (Pubitemid 350185860)
-
(2007)
Best Practice and Research in Clinical Endocrinology and Metabolism
, vol.21
, Issue.4
, pp. 621-640
-
-
Koren, S.1
Fantus, I.G.2
-
127
-
-
0026643477
-
Insulin receptor protein-tyrosine phosphatases. Leukocyte common antigen-related phosphatase rapidly deactivates the insulin receptor kinase by preferential dephosphorylation of the receptor regulatory domain
-
Hashimoto N et al. Insulin receptor protein-tyrosine phosphatases. Leukocyte common antigen-related phosphatase rapidly deactivates the insulin receptor kinase by preferential dephosphorylation of the receptor regulatory domain. J Biol Chem. 1992;267(20):13811-4.
-
(1992)
J Biol Chem
, vol.267
, Issue.20
, pp. 13811-13814
-
-
Hashimoto, N.1
-
128
-
-
0026584285
-
The nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence
-
Frangioni JV et al. The nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence. Cell. 1992;68(3):545-60.
-
(1992)
Cell
, vol.68
, Issue.3
, pp. 545-560
-
-
Frangioni, J.V.1
-
129
-
-
0035971065
-
Protein-tyrosine phosphatase-1B negatively regulates insulin signaling in l6 myocytes and Fao hepatoma cells
-
Egawa K et al. Protein-tyrosine phosphatase-1B negatively regulates insulin signaling in l6 myocytes and Fao hepatoma cells. J Biol Chem. 2001;276(13):10207-11.
-
(2001)
J Biol Chem
, vol.276
, Issue.13
, pp. 10207-10211
-
-
Egawa, K.1
-
130
-
-
0034635374
-
Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by protein-tyrosine phosphatase 1B. Possible facilitation by the formation of a ternary complex with the GRB2 adaptor protein
-
DOI 10.1074/jbc.275.6.4283
-
Goldstein BJ et al. Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by protein-tyrosine phosphatase 1B. Possible facilitation by the formation of a ternary complex with the Grb2 adaptor protein. J Biol Chem. 2000;275(6):4283-9. (Pubitemid 30094668)
-
(2000)
Journal of Biological Chemistry
, vol.275
, Issue.6
, pp. 4283-4289
-
-
Goldstein, B.J.1
Bittner-Kowalczyk, A.2
White, M.F.3
Harbeck, M.4
-
131
-
-
33646551477
-
The SHP-1 protein tyrosine phosphatase negatively modulates glucose homeostasis
-
Dubois MJ et al. The SHP-1 protein tyrosine phosphatase negatively modulates glucose homeostasis. Nat Med. 2006;12(5):549-56.
-
(2006)
Nat Med
, vol.12
, Issue.5
, pp. 549-556
-
-
Dubois, M.J.1
-
132
-
-
0028336998
-
Dephosphorylation of insulin receptor substrate 1 by the tyrosine phosphatase PTP2C
-
Kuhne MR et al. Dephosphorylation of insulin receptor substrate 1 by the tyrosine phosphatase PTP2C. J Biol Chem. 1994;269(22):15833-7. (Pubitemid 24202182)
-
(1994)
Journal of Biological Chemistry
, vol.269
, Issue.22
, pp. 15833-15837
-
-
Kuhne, M.R.1
Zhao, Z.2
Rowles, J.3
Lavan, B.E.4
Shen, S.-H.5
Fischer, E.H.6
Lienhard, G.E.7
-
133
-
-
0028816605
-
Insulin receptor signaling is augmented by antisense inhibition of the protein tyrosine phosphatase LAR
-
Kulas DTet al. Insulin receptor signaling is augmented by antisense inhibition of the protein tyrosine phosphatase LAR. J Biol Chem. 1995;270(6):2435-8.
-
(1995)
J Biol Chem
, vol.270
, Issue.6
, pp. 2435-2438
-
-
Kulas, D.T.1
-
134
-
-
0018139377
-
Obese and diabetes: Two mutant genes causing diabetes-obesity syndromes in mice
-
Coleman DL. Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia. 1978;14(3):141-8. (Pubitemid 8286141)
-
(1978)
Diabetologia
, vol.14
, Issue.3
, pp. 141-148
-
-
Coleman, D.L.1
-
135
-
-
33845866857
-
Inflammation and metabolic disorders
-
DOI 10.1038/nature05485, PII NATURE05485
-
Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860-7. (Pubitemid 46024993)
-
(2006)
Nature
, vol.444
, Issue.7121
, pp. 860-867
-
-
Hotamisligil, G.S.1
-
137
-
-
84866168894
-
Functional interactions between the gut microbiota and host metabolism
-
Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489(7415):242-9.
-
(2012)
Nature
, vol.489
, Issue.7415
, pp. 242-249
-
-
Tremaroli, V.1
Backhed, F.2
-
138
-
-
77950343252
-
Endoplasmic reticulum stress and the inflammatory basis of metabolic disease
-
Hotamisligil GS. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell. 2010;140(6):900-17.
-
(2010)
Cell
, vol.140
, Issue.6
, pp. 900-917
-
-
Hotamisligil, G.S.1
-
139
-
-
84856415487
-
The role of mitochondria in insulin resistance and type 2 diabetes mellitus
-
Szendroedi J, Phielix E, Roden M. The role of mitochondria in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol. 2012;8(2):92-103.
-
(2012)
Nat Rev Endocrinol
, vol.8
, Issue.2
, pp. 92-103
-
-
Szendroedi, J.1
Phielix, E.2
Roden, M.3
-
140
-
-
29044440189
-
Cellular location of insulin-triggered signals and implications for glucose uptake
-
DOI 10.1007/s00424-005-1475-6
-
Patel N, Huang C, Klip A. Cellular location of insulin-triggered signals and implications for glucose uptake. Pflugers Arch. 2006;451(4):499-510. (Pubitemid 41789790)
-
(2006)
Pflugers Archiv European Journal of Physiology
, vol.451
, Issue.4
, pp. 499-510
-
-
Patel, N.1
Huang, C.2
Klip, A.3
-
141
-
-
84867033830
-
Insulin activates Erk1/2 signaling in the dorsal vagal complex to inhibit glucose production
-
Filippi BM et al. Insulin activates Erk1/2 signaling in the dorsal vagal complex to inhibit glucose production. Cell Metab. 2012;16(4):500-10.
-
(2012)
Cell Metab
, vol.16
, Issue.4
, pp. 500-510
-
-
Filippi, B.M.1
-
142
-
-
57849115277
-
Endoplasmic reticulum stress plays a central role in development of leptin resistance
-
Ozcan L et al. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab. 2009;9(1):35-51.
-
(2009)
Cell Metab
, vol.9
, Issue.1
, pp. 35-51
-
-
Ozcan, L.1
-
143
-
-
0001334931
-
Functional association between the insulin receptor and the transmembrane protein-tyrosine phosphatase LAR in intact cells
-
DOI 10.1074/jbc.272.1.448
-
Ahmad F, Goldstein BJ. Functional association between the insulin receptor and the transmembrane protein-tyrosine phosphatase LAR in intact cells. J Biol Chem. 1997;272(1):448-57. (Pubitemid 27021179)
-
(1997)
Journal of Biological Chemistry
, vol.272
, Issue.1
, pp. 448-457
-
-
Ahmad, F.1
Goldstern, B.J.2
-
144
-
-
0030869203
-
Expression of protein-tyrosine phosphatases in the major insulin target tissues
-
DOI 10.1016/S0014-5793(97)01133-2, PII S0014579397011332
-
Norris K et al. Expression of protein-tyrosine phosphatases in the major insulin target tissues. FEBS Lett. 1997;415(3):243-8. (Pubitemid 27451941)
-
(1997)
FEBS Letters
, vol.415
, Issue.3
, pp. 243-248
-
-
Norris, K.1
Norris, F.2
Kono, D.H.3
Vestergaard, H.4
Pedersen, O.5
Theofilopoulos, A.N.6
Moller, N.P.H.7
-
145
-
-
0029968832
-
Modulation of insulin signal transduction by eutopic overexpression of the receptor-type protein-tyrosine phosphatase LAR
-
Zhang WR et al. Modulation of insulin signal transduction by eutopic overexpression of the receptor-type protein-tyrosine phosphatase LAR. Mol Endocrinol. 1996;10(5):575-84.
-
(1996)
Mol Endocrinol
, vol.10
, Issue.5
, pp. 575-584
-
-
Zhang, W.R.1
-
146
-
-
0030293685
-
Suppression of insulin receptor activation by overexpression of the protein-tyrosine phosphatase LAR in hepatoma cells
-
DOI 10.1016/S0898-6568(96)00101-5, PII S0898656896001015
-
Li PM, Zhang WR, Goldstein BJ. Suppression of insulin receptor activation by overexpression of the protein-tyrosine phosphatase LAR in hepatoma cells. Cell Signal. 1996;8(7):467-73. (Pubitemid 27028857)
-
(1996)
Cellular Signalling
, vol.8
, Issue.7
, pp. 467-473
-
-
Li, P.-M.1
Zhang, W.-R.2
Goldstein, B.J.3
-
147
-
-
0031594367
-
Transgenic mice deficient in the LAR protein-tyrosine phosphatase exhibit profound defects in glucose homeostasis
-
Ren JMet al. Transgenic mice deficient in the LAR protein-tyrosine phosphatase exhibit profound defects in glucose homeostasis. Diabetes. 1998;47(3):493-7.
-
(1998)
Diabetes
, vol.47
, Issue.3
, pp. 493-497
-
-
Ren, J.M.1
-
148
-
-
0035942161
-
Overexpression of the LAR (leukocyte antigen-related) protein-tyrosine phosphatase in muscle causes insulin resistance
-
DOI 10.1073/pnas.071050398
-
Zabolotny JM et al. Overexpression of the LAR (leukocyte antigen-related) protein-tyrosine phosphatase in muscle causes insulin resistance. Proc Natl Acad Sci U S A. 2001;98(9): 5187-92. (Pubitemid 32397104)
-
(2001)
Proceedings of the National Academy of Sciences of the United States of America
, vol.98
, Issue.9
, pp. 5187-5192
-
-
Zabolotny, J.M.1
Kim, Y.-B.2
Peroni, O.D.3
Kim, J.K.4
Pani, M.A.5
Boss, O.6
Klaman, L.D.7
Kamatkar, S.8
Shulman, G.I.9
Kahn, B.B.10
Neel, B.G.11
-
149
-
-
0029018196
-
Increased abundance of the receptor-type protein-tyrosine phosphatase LAR accounts for the elevated insulin receptor dephosphorylating activity in adipose tissue of obese human subjects
-
Ahmad F, Considine RV, Goldstein BJ. Increased abundance of the receptor-type protein-tyrosine phosphatase LAR accounts for the elevated insulin receptor dephosphorylating activity in adipose tissue of obese human subjects. J Clin Invest. 1995;95(6):2806-12.
-
(1995)
J Clin Invest
, vol.95
, Issue.6
, pp. 2806-2812
-
-
Ahmad, F.1
Considine, R.V.2
Goldstein, B.J.3
-
150
-
-
0029548985
-
Increased abundance of specific skeletal muscle protein-tyrosine phosphatases in a genetic model of insulin-resistant obesity and diabetes mellitus
-
DOI 10.1016/0026-0495(95)90012-8
-
Ahmad F, Goldstein BJ. Increased abundance of specific skeletal muscle protein-tyrosine phosphatases in a genetic model of insulin-resistant obesity and diabetes mellitus. Metabolism. 1995;44(9):1175-84. (Pubitemid 26084039)
-
(1995)
Metabolism: Clinical and Experimental
, vol.44
, Issue.9
, pp. 1175-1184
-
-
Ahmad, F.1
Goldstein, B.J.2
-
151
-
-
84884419438
-
LAR-RPTPs: Synaptic adhesion molecules that shape synapse development
-
Um JW, Ko J. LAR-RPTPs: synaptic adhesion molecules that shape synapse development. Trends Cell Biol. 2013;23(10):465-75.
-
(2013)
Trends Cell Biol
, vol.23
, Issue.10
, pp. 465-475
-
-
Um, J.W.1
Ko, J.2
-
152
-
-
84864068362
-
Involvement of protein tyrosine phosphatases and inflammation in hypothalamic insulin resistance associated with ageing: Effect of caloric restriction
-
Garcia-San Frutos M et al. Involvement of protein tyrosine phosphatases and inflammation in hypothalamic insulin resistance associated with ageing: effect of caloric restriction. Mech Ageing Dev. 2012;133(7):489-97.
-
(2012)
Mech Ageing Dev
, vol.133
, Issue.7
, pp. 489-497
-
-
Garcia-San Frutos, M.1
-
153
-
-
0032979722
-
Neuroendocrine dysplasia in mice lacking protein tyrosine phosphatase sigma
-
DOI 10.1038/6859
-
Elchebly M et al. Neuroendocrine dysplasia in mice lacking protein tyrosine phosphatase sigma. Nat Genet. 1999;21(3):330-3. (Pubitemid 29124946)
-
(1999)
Nature Genetics
, vol.21
, Issue.3
, pp. 330-333
-
-
Elchebly, M.1
Wagner, J.2
Kennedy, T.E.3
Lanctot, C.4
Michaliszyn, E.5
Itie, A.6
Drouin, J.7
Tremblay, M.L.8
-
154
-
-
0033051169
-
Neuronal defects and posterior pituitary hypoplasia in mice lacking the receptor tyrosine phosphatase PTPsigma
-
DOI 10.1038/6866
-
Wallace MJ et al. Neuronal defects and posterior pituitary hypoplasia in mice lacking the receptor tyrosine phosphatase PTPsigma. Nat Genet. 1999;21(3):334-8. (Pubitemid 29124947)
-
(1999)
Nature Genetics
, vol.21
, Issue.3
, pp. 334-338
-
-
Wallace, M.J.1
Batt, J.2
Fladd, C.A.3
Henderson, J.T.4
Skarnes, W.5
Rotin, D.6
-
155
-
-
67649203024
-
CNS regulation of glucose homeostasis
-
Bethesda
-
Lam CK, Chari M, Lam TK. CNS regulation of glucose homeostasis. Physiology (Bethesda). 2009;24:159-70.
-
(2009)
Physiology
, vol.24
, pp. 159-170
-
-
Lam, C.K.1
Chari, M.2
Lam, T.K.3
-
156
-
-
84879589744
-
Protein tyrosine phosphatase variants in human hereditary disorders and disease susceptibilities
-
Hendriks WJ, Pulido R. Protein tyrosine phosphatase variants in human hereditary disorders and disease susceptibilities. Biochim Biophys Acta. 2013;1832(10):1673-96.
-
(2013)
Biochim Biophys Acta
, vol.1832
, Issue.10
, pp. 1673-1696
-
-
Hendriks, W.J.1
Pulido, R.2
-
157
-
-
18744376565
-
Troglitazone ameliorates abnormal activity of protein tyrosine phosphatase in adipose tissues of Otsuka Long-Evans Tokushima Fatty rats
-
DOI 10.1620/tjem.197.169
-
Tagami S et al. Troglitazone ameliorates abnormal activity of protein tyrosine phosphatase in adipose tissues of Otsuka Long-Evans Tokushima Fatty rats. Tohoku J Exp Med. 2002;197(3):169-81. (Pubitemid 35378740)
-
(2002)
Tohoku Journal of Experimental Medicine
, vol.197
, Issue.3
, pp. 169-181
-
-
Tagami, S.1
Honda, T.2
Yoshimura, H.3
Homma, H.4
Ohno, K.5
Ide, H.6
Sakaue, S.7
Kawakami, Y.8
-
158
-
-
84862777315
-
Essential role of protein tyrosine phosphatase 1B in obesity-induced inflammation and peripheral insulin resistance during aging
-
Gonzalez-Rodriguez A et al. Essential role of protein tyrosine phosphatase 1B in obesity-induced inflammation and peripheral insulin resistance during aging. Aging Cell. 2012;11(2):284-96.
-
(2012)
Aging Cell
, vol.11
, Issue.2
, pp. 284-296
-
-
Gonzalez-Rodriguez, A.1
-
159
-
-
47249148827
-
Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo
-
Zabolotny JM et al. Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo. J Biol Chem. 2008;283(21):14230-41.
-
(2008)
J Biol Chem
, vol.283
, Issue.21
, pp. 14230-14241
-
-
Zabolotny, J.M.1
-
160
-
-
0033525870
-
Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene
-
Elchebly M et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science. 1999;283(5407):1544-8.
-
(1999)
Science
, vol.283
, Issue.5407
, pp. 1544-1548
-
-
Elchebly, M.1
-
161
-
-
62749115187
-
Liver-specific deletion of protein-tyrosine phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet-induced endoplasmic reticulum stress
-
Delibegovic M et al. Liver-specific deletion of protein-tyrosine phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet-induced endoplasmic reticulum stress. Diabetes. 2009;58(3):590-9.
-
(2009)
Diabetes
, vol.58
, Issue.3
, pp. 590-599
-
-
Delibegovic, M.1
-
162
-
-
80051694072
-
Liver-specific deletion of protein tyrosine phosphatase (PTP) 1B improves obesity- and pharmacologically induced endoplasmic reticulum stress
-
Agouni A, et al. Liver-specific deletion of protein tyrosine phosphatase (PTP) 1B improves obesity- and pharmacologically induced endoplasmic reticulum stress. Biochem J. 2011;438(2):369-78.
-
(2011)
Biochem J
, vol.438
, Issue.2
, pp. 369-378
-
-
Agouni, A.1
-
163
-
-
84890116532
-
Inducible liver-specific knockdown of protein tyrosine phosphatase 1B improves glucose and lipid homeostasis in adult mice
-
Owen C et al. Inducible liver-specific knockdown of protein tyrosine phosphatase 1B improves glucose and lipid homeostasis in adult mice. Diabetologia. 2013;56(10):2286-96.
-
(2013)
Diabetologia
, vol.56
, Issue.10
, pp. 2286-2296
-
-
Owen, C.1
-
164
-
-
84881266007
-
Regulation of the SNARE-interacting protein Munc18c tyrosine phosphorylation in adipocytes by protein-tyrosine phosphatase 1B
-
Bakke J et al. Regulation of the SNARE-interacting protein Munc18c tyrosine phosphorylation in adipocytes by protein-tyrosine phosphatase 1B. Cell Commun Signal. 2013;11(1):57.
-
(2013)
Cell Commun Signal
, vol.11
, Issue.1
, pp. 57
-
-
Bakke, J.1
-
165
-
-
84883023198
-
Protein tyrosine phosphatase 1B inhibits adipocyte differentiation and mediates TNFalpha action in obesity
-
Song DD et al. Protein tyrosine phosphatase 1B inhibits adipocyte differentiation and mediates TNFalpha action in obesity. Biochim Biophys Acta. 2013;1831(8):1368-76.
-
(2013)
Biochim Biophys Acta
, vol.1831
, Issue.8
, pp. 1368-1376
-
-
Song, D.D.1
-
166
-
-
84857623752
-
Adipocyte-specific protein tyrosine phosphatase 1B deletion increases lipogenesis, adipocyte cell size and is a minor regulator of glucose homeostasis
-
Owen C et al. Adipocyte-specific protein tyrosine phosphatase 1B deletion increases lipogenesis, adipocyte cell size and is a minor regulator of glucose homeostasis. PLoS One. 2012;7(2):e32700.
-
(2012)
PLoS One
, vol.7
, Issue.2
-
-
Owen, C.1
-
167
-
-
35648930917
-
Improved glucose homeostasis in mice with muscle-specific deletion of protein-tyrosine phosphatase 1B
-
DOI 10.1128/MCB.00959-07
-
Delibegovic M et al. Improved glucose homeostasis in mice with muscle-specific deletion of protein-tyrosine phosphatase 1B. Mol Cell Biol. 2007;27(21):7727-34. (Pubitemid 350033677)
-
(2007)
Molecular and Cellular Biology
, vol.27
, Issue.21
, pp. 7727-7734
-
-
Delibegovic, M.1
Bence, K.K.2
Mody, N.3
Hong, E.-G.4
Hwi, J.K.5
Kim, J.K.6
Kahn, B.B.7
Neel, B.G.8
-
168
-
-
77954175048
-
Modulation of hypothalamic PTP1B in the TNF-alpha-induced insulin and leptin resistance
-
Picardi PK et al. Modulation of hypothalamic PTP1B in the TNF-alpha-induced insulin and leptin resistance. FEBS Lett. 2010;584(14):3179- 84.
-
(2010)
FEBS Lett
, vol.584
, Issue.14
, pp. 3179-3184
-
-
Picardi, P.K.1
-
169
-
-
84881246589
-
Protein tyrosine phosphatase 1B deficiency ameliorates murine experimental colitis via the expansion of myeloid-derived suppressor cells
-
Zhang J et al. Protein tyrosine phosphatase 1B deficiency ameliorates murine experimental colitis via the expansion of myeloid-derived suppressor cells. PLoS One. 2013;8(8):e70828.
-
(2013)
PLoS One
, vol.8
, Issue.8
-
-
Zhang, J.1
-
170
-
-
84873719926
-
Protein tyrosine phosphatase 1B (PTP1B) modulates palmitate-induced cytokine production in macrophage cells
-
Nasimian A et al. Protein tyrosine phosphatase 1B (PTP1B) modulates palmitate-induced cytokine production in macrophage cells. Inflamm Res. 2013;62(2):239-46.
-
(2013)
Inflamm Res
, vol.62
, Issue.2
, pp. 239-246
-
-
Nasimian, A.1
-
171
-
-
46749119743
-
Phosphatase PTP1B negatively regulates MyD88- and TRIF-dependent proinflammatory cytokine and type I interferon production in TLR-triggered macrophages
-
Xu H et al. Phosphatase PTP1B negatively regulates MyD88- and TRIF-dependent proinflammatory cytokine and type I interferon production in TLR-triggered macrophages. Mol Immunol. 2008;45(13):3545-52.
-
(2008)
Mol Immunol
, vol.45
, Issue.13
, pp. 3545-3552
-
-
Xu, H.1
-
172
-
-
84880770109
-
The LIM domain only 4 protein is a metabolic responsive inhibitor of protein tyrosine phosphatase 1B that controls hypothalamic leptin signaling
-
Pandey NR et al. The LIM domain only 4 protein is a metabolic responsive inhibitor of protein tyrosine phosphatase 1B that controls hypothalamic leptin signaling. J Neurosci. 2013;33(31):12647-55.
-
(2013)
J Neurosci
, vol.33
, Issue.31
, pp. 12647-12655
-
-
Pandey, N.R.1
-
173
-
-
79953225155
-
Differential regulation of endoplasmic reticulum stress by protein tyrosine phosphatase 1B and Tcell protein tyrosine phosphatase
-
Bettaieb A et al. Differential regulation of endoplasmic reticulum stress by protein tyrosine phosphatase 1B and Tcell protein tyrosine phosphatase. J Biol Chem. 2011;286(11):9225-35.
-
(2011)
J Biol Chem
, vol.286
, Issue.11
, pp. 9225-9235
-
-
Bettaieb, A.1
-
174
-
-
60849120123
-
HF diets increase hypothalamic PTP1B and induce leptin resistance through both leptin-dependent and -independent mechanisms
-
White CL et al. HF diets increase hypothalamic PTP1B and induce leptin resistance through both leptin-dependent and -independent mechanisms. Am J Physiol Endocrinol Metab. 2009;296(2):E291-9.
-
(2009)
Am J Physiol Endocrinol Metab
, vol.296
, Issue.2
-
-
White, C.L.1
-
175
-
-
33746810001
-
Neuronal PTP1B regulates body weight, adiposity and leptin action
-
DOI 10.1038/nm1435, PII NM1435
-
Bence KK et al. Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat Med. 2006;12(8):917-24. (Pubitemid 44175143)
-
(2006)
Nature Medicine
, vol.12
, Issue.8
, pp. 917-924
-
-
Bence, K.K.1
Delibegovic, M.2
Xue, B.3
Gorgun, C.Z.4
Hotamisligil, G.S.5
Neel, B.G.6
Kahn, B.B.7
-
176
-
-
77949673935
-
PTP1B and SHP2 in POMC neurons reciprocally regulate energy balance inmice
-
Banno R et al. PTP1B and SHP2 in POMC neurons reciprocally regulate energy balance inmice. J Clin Invest. 2010;120(3):720-34.
-
(2010)
J Clin Invest
, vol.120
, Issue.3
, pp. 720-734
-
-
Banno, R.1
-
178
-
-
84886647368
-
A conserved rod domain phosphotyrosine that is targeted by the phosphatase PTP1B promotes keratin 8 insolubility and filament organization
-
Snider NT, Park H, Omary MB. A conserved rod domain phosphotyrosine that is targeted by the phosphatase PTP1B promotes keratin 8 insolubility and filament organization. J Biol Chem. 2013;288(43):31329-37.
-
(2013)
J Biol Chem
, vol.288
, Issue.43
, pp. 31329-31337
-
-
Snider, N.T.1
Park, H.2
Omary, M.B.3
-
179
-
-
0031577545
-
LMW-PTP is a negative regulator of insulin-mediated mitotic and metabolic signalling
-
DOI 10.1006/bbrc.1997.7355
-
Chiarugi P et al. LMW-PTP is a negative regulator of insulin-mediated mitotic and metabolic signalling. Biochem Biophys Res Commun. 1997;238(2):676-82. (Pubitemid 27464449)
-
(1997)
Biochemical and Biophysical Research Communications
, vol.238
, Issue.2
, pp. 676-682
-
-
Chiarugi, P.1
Cirri, P.2
Marra, F.3
Raugei, G.4
Camici, G.5
Manao, G.6
Ramponi, G.7
-
180
-
-
34347236902
-
Reduction of low molecular weight protein-tyrosine phosphatase expression improves hyperglycemia and insulin sensitivity in obese mice
-
DOI 10.1074/jbc.M609626200
-
Pandey SK et al. Reduction of low molecular weight protein-tyrosine phosphatase expression improves hyperglycemia and insulin sensitivity in obese mice. J Biol Chem. 2007;282(19):14291-9. (Pubitemid 47100476)
-
(2007)
Journal of Biological Chemistry
, vol.282
, Issue.19
, pp. 14291-14299
-
-
Pandey, S.K.1
Yu, X.X.2
Watts, L.M.3
Michael, M.D.4
Sloop, K.W.5
Rivard, A.R.6
Leedom, T.A.7
Manchem, V.P.8
Samadzadeh, L.9
McKay, R.A.10
Monia, B.P.11
Bhanot, S.12
-
181
-
-
33748331432
-
Identification of the tyrosine phosphatase PTP-MEG2 as an antagonist of hepatic insulin signaling
-
Cho CYet al. Identification of the tyrosine phosphatase PTP-MEG2 as an antagonist of hepatic insulin signaling. Cell Metab. 2006;3(5):367-78.
-
(2006)
Cell Metab
, vol.3
, Issue.5
, pp. 367-378
-
-
Cho, C.Y.1
-
182
-
-
0029117217
-
Selective down-regulation of the insulin receptor signal by protein-tyrosine phosphatases alpha and epsilon
-
Moller NP et al. Selective down-regulation of the insulin receptor signal by protein-tyrosine phosphatases alpha and epsilon. J Biol Chem. 1995;270(39):23126-31.
-
(1995)
J Biol Chem
, vol.270
, Issue.39
, pp. 23126-23131
-
-
Moller, N.P.1
-
183
-
-
0031035983
-
The transmembrane protein tyrosine phosphatase alpha dephosphorylates the insulin receptor in intact cells
-
DOI 10.1016/S0014-5793(97)00080-X, PII S001457939700080X
-
Lammers R, Moller NP, Ullrich A. The transmembrane protein tyrosine phosphatase alpha dephosphorylates the insulin receptor in intact cells. FEBS Lett. 1997;404(1):37-40. (Pubitemid 27107803)
-
(1997)
FEBS Letters
, vol.404
, Issue.1
, pp. 37-40
-
-
Lammers, R.1
Moller, N.P.H.2
Ullrich, A.3
-
184
-
-
0033573953
-
Overexpression of protein tyrosine phosphatase-alpha (PTP-alpha) but not PTP-kappa inhibits translocation of GLUT4 in rat adipose cells
-
Cong LN et al. Overexpression of protein tyrosine phosphatase-alpha (PTP-alpha) but not PTP-kappa inhibits translocation of GLUT4 in rat adipose cells. Biochem Biophys Res Commun. 1999;255(2):200-7.
-
(1999)
Biochem Biophys Res Commun
, vol.255
, Issue.2
, pp. 200-207
-
-
Cong, L.N.1
-
186
-
-
0033543747
-
Use of an antisense strategy to dissect the signaling role of protein-tyrosine phosphatase alpha
-
Arnott CH et al. Use of an antisense strategy to dissect the signaling role of protein-tyrosine phosphatase alpha. J Biol Chem. 1999;274(37):26105-12.
-
(1999)
J Biol Chem
, vol.274
, Issue.37
, pp. 26105-26112
-
-
Arnott, C.H.1
-
187
-
-
0347004670
-
Insulin signaling and glucose homeostasis in mice lacking protein tyrosine phosphatase alpha
-
DOI 10.1016/j.bbrc.2003.12.087
-
Le HT, Ponniah S, Pallen CJ. Insulin signaling and glucose homeostasis in mice lacking protein tyrosine phosphatase alpha. Biochem Biophys Res Commun. 2004;314(2):321-9. (Pubitemid 38084720)
-
(2004)
Biochemical and Biophysical Research Communications
, vol.314
, Issue.2
, pp. 321-329
-
-
Le, H.T.1
Ponniah, S.2
Pallen, C.J.3
-
188
-
-
0035868264
-
Comparative study of protein tyrosine phosphatase-epsilon isoforms: Membrane localization confers specificity in cellular signalling
-
DOI 10.1042/0264-6021:3540581
-
Andersen JN et al. Comparative study of protein tyrosine phosphatase-epsilon isoforms: membrane localization confers specificity in cellular signalling. Biochem J. 2001;354(Pt 3):581-90. (Pubitemid 32269721)
-
(2001)
Biochemical Journal
, vol.354
, Issue.3
, pp. 581-590
-
-
Andersen, J.N.1
Elson, A.2
Lammers, R.3
Romer, J.4
Clausen, J.T.5
Moller, K.B.6
Moller, N.P.H.7
-
189
-
-
38549109176
-
Cytosolic protein tyrosine phosphatase-epsilon is a negative regulator of insulin signaling in skeletal muscle
-
DOI 10.1210/en.2007-0908
-
Aga-Mizrachi S et al. Cytosolic protein tyrosine phosphatase-epsilon is a negative regulator of insulin signaling in skeletal muscle. Endocrinology. 2008;149(2):605-14. (Pubitemid 351159339)
-
(2008)
Endocrinology
, vol.149
, Issue.2
, pp. 605-614
-
-
Aga-Mizrachi, S.1
Brutman-Barazani, T.2
Jacob, A.I.3
Bak, A.4
Elson, A.5
Sampson, S.R.6
-
190
-
-
0037119469
-
Serine/threonine phosphorylation of ShcA. Regulation of protein-tyrosine phosphatase-pest binding and involvement in insulin signaling
-
Faisal A et al. Serine/threonine phosphorylation of ShcA. Regulation of protein-tyrosine phosphatase-pest binding and involvement in insulin signaling. J Biol Chem. 2002;277(33):30144-52.
-
(2002)
J Biol Chem
, vol.277
, Issue.33
, pp. 30144-30152
-
-
Faisal, A.1
-
191
-
-
0037371765
-
Regulation of insulin receptor signaling by the protein tyrosine phosphatase TCPTP
-
DOI 10.1128/MCB.23.6.2096-2108.2003
-
Galic S et al. Regulation of insulin receptor signaling by the protein tyrosine phosphatase TCPTP. Mol Cell Biol. 2003;23(6):2096-108. (Pubitemid 36278819)
-
(2003)
Molecular and Cellular Biology
, vol.23
, Issue.6
, pp. 2096-2108
-
-
Galic, S.1
Klingler-Hoffmann, M.2
Fodero-Tavoletti, M.T.3
Puryer, M.A.4
Meng, T.-C.5
Tonks, N.K.6
Tiganis, T.7
-
192
-
-
33846312506
-
Effects of small interference RNA against PTP1B and TCPTP on insulin signaling pathway in mouse liver: Evidence for non-synergetic cooperation
-
DOI 10.1016/j.cellbi.2006.09.010, PII S1065699506002022
-
Xu J et al. Effects of small interference RNA against PTP1B and TCPTP on insulin signaling pathway in mouse liver: evidence for non-synergetic cooperation. Cell Biol Int. 2007;31(1):88-91. (Pubitemid 46124032)
-
(2007)
Cell Biology International
, vol.31
, Issue.1
, pp. 88-91
-
-
Xu, J.1
Li, L.2
Hong, J.3
Huang, W.4
-
193
-
-
77955352846
-
T-cell protein tyrosine phosphatase attenuates STAT3 and insulin signaling in the liver to regulate gluconeogenesis
-
Fukushima A et al. T-cell protein tyrosine phosphatase attenuates STAT3 and insulin signaling in the liver to regulate gluconeogenesis. Diabetes. 2010;59(8):1906-14.
-
(2010)
Diabetes
, vol.59
, Issue.8
, pp. 1906-1914
-
-
Fukushima, A.1
-
194
-
-
84856691770
-
Tcell protein tyrosine phosphatase (TCPTP) deficiency in muscle does not alter insulin signalling and glucose homeostasis in mice
-
Loh K et al. Tcell protein tyrosine phosphatase (TCPTP) deficiency in muscle does not alter insulin signalling and glucose homeostasis in mice. Diabetologia. 2012;55(2):468-78.
-
(2012)
Diabetologia
, vol.55
, Issue.2
, pp. 468-478
-
-
Loh, K.1
-
195
-
-
84857885423
-
T-cell protein tyrosine phosphatase regulates bone resorption and whole-body insulin sensitivity through its expression in osteoblasts
-
Zee T et al. T-cell protein tyrosine phosphatase regulates bone resorption and whole-body insulin sensitivity through its expression in osteoblasts. Mol Cell Biol. 2012;32(6):1080-8.
-
(2012)
Mol Cell Biol
, vol.32
, Issue.6
, pp. 1080-1088
-
-
Zee, T.1
-
196
-
-
84881101746
-
Role of PTPalpha in the destruction of periodontal connective tissues
-
Rajshankar D et al. Role of PTPalpha in the destruction of periodontal connective tissues. PLoS One. 2013;8(8):e70659.
-
(2013)
PLoS One
, vol.8
, Issue.8
-
-
Rajshankar, D.1
-
197
-
-
84872770077
-
PTP1B and TCPTP- nonredundant phosphatases in insulin signaling and glucose homeostasis
-
Tiganis T. PTP1B and TCPTP- nonredundant phosphatases in insulin signaling and glucose homeostasis. FEBS J. 2013;280(2):445-58.
-
(2013)
FEBS J
, vol.280
, Issue.2
, pp. 445-458
-
-
Tiganis, T.1
-
198
-
-
80455122701
-
Elevated hypothalamic TCPTP in obesity contributes to cellular leptin resistance
-
Loh K et al. Elevated hypothalamic TCPTP in obesity contributes to cellular leptin resistance. Cell Metab. 2011;14(5):684-99.
-
(2011)
Cell Metab
, vol.14
, Issue.5
, pp. 684-699
-
-
Loh, K.1
-
199
-
-
0027195626
-
Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene
-
Tsui HW et al. Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene. Nat Genet. 1993;4(2):124-9.
-
(1993)
Nat Genet
, vol.4
, Issue.2
, pp. 124-129
-
-
Tsui, H.W.1
-
200
-
-
0027197067
-
Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene
-
DOI 10.1016/0092-8674(93)90369-2
-
Shultz LD et al. Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene. Cell. 1993;73(7):1445-54. (Pubitemid 23201156)
-
(1993)
Cell
, vol.73
, Issue.7
, pp. 1445-1454
-
-
Shultz, L.D.1
Schweitzer, P.A.2
Rajan, T.V.3
Yi, T.4
Ihle, J.N.5
Matthews, R.J.6
Thomas, M.L.7
Beier, D.R.8
-
201
-
-
0037064549
-
Role of the SHP-2 tyrosine phosphatase in cytokine-induced signaling and cellular response
-
Qu CK. Role of the SHP-2 tyrosine phosphatase in cytokine-induced signaling and cellular response. Biochim Biophys Acta. 2002;1592(3):297-301.
-
(2002)
Biochim Biophys Acta
, vol.1592
, Issue.3
, pp. 297-301
-
-
Qu, C.K.1
-
202
-
-
23944518951
-
A SHPing tale: Perspectives on the regulation of SHP-1 and SHP-2 tyrosine phosphatases by the C-terminal tail
-
DOI 10.1016/j.cellsig.2005.05.016, PII S0898656805001233
-
Poole AW, Jones ML. A SHPing tale: perspectives on the regulation of SHP-1 and SHP-2 tyrosine phosphatases by the C-terminal tail. Cell Signal. 2005;17(11):1323-32. (Pubitemid 41206642)
-
(2005)
Cellular Signalling
, vol.17
, Issue.11
, pp. 1323-1332
-
-
Poole, A.W.1
Jones, M.L.2
-
203
-
-
34748831102
-
The Src homology 2 domain tyrosine phosphatases SHP-1 and SHP-2: Diversified control of cell growth, inflammation, and injury
-
Chong ZZ, Maiese K. The Src homology 2 domain tyrosine phosphatases SHP-1 and SHP-2: diversified control of cell growth, inflammation, and injury. Histol Histopathol. 2007;22(11):1251-67. (Pubitemid 47470319)
-
(2007)
Histology and Histopathology
, vol.22
, Issue.10-12
, pp. 1251-1267
-
-
Chong, Z.Z.1
Maiese, K.2
-
204
-
-
0029059985
-
Human protein tyrosine phosphatase 1C (PTPN6) gene structure: Alternate promoter usage and exon skipping generate multiple transcripts
-
Banville D, Stocco R, Shen SH. Human protein tyrosine phosphatase 1C (PTPN6) gene structure: alternate promoter usage and exon skipping generate multiple transcripts. Genomics. 1995;27(1):165-73.
-
(1995)
Genomics
, vol.27
, Issue.1
, pp. 165-173
-
-
Banville, D.1
Stocco, R.2
Shen, S.H.3
-
205
-
-
0033215475
-
Human 70-kDa SHP-1L differs from 68-kDa SHP-1 in its C-terminal structure and catalytic activity
-
Jin YJ, Yu CL, Burakoff SJ. Human 70-kDa SHP-1L differs from 68-kDa SHP-1 in its C-terminal structure and catalytic activity. J Biol Chem. 1999;274(40):28301-7.
-
(1999)
J Biol Chem
, vol.274
, Issue.40
, pp. 28301-28307
-
-
Jin, Y.J.1
Yu, C.L.2
Burakoff, S.J.3
-
206
-
-
0026547356
-
Protein tyrosine phosphatase containing SH2 domains: Characterization, preferential expression in hematopoietic cells, and localization to human chromosome 12p12-p13
-
Yi TL, Cleveland JL, Ihle JN. Protein tyrosine phosphatase containing SH2 domains: characterization, preferential expression in hematopoietic cells, and localization to human chromosome 12p12-p13. Mol Cell Biol. 1992;12(2):836-46.
-
(1992)
Mol Cell Biol
, vol.12
, Issue.2
, pp. 836-846
-
-
Yi, T.L.1
Cleveland, J.L.2
Ihle, J.N.3
-
207
-
-
0035113010
-
A novel role for protein tyrosine phosphatase SHP1 in controlling glial activation in the normal and injured nervous system
-
Horvat A et al. A novel role for protein tyrosine phosphatase shp1 in controlling glial activation in the normal and injured nervous system. J Neurosci. 2001;21(3):865-74. (Pubitemid 32163128)
-
(2001)
Journal of Neuroscience
, vol.21
, Issue.3
, pp. 865-874
-
-
Horvat, A.1
Schwaiger, F.-W.2
Hager, G.3
Brocker, F.4
Streif, R.5
Knyazev, P.G.6
Ullrich, A.7
Kreutzberg, G.W.8
-
208
-
-
0034729089
-
Tyrosine phosphatase SHP-1 immunoreactivity increases in a subset of astrocytes following deafferentation of the chicken auditory brainstem
-
DOI 10.1002/(SICI)1096-9861(20000529)421:2<199::AI
-
Lurie DI et al. Tyrosine phosphatase SHP-1 immunoreactivity increases in a subset of astrocytes following deafferentation of the chicken auditory brainstem. J Comp Neurol. 2000;421(2):199-214. (Pubitemid 30246970)
-
(2000)
Journal of Comparative Neurology
, vol.421
, Issue.2
, pp. 199-214
-
-
Lurie, D.I.1
Solca, F.2
Fischer, E.H.3
Rubel, E.W.4
-
209
-
-
0034652537
-
Expression and function of the protein tyrosine phosphatase SHP-1 in oligodendrocytes
-
DOI 10.1002/(SICI)1098-1136(20000215)29:4<376::AID
-
Massa PT et al. Expression and function of the protein tyrosine phosphatase SHP-1 in oligodendrocytes. Glia. 2000;29(4):376-85. (Pubitemid 30121427)
-
(2000)
GLIA
, vol.29
, Issue.4
, pp. 376-385
-
-
Massa, P.T.1
Saha, S.2
Wu, C.3
Jarosinski, K.W.4
-
210
-
-
33744960877
-
Raft-mediated Src homology 2 domain-containing proteintyrosine phosphatase 2 (SHP-2) regulation in microglia
-
Kim HY et al. Raft-mediated Src homology 2 domain-containing proteintyrosine phosphatase 2 (SHP-2) regulation in microglia. J Biol Chem. 2006;281(17):11872-8.
-
(2006)
J Biol Chem
, vol.281
, Issue.17
, pp. 11872-11878
-
-
Kim, H.Y.1
-
211
-
-
0030990384
-
Identification of a protein-tyrosine phosphatase (SHP1) different from that associated with acid phosphatase in rat prostate
-
Valencia AM et al. Identification of a protein-tyrosine phosphatase (SHP1) different from that associated with acid phosphatase in rat prostate. FEBS Lett. 1997;406(1-2):42-8.
-
(1997)
FEBS Lett
, vol.406
, Issue.1-2
, pp. 42-48
-
-
Valencia, A.M.1
-
212
-
-
0027399168
-
Activation of a phosphotyrosine phosphatase by tyrosine phosphorylation
-
Vogel W et al. Activation of a phosphotyrosine phosphatase by tyrosine phosphorylation. Science. 1993;259(5101):1611-4. (Pubitemid 23114640)
-
(1993)
Science
, vol.259
, Issue.5101
, pp. 1611-1614
-
-
Vogel, W.1
Lammers, R.2
Huang, J.3
Ullrich, A.4
-
213
-
-
0037458728
-
Crystal structure of human protein-tyrosine phosphatase SHP-1
-
DOI 10.1074/jbc.M210430200
-
Yang J et al. Crystal structure of human protein-tyrosine phosphatase SHP-1. J Biol Chem. 2003;278(8):6516-20. (Pubitemid 36800913)
-
(2003)
Journal of Biological Chemistry
, vol.278
, Issue.8
, pp. 6516-6520
-
-
Yang, J.1
Liu, L.2
He, D.3
Song, X.4
Liang, X.5
Zhao, Z.J.6
Zhou, G.W.7
-
214
-
-
0026516065
-
Isolation of a src homology 2-containing tyrosine phosphatase
-
Plutzky J, Neel BG, Rosenberg RD. Isolation of a src homology 2-containing tyrosine phosphatase. Proc Natl Acad Sci U S A. 1992;89(3):1123-7.
-
(1992)
Proc Natl Acad Sci U S A
, vol.89
, Issue.3
, pp. 1123-1127
-
-
Plutzky, J.1
Neel, B.G.2
Rosenberg, R.D.3
-
215
-
-
79952957889
-
Substrate specificity of protein tyrosine phosphatases 1B, RPTPalpha, SHP-1, and SHP-2
-
Ren L et al. Substrate specificity of protein tyrosine phosphatases 1B, RPTPalpha, SHP-1, and SHP-2. Biochemistry. 2011;50(12):2339-56.
-
(2011)
Biochemistry
, vol.50
, Issue.12
, pp. 2339-2356
-
-
Ren, L.1
-
217
-
-
84884996061
-
Identification of cryptotanshinone as an inhibitor of Oncogenic protein tyrosine phosphatase SHP2 (PTPN11)
-
Liu W, et al. Identification of cryptotanshinone as an inhibitor of Oncogenic protein tyrosine phosphatase SHP2 (PTPN11). J Med Chem. 2013;56(18):7212-21.
-
(2013)
J Med Chem
, vol.56
, Issue.18
, pp. 7212-7221
-
-
Liu, W.1
-
218
-
-
0028580116
-
Intramolecular regulation of protein tyrosine phosphatase SH-PTP1: A new function for Src homology 2 domains
-
Pei D et al. Intramolecular regulation of protein tyrosine phosphatase SH-PTP1: a new function for Src homology 2 domains. Biochemistry. 1994;33(51):15483-93.
-
(1994)
Biochemistry
, vol.33
, Issue.51
, pp. 15483-15493
-
-
Pei, D.1
-
220
-
-
0028179013
-
Protein-tyrosine-phosphatase SHPTP2 couples platelet-derived growth factor receptor beta to Ras
-
Bennett AM et al. Protein-tyrosine-phosphatase SHPTP2 couples platelet-derived growth factor receptor beta to Ras. Proc Natl Acad Sci U S A. 1994;91(15):7335-9.
-
(1994)
Proc Natl Acad Sci U S A
, vol.91
, Issue.15
, pp. 7335-7339
-
-
Bennett, A.M.1
-
221
-
-
1642524229
-
Effective Dephosphorylation of Src Substrates by SHP-1
-
DOI 10.1074/jbc.M309096200
-
Frank C et al. Effective dephosphorylation of Src substrates by SHP-1. J Biol Chem. 2004;279(12):11375-83. (Pubitemid 38401636)
-
(2004)
Journal of Biological Chemistry
, vol.279
, Issue.12
, pp. 11375-11383
-
-
Frank, C.1
Burkhardt, C.2
Imhof, D.3
Ringel, J.4
Zschornig, O.5
Wieligmann, K.6
Zacharias, M.7
Bohmer, F.-D.8
-
222
-
-
0028342629
-
Insulin stimulates the phosphorylation of Tyr538 and the catalytic activity of PTP1C, a protein tyrosine phosphatase with Src homology-2 domains
-
Uchida Tet al. Insulin stimulates the phosphorylation of Tyr538 and the catalytic activity of PTP1C, a protein tyrosine phosphatase with Src homology-2 domains. J Biol Chem. 1994;269(16):12220-8.
-
(1994)
J Biol Chem
, vol.269
, Issue.16
, pp. 12220-12228
-
-
Uchida, T.1
-
223
-
-
77950890821
-
Enhancement of insulin responsiveness by nitric oxide-mediated inactivation of protein-tyrosine phosphatases
-
Hsu MF, Meng TC. Enhancement of insulin responsiveness by nitric oxide-mediated inactivation of protein-tyrosine phosphatases. J Biol Chem. 2009;285(11):7919-28.
-
(2009)
J Biol Chem
, vol.285
, Issue.11
, pp. 7919-7928
-
-
Hsu, M.F.1
Meng, T.C.2
-
224
-
-
34548780771
-
Negative autoregulation of Src homology region 2-domain-containing phosphatase-1 in rat basophilic leukemia-2H3 cells
-
DOI 10.1093/intimm/dxm070
-
Ozawa T et al. Negative autoregulation of Src homology region 2-domain-containing phosphatase-1 in rat basophilic leukemia-2H3 cells. Int Immunol. 2007;19(9):1049-61. (Pubitemid 47434238)
-
(2007)
International Immunology
, vol.19
, Issue.9
, pp. 1049-1061
-
-
Ozawa, T.1
Nakata, K.2
Mizuno, K.3
Yakura, H.4
-
225
-
-
0343729328
-
Perinuclear localization of the protein-tyrosine phosphatase SHP-1 and inhibition of epidermal growth factor-stimulated STAT1/3 activation in A431 cells
-
Tenev T et al. Perinuclear localization of the protein-tyrosine phosphatase SHP-1 and inhibition of epidermal growth factor-stimulated STAT1/3 activation in A431 cells. Eur J Cell Biol. 2000;79(4):261-71. (Pubitemid 30232571)
-
(2000)
European Journal of Cell Biology
, vol.79
, Issue.4
, pp. 261-271
-
-
Tenev, T.1
Bohmer, S.-A.2
Kaufmann, R.3
Frese, S.4
Bittorf, T.5
Beckers, T.6
Bohmer, F.-D.7
-
226
-
-
0030878257
-
Interaction of growth hormone-activated STATs with SH2-containing phosphotyrosine phosphatase SHP-1 and nuclear JAK2 tyrosine kinase
-
DOI 10.1074/jbc.272.28.17694
-
Ram PA, Waxman DJ. Interaction of growth hormone-activated STATs with SH2-containing phosphotyrosine phosphatase SHP-1 and nuclear JAK2 tyrosine kinase. J Biol Chem. 1997;272(28):17694-702. (Pubitemid 27311207)
-
(1997)
Journal of Biological Chemistry
, vol.272
, Issue.28
, pp. 17694-17702
-
-
Ram, P.A.1
Waxman, D.J.2
-
227
-
-
0036102113
-
A bipartite NLS at the SHP-1 C-terminus mediates cytokine-induced SHP-1 nuclear localization in cell growth control
-
DOI 10.1006/bcmd.2002.0485
-
Yang W, Tabrizi M, Yi T. A bipartite NLS at the SHP-1 C-terminus mediates cytokine-induced SHP-1 nuclear localization in cell growth control. Blood Cells Mol Dis. 2002;28(1):63-74. (Pubitemid 34408989)
-
(2002)
Blood Cells, Molecules, and Diseases
, vol.28
, Issue.1
, pp. 63-74
-
-
Yang, W.1
Tabrizi, M.2
Yi, T.3
-
228
-
-
0035968310
-
A functional nuclear localization sequence in the C-terminal domain of SHP-1
-
Craggs G, Kellie S. A functional nuclear localization sequence in the C-terminal domain of SHP-1. J Biol Chem. 2001;276(26):23719-25.
-
(2001)
J Biol Chem
, vol.276
, Issue.26
, pp. 23719-23725
-
-
Craggs, G.1
Kellie, S.2
-
229
-
-
84890451693
-
Heterogeneous nuclear ribonucleoprotein Q (hnRNP Q) is a novel substrate of SH2 domain-containing phosphatase-2 (SHP2)
-
Watanabe N, et al. Heterogeneous nuclear ribonucleoprotein Q (hnRNP Q) is a novel substrate of SH2 domain-containing phosphatase-2 (SHP2). J Biochem. 2013;154(5):475-80.
-
(2013)
J Biochem
, vol.154
, Issue.5
, pp. 475-480
-
-
Watanabe, N.1
-
230
-
-
84864383688
-
Hepatocyte-specific Ptpn6 deletion protects from obesity-linked hepatic insulin resistance
-
Xu E, et al. Hepatocyte-specific Ptpn6 deletion protects from obesity-linked hepatic insulin resistance. Diabetes. 2012;61(8):1949-58.
-
(2012)
Diabetes
, vol.61
, Issue.8
, pp. 1949-1958
-
-
Xu, E.1
-
232
-
-
0035920129
-
Tyrosine phosphorylation of p85 relieves its inhibitory activity on phosphatidylinositol 3-kinase
-
Cuevas BD et al. Tyrosine phosphorylation of p85 relieves its inhibitory activity on phosphatidylinositol 3-kinase. J Biol Chem. 2001;276(29):27455-61.
-
(2001)
J Biol Chem
, vol.276
, Issue.29
, pp. 27455-27461
-
-
Cuevas, B.D.1
-
233
-
-
0141994730
-
Src family protein-tyrosine kinases alter the function of PTEN to regulate phosphatidylinositol 3-kinase/AKT cascades
-
Lu Yet al. Src family protein-tyrosine kinases alter the function of PTEN to regulate phosphatidylinositol 3-kinase/AKT cascades. J Biol Chem. 2003;278(41):40057-66.
-
(2003)
J Biol Chem
, vol.278
, Issue.41
, pp. 40057-40066
-
-
Lu, Y.1
-
234
-
-
0036718382
-
Angiotensin II subtype 2 receptor activation inhibits insulin-induced phosphoinositide 3-kinase and Akt and induces apoptosis in PC12W cells
-
Cui TX et al. Angiotensin II subtype 2 receptor activation inhibits insulin-induced phosphoinositide 3-kinase and Akt and induces apoptosis in PC12W cells. Mol Endocrinol. 2002;16(9):2113-23.
-
(2002)
Mol Endocrinol
, vol.16
, Issue.9
, pp. 2113-2123
-
-
Cui, T.X.1
-
235
-
-
82355165101
-
Inhibition of the protein tyrosine phosphatase SHP-1 increases glucose uptake in skeletal muscle cells by augmenting insulin receptor signaling and GLUT4 expression
-
Bergeron S et al. Inhibition of the protein tyrosine phosphatase SHP-1 increases glucose uptake in skeletal muscle cells by augmenting insulin receptor signaling and GLUT4 expression. Endocrinology. 2011;152(12):4581-8.
-
(2011)
Endocrinology
, vol.152
, Issue.12
, pp. 4581-4588
-
-
Bergeron, S.1
-
236
-
-
78751474014
-
Prep1 controls insulin glucoregulatory function in liver by transcriptional targeting of SHP1 tyrosine phosphatase
-
Oriente F et al. Prep1 controls insulin glucoregulatory function in liver by transcriptional targeting of SHP1 tyrosine phosphatase. Diabetes. 2011;60(1):138-47.
-
(2011)
Diabetes
, vol.60
, Issue.1
, pp. 138-147
-
-
Oriente, F.1
-
237
-
-
79951855236
-
Compartmentalized CDK2 is connected with SHP-1 and beta-catenin and regulates insulin internalization
-
Fiset A et al. Compartmentalized CDK2 is connected with SHP-1 and beta-catenin and regulates insulin internalization. Cell Signal. 2011;23(5):911-9.
-
(2011)
Cell Signal
, vol.23
, Issue.5
, pp. 911-919
-
-
Fiset, A.1
-
238
-
-
0015952837
-
Quantitative aspects of the insulin-receptor interaction in liver plasma membranes
-
Kahn CR et al. Quantitative aspects of the insulin-receptor interaction in liver plasma membranes. J Biol Chem. 1974;249(7):2249-57.
-
(1974)
J Biol Chem
, vol.249
, Issue.7
, pp. 2249-2257
-
-
Kahn, C.R.1
-
240
-
-
0025864656
-
Receptor-recycling model of clearance and distribution of insulin in the perfused mouse liver
-
Sato H et al. Receptor-recycling model of clearance and distribution of insulin in the perfused mouse liver. Diabetologia. 1991;34(9):613-21.
-
(1991)
Diabetologia
, vol.34
, Issue.9
, pp. 613-621
-
-
Sato, H.1
-
241
-
-
0026937908
-
Pharmacological doses of insulin equalize insulin receptor phosphotyrosine content but not tyrosine kinase activity in plasmalemmal and endosomal membranes
-
Burgess JW et al. Pharmacological doses of insulin equalize insulin receptor phosphotyrosine content but not tyrosine kinase activity in plasmalemmal and endosomal membranes. Biochem Cell Biol. 1992;70(10-11):1151-8.
-
(1992)
Biochem Cell Biol
, vol.70
, Issue.10-11
, pp. 1151-1158
-
-
Burgess, J.W.1
-
242
-
-
0021894454
-
Uptake of insulin and other ligands into receptor-rich endocytic components of target cells: The endosomal apparatus
-
Bergeron JJ et al. Uptake of insulin and other ligands into receptor-rich endocytic components of target cells: the endosomal apparatus. Annu Rev Physiol. 1985;47:383-403. (Pubitemid 15142388)
-
(1985)
Annual Review of Physiology
, vol.47
, pp. 383-403
-
-
Bergeron, J.J.M.1
Cruz, J.2
Khan, M.N.3
Posner, B.I.4
-
243
-
-
33744918509
-
Effects of portal free fatty acid elevation on insulin clearance and hepatic glucose flux
-
DOI 10.1152/ajpendo.00306.2005
-
Yoshii H et al. Effects of portal free fatty acid elevation on insulin clearance and hepatic glucose flux. Am J Physiol Endocrinol Metab. 2006;290(6):E1089-97. (Pubitemid 43847891)
-
(2006)
American Journal of Physiology - Endocrinology and Metabolism
, vol.290
, Issue.6
-
-
Yoshii, H.1
Lam, T.K.T.2
Gupta, N.3
Goh, T.4
Haber, C.A.5
Uchino, H.6
Kim, T.T.Y.7
Chong, V.Z.8
Shah, K.9
Fantus, I.G.10
Mari, A.11
Kawamori, R.12
Giacca, A.13
-
245
-
-
0025014756
-
Selective degradation of insulin within rat liver endosomes
-
Doherty 2nd JJ et al. Selective degradation of insulin within rat liver endosomes. J Cell Biol. 1990;110(1):35-42.
-
(1990)
J Cell Biol
, vol.110
, Issue.1
, pp. 35-42
-
-
Doherty II, J.J.1
-
246
-
-
0025105992
-
The dissociation and degradation of internalized insulin occur in the endosomes of rat hepatoma cells
-
Backer JM, Kahn CR, White MF. The dissociation and degradation of internalized insulin occur in the endosomes of rat hepatoma cells. J Biol Chem. 1990;265(25):14828-35.
-
(1990)
J Biol Chem
, vol.265
, Issue.25
, pp. 14828-14835
-
-
Backer, J.M.1
Kahn, C.R.2
White, M.F.3
-
249
-
-
67651162136
-
Targeted disruption of carcinoembryonic antigen-related cell adhesion molecule 1 promotes diet-induced hepatic steatosis and insulin resistance
-
Xu E et al. Targeted disruption of carcinoembryonic antigen-related cell adhesion molecule 1 promotes diet-induced hepatic steatosis and insulin resistance. Endocrinology. 2009;150(8):3503-12.
-
(2009)
Endocrinology
, vol.150
, Issue.8
, pp. 3503-3512
-
-
Xu, E.1
-
250
-
-
0036675186
-
Regulation of insulin action by CEACAM1
-
DOI 10.1016/S1043-2760(02)00608-2, PII S1043276002006082
-
Najjar SM. Regulation of insulin action by CEACAM1. Trends Endocrinol Metab. 2002;13(6):240-5. (Pubitemid 36733968)
-
(2002)
Trends in Endocrinology and Metabolism
, vol.13
, Issue.6
, pp. 240-245
-
-
Najjar, S.M.1
-
251
-
-
0032951724
-
The carboxyl-terminal region of biliary glycoprotein controls its tyrosine phosphorylation and association with protein-tyrosine phosphatases SHP-1 and SHP-2 in epithelial cells
-
DOI 10.1074/jbc.274.1.335
-
Huber M, Izzi L, Grondin P, Houde C, Kunath T, Veillette A, et al. The carboxyl-terminal region of biliary glycoprotein controls its tyrosine phosphorylation and association with protein-tyrosine phosphatases SHP-1 and SHP-2 in epithelial cells. J Biol Chem. 1999;274(1):335-44. (Pubitemid 29035067)
-
(1999)
Journal of Biological Chemistry
, vol.274
, Issue.1
, pp. 335-344
-
-
Huber, M.1
Izzi, L.2
Grondin, P.3
Houde, C.4
Kunath, T.5
Veillette, A.6
Beauchemin, N.7
-
252
-
-
0029824779
-
Interaction of SH2-containing protein tyrosine phosphatase 2 with the insulin receptor and the insulin-like growth factor-I receptor: Studies of the domains involved using the yeast two-hybrid system
-
DOI 10.1210/en.137.11.4944
-
Rocchi S et al. Interaction of SH2-containing protein tyrosine phosphatase 2 with the insulin receptor and the insulin-like growth factor-I receptor: studies of the domains involved using the yeast two-hybrid system. Endocrinology. 1996;137(11):4944-52. (Pubitemid 26403338)
-
(1996)
Endocrinology
, vol.137
, Issue.11
, pp. 4944-4952
-
-
Rocchi, S.1
Tartare-Deckert, S.2
Sawka-Verhelle, D.3
Gamha, A.4
Van Obberghen, E.5
-
253
-
-
0039619868
-
Identification of tyrosine phosphatases that dephosphorylate the insulin receptor. A brute force approach based on 'substrate-trapping' mutants
-
DOI 10.1074/jbc.275.13.9792
-
Walchli S et al. Identification of tyrosine phosphatases that dephosphorylate the insulin receptor. A brute force approach based on "substrate-trapping" mutants. J Biol Chem. 2000;275(13):9792-6. (Pubitemid 30185214)
-
(2000)
Journal of Biological Chemistry
, vol.275
, Issue.13
, pp. 9792-9796
-
-
Walchli, S.1
Curchod, M.-L.2
Gobert, R.P.3
Arkinstall, S.4
Van Huijsduijnen, R.H.5
-
254
-
-
0030297324
-
SHPTP2 serves adapter protein linking between Janus kinase 2 and insulin receptor substrates
-
DOI 10.1006/bbrc.1996.1626
-
Maegawa H et al. SHPTP2 serves adapter protein linking between Janus kinase 2 and insulin receptor substrates. Biochem Biophys Res Commun. 1996;228(1):122-7. (Pubitemid 26390640)
-
(1996)
Biochemical and Biophysical Research Communications
, vol.228
, Issue.1
, pp. 122-127
-
-
Maegawa, H.1
Kashiwagi, A.2
Fujita, T.3
Ugi, S.4
Hasegawa, M.5
Obata, T.6
Nishio, Y.7
Kojima, H.8
Hidaka, H.9
Kikkawa, R.10
-
255
-
-
0029787277
-
Insulin signaling in mice expressing reduced levels of syp
-
DOI 10.1074/jbc.271.35.21353
-
Arrandale JM et al. Insulin signaling in mice expressing reduced levels of Syp. J Biol Chem. 1996;271(35):21353-8. (Pubitemid 26292997)
-
(1996)
Journal of Biological Chemistry
, vol.271
, Issue.35
, pp. 21353-21358
-
-
Arrandale, J.M.1
Gore-Willse, A.2
Rocks, S.3
Ren, J.-M.4
Zhu, J.5
Davis, A.6
Livingston, J.N.7
Rabin, D.U.8
-
256
-
-
0033570225
-
Expression of a dominant negative SHP-2 in transgenic mice induces insulin resistance
-
Maegawa H et al. Expression of a dominant negative SHP-2 in transgenic mice induces insulin resistance. J Biol Chem. 1999;274(42):30236-43.
-
(1999)
J Biol Chem
, vol.274
, Issue.42
, pp. 30236-30243
-
-
Maegawa, H.1
-
257
-
-
0034681445
-
2-terminal kinase
-
DOI 10.1074/jbc.275.7.5208
-
Fukunaga K et al. Requirement for protein-tyrosine phosphatase SHP-2 in insulin-induced activation of c-Jun NH(2)-terminal kinase. J Biol Chem. 2000;275(7):5208-13. (Pubitemid 30108925)
-
(2000)
Journal of Biological Chemistry
, vol.275
, Issue.7
, pp. 5208-5213
-
-
Fukunaga, K.1
Noguchi, T.2
Takeda, H.3
Matozaki, T.4
Hayashi, Y.5
Itoh, H.6
Kasuga, M.7
-
258
-
-
0030769166
-
Biological effects of human insulin receptor substrate-1 overexpression in hepatocytes
-
Tanaka S et al. Biological effects of human insulin receptor substrate-1 overexpression in hepatocytes. Hepatology. 1997;26(3):598-604. (Pubitemid 27392349)
-
(1997)
Hepatology
, vol.26
, Issue.3
, pp. 598-604
-
-
Tanaka, S.1
Mohr, L.2
Schmidt, E.V.3
Sugimachi, K.4
Wands, J.R.5
-
259
-
-
4644373631
-
Insulin receptor substrate-1/SHP-2 interaction, a phenotype-dependent switching machinery of insulin-like growth factor-I signaling in vascular smooth muscle cells
-
DOI 10.1074/jbc.M405100200
-
Hayashi K et al. Insulin receptor substrate-1/SHP-2 interaction, a phenotype-dependent switching machinery of insulin-like growth factor-I signaling in vascular smooth muscle cells. J Biol Chem. 2004;279(39):40807-18. (Pubitemid 39287678)
-
(2004)
Journal of Biological Chemistry
, vol.279
, Issue.39
, pp. 40807-40818
-
-
Hayashi, K.1
Shibata, K.2
Morita, T.3
Iwasaki, K.4
Watanabe, M.5
Sobue, K.6
-
260
-
-
25444447459
-
Shp2 is required for protein kinase C-dependent phosphorylation of serine 307 in insulin receptor substrate-1
-
DOI 10.1074/jbc.M506549200
-
Mussig K et al. Shp2 is required for protein kinase C-dependent phosphorylation of serine 307 in insulin receptor substrate-1. J Biol Chem. 2005;280(38):32693-9. (Pubitemid 41368314)
-
(2005)
Journal of Biological Chemistry
, vol.280
, Issue.38
, pp. 32693-32699
-
-
Mussig, K.1
Staiger, H.2
Fiedler, H.3
Moeschel, K.4
Beck, A.5
Kellerer, M.6
Haring, H.-U.7
-
261
-
-
58249115040
-
Deletion of Shp2 tyrosine phosphatase in muscle leads to dilated cardiomyopathy, insulin resistance, and premature death
-
Princen F et al. Deletion of Shp2 tyrosine phosphatase in muscle leads to dilated cardiomyopathy, insulin resistance, and premature death. Mol Cell Biol. 2009;29(2):378-88.
-
(2009)
Mol Cell Biol
, vol.29
, Issue.2
, pp. 378-388
-
-
Princen, F.1
-
262
-
-
78650044708
-
Altered glucose homeostasis in mice with liver-specific deletion of Src homology phosphatase 2
-
Matsuo K et al. Altered glucose homeostasis in mice with liver-specific deletion of Src homology phosphatase 2. J Biol Chem. 2010;285(51):39750-8.
-
(2010)
J Biol Chem
, vol.285
, Issue.51
, pp. 39750-39758
-
-
Matsuo, K.1
-
263
-
-
84862745368
-
Hepatic Src homology phosphatase 2 regulates energy balance in mice
-
Nagata N et al. Hepatic Src homology phosphatase 2 regulates energy balance in mice. Endocrinology. 2012;153(7):3158-69.
-
(2012)
Endocrinology
, vol.153
, Issue.7
, pp. 3158-3169
-
-
Nagata, N.1
-
264
-
-
79960555997
-
Adipose-specific deletion of Src homology phosphatase 2 does not significantly alter systemic glucose homeostasis
-
Bettaieb A et al. Adipose-specific deletion of Src homology phosphatase 2 does not significantly alter systemic glucose homeostasis. Metabolism. 2011;60(8):1193-201.
-
(2011)
Metabolism
, vol.60
, Issue.8
, pp. 1193-1201
-
-
Bettaieb, A.1
-
265
-
-
84871987193
-
Nonreceptor tyrosine phosphatase Shp2 promotes adipogenesis through inhibition of p38 MAP kinase
-
He Z et al. Nonreceptor tyrosine phosphatase Shp2 promotes adipogenesis through inhibition of p38 MAP kinase. Proc Natl Acad Sci U S A. 2013;110(1):E79-88.
-
(2013)
Proc Natl Acad Sci U S a
, vol.110
, Issue.1
-
-
He, Z.1
-
266
-
-
84873643973
-
Modulation of fatty acid synthase degradation by concerted action of p38 MAP kinase, E3 ligase COP1, and SH2-tyrosine phosphatase Shp2
-
Yu J et al. Modulation of fatty acid synthase degradation by concerted action of p38 MAP kinase, E3 ligase COP1, and SH2-tyrosine phosphatase Shp2. J Biol Chem. 2013;288(6):3823-30.
-
(2013)
J Biol Chem
, vol.288
, Issue.6
, pp. 3823-3830
-
-
Yu, J.1
-
267
-
-
0036731485
-
STATs: Transcriptional control and biological impact
-
DOI 10.1038/nrm909
-
Levy DE, Darnell Jr JE. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol. 2002;3(9):651-62. (Pubitemid 34987786)
-
(2002)
Nature Reviews Molecular Cell Biology
, vol.3
, Issue.9
, pp. 651-662
-
-
Levy, D.E.1
Darnell Jr., J.E.2
-
268
-
-
33746570647
-
Tracking STAT nuclear traffic
-
DOI 10.1038/nri1885, PII NRI1885
-
Reich NC, Liu L. Tracking STAT nuclear traffic. Nat Rev Immunol. 2006;6(8):602-12. (Pubitemid 44134093)
-
(2006)
Nature Reviews Immunology
, vol.6
, Issue.8
, pp. 602-612
-
-
Reich, N.C.1
Liu, L.2
-
269
-
-
42649118836
-
Protein tyrosine phosphatases in the JAK/STAT pathway
-
DOI 10.2741/3051
-
Xu D, Qu CK. Protein tyrosine phosphatases in the JAK/STAT pathway. Front Biosci. 2008;13:4925-32. (Pubitemid 351599646)
-
(2008)
Frontiers in Bioscience
, vol.13
, Issue.13
, pp. 4925-4932
-
-
Xu, D.1
Qu, C.-K.2
-
270
-
-
84878998921
-
Central regulation of metabolism by protein tyrosine phosphatases
-
Tsou RC, Bence KK. Central regulation of metabolism by protein tyrosine phosphatases. Front Neurosci. 2012;6:192.
-
(2012)
Front Neurosci
, vol.6
, pp. 192
-
-
Tsou, R.C.1
Bence, K.K.2
-
271
-
-
79959861920
-
SHP2 tyrosine phosphatase converts parafibromin/Cdc73 from a tumor suppressor to an oncogenic driver
-
Takahashi A et al. SHP2 tyrosine phosphatase converts parafibromin/Cdc73 from a tumor suppressor to an oncogenic driver. Mol Cell. 2011;43(1):45-56.
-
(2011)
Mol Cell
, vol.43
, Issue.1
, pp. 45-56
-
-
Takahashi, A.1
-
272
-
-
0038190977
-
Negative regulation of beta-catenin signaling by tyrosine phosphatase SHP-1 in intestinal epithelial cells
-
DOI 10.1074/jbc.M300425200
-
Duchesne C et al. Negative regulation of beta-catenin signaling by tyrosine phosphatase SHP-1 in intestinal epithelial cells. J Biol Chem. 2003;278(16):14274-83. (Pubitemid 36799976)
-
(2003)
Journal of Biological Chemistry
, vol.278
, Issue.16
, pp. 14274-14283
-
-
Duchesne, C.1
Charland, S.2
Asselin, C.3
Nahmias, C.4
Rivard, N.5
-
273
-
-
77957822414
-
SHP-1 inhibits beta-catenin function by inducing its degradation and interfering with its association with TATA-binding protein
-
Simoneau M et al. SHP-1 inhibits beta-catenin function by inducing its degradation and interfering with its association with TATA-binding protein. Cell Signal. 2011;23(1):269-79.
-
(2011)
Cell Signal
, vol.23
, Issue.1
, pp. 269-279
-
-
Simoneau, M.1
-
274
-
-
84881367433
-
Cembrane diterpenoids from the soft coral Sarcophyton trocheliophorum Marenzeller as a new class of PTP1B inhibitors
-
Liang LF et al. Cembrane diterpenoids from the soft coral Sarcophyton trocheliophorum Marenzeller as a new class of PTP1B inhibitors. Bioorg Med Chem. 2013;21(17):5076-80.
-
(2013)
Bioorg Med Chem
, vol.21
, Issue.17
, pp. 5076-5080
-
-
Liang, L.F.1
-
275
-
-
33748882713
-
Ursolic acid and its derivative inhibit protein tyrosine phosphatase 1B, enhancing insulin receptor phosphorylation and stimulating glucose uptake
-
DOI 10.1016/j.bbagen.2006.05.009, PII S0304416506001607
-
Zhang W et al. Ursolic acid and its derivative inhibit protein tyrosine phosphatase 1B, enhancing insulin receptor phosphorylation and stimulating glucose uptake. Biochim Biophys Acta. 2006;1760(10):1505-12. (Pubitemid 44428024)
-
(2006)
Biochimica et Biophysica Acta - General Subjects
, vol.1760
, Issue.10
, pp. 1505-1512
-
-
Zhang, W.1
Hong, D.2
Zhou, Y.3
Zhang, Y.4
Shen, Q.5
Li, J.-y.6
Hu, L.-h.7
Li, J.8
-
276
-
-
77950890821
-
Enhancement of insulin responsiveness by nitric oxide-mediated inactivation of protein-tyrosine phosphatases
-
Hsu MF, Meng TC. Enhancement of insulin responsiveness by nitric oxide-mediated inactivation of protein-tyrosine phosphatases. J Biol Chem. 2010;285(11):7919-28.
-
(2010)
J Biol Chem
, vol.285
, Issue.11
, pp. 7919-7928
-
-
Hsu, M.F.1
Meng, T.C.2
-
277
-
-
84868088782
-
A highly selective and potent PTP-MEG2 inhibitor with therapeutic potential for type 2 diabetes
-
Zhang S et al. A highly selective and potent PTP-MEG2 inhibitor with therapeutic potential for type 2 diabetes. J Am Chem Soc. 2012;134(43):18116-24.
-
(2012)
J Am Chem Soc
, vol.134
, Issue.43
, pp. 18116-18124
-
-
Zhang, S.1
-
278
-
-
0028783629
-
COOH-terminal sequence motifs target the T cell protein tyrosine phosphatase to the ER and nucleus
-
Lorenzen JA, Dadabay CY, Fischer EH. COOH-terminal sequence motifs target the T cell protein tyrosine phosphatase to the ER and nucleus. J Cell Biol. 1995;131(3):631-43.
-
(1995)
J Cell Biol
, vol.131
, Issue.3
, pp. 631-643
-
-
Lorenzen, J.A.1
Dadabay, C.Y.2
Fischer, E.H.3
-
279
-
-
0037163109
-
Prolactin induces SHP-2 association with Stat5, nuclear translocation, and binding to the beta-casein gene promoter in mammary cells
-
DOI 10.1074/jbc.M200156200
-
Chughtai N et al. Prolactin induces SHP-2 association with Stat5, nuclear translocation, and binding to the beta-casein gene promoter in mammary cells. J Biol Chem. 2002;277(34):31107-14. (Pubitemid 34970816)
-
(2002)
Journal of Biological Chemistry
, vol.277
, Issue.34
, pp. 31107-31114
-
-
Chughtai, N.1
Schimchowitsch, S.2
Lebrun, J.-J.3
Ali, S.4
-
280
-
-
0037033046
-
SHP-2 is a dual-specificity phosphatase involved in Stat1 dephosphorylation at both tyrosine and serine residues in nuclei
-
DOI 10.1074/jbc.M207536200
-
Wu TR et al. SHP-2 is a dual-specificity phosphatase involved in Stat1 dephosphorylation at both tyrosine and serine residues in nuclei. J Biol Chem. 2002;277(49):47572-80. (Pubitemid 36159277)
-
(2002)
Journal of Biological Chemistry
, vol.277
, Issue.49
, pp. 47572-47580
-
-
Wu, T.R.1
Kate, H.Y.2
Wang, X.-D.3
Ling, M.Y.4
Dragoi, A.M.5
Chung, A.S.6
Campbell, A.G.7
Han, Z.-Y.8
Feng, G.-S.9
Chin, Y.E.10
-
281
-
-
33645795212
-
Proteomic analysis reveals novel molecules involved in insulin signaling pathway
-
Wang Y et al. Proteomic analysis reveals novel molecules involved in insulin signaling pathway. J Proteome Res. 2006;5(4):846-55.
-
(2006)
J Proteome Res
, vol.5
, Issue.4
, pp. 846-855
-
-
Wang, Y.1
-
283
-
-
84857047339
-
PhosphoSitePlus: A comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse
-
Hornbeck PV et al. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res. 2012;40(Database issue): D261-70.
-
(2012)
Nucleic Acids Res
, vol.40
, Issue.DATABASE ISSUE
-
-
Hornbeck, P.V.1
|