메뉴 건너뛰기




Volumn 15, Issue 1, 2014, Pages 79-97

Role of protein tyrosine phosphatases in the modulation of insulin signaling and their implication in the pathogenesis of obesity-linked insulin resistance

Author keywords

Diabetes; Insulin signaling; Metabolism; Obesity; Protein tyrosine phosphatase

Indexed keywords

INSULIN; INSULIN RECEPTOR; LEUKOCYTE COMMON ANTIGEN RELATED PHOSPHATASE; MAMMALIAN TARGET OF RAPAMYCIN; MITOGEN ACTIVATED PROTEIN KINASE; PHOSPHATIDATE PHOSPHATASE; PHOSPHATIDYLINOSITOL 3 KINASE; PROTEIN SERINE THREONINE KINASE; PROTEIN SH2; PROTEIN TYROSINE PHOSPHATASE; PROTEIN TYROSINE PHOSPHATASE 1B; PROTEIN TYROSINE PHOSPHATASE SHP 1; PROTEIN TYROSINE PHOSPHATASE SHP 2; UNCLASSIFIED DRUG;

EID: 84896305265     PISSN: 13899155     EISSN: 15732606     Source Type: Journal    
DOI: 10.1007/s11154-013-9282-4     Document Type: Review
Times cited : (55)

References (283)
  • 1
    • 5744226870 scopus 로고    scopus 로고
    • WHO global strategy on diet, physical activity and health
    • Waxman A. WHO global strategy on diet, physical activity and health. Food Nutr Bull. 2004;25(3):292-302. (Pubitemid 39379377)
    • (2004) Food and Nutrition Bulletin , vol.25 , Issue.3 , pp. 292-302
    • Waxman, A.1
  • 2
    • 0012685220 scopus 로고
    • Blood sugar levels, glycosuria, and body weight related to development of diabetes mellitus. The Oxford epidemiologic study 17 years later
    • O'Sullivan JB, Mahan CM. Blood sugar levels, glycosuria, and body weight related to development of diabetes mellitus. The Oxford epidemiologic study 17 years later. JAMA. 1965;194(6):587-92.
    • (1965) JAMA , vol.194 , Issue.6 , pp. 587-592
    • O'Sullivan, J.B.1    Mahan, C.M.2
  • 3
    • 0019814499 scopus 로고
    • Obesity, very low density lipoproteins, and glucose intolerance over fourteen years. The Framingham study
    • Wilson PW, McGee DL, Kannel WB. Obesity, very low density lipoproteins, and glucose intolerance over fourteen years: the Framingham study. Am J Epidemiol. 1981;114(5):697-704. (Pubitemid 12241742)
    • (1981) American Journal of Epidemiology , vol.114 , Issue.5 , pp. 697-704
    • Wilson, P.W.1    McGee, D.L.2    Kannel, W.B.3
  • 5
    • 80455176656 scopus 로고    scopus 로고
    • Tipping the balance: The pathophysiology of obesity and type 2 diabetes mellitus
    • McKenney RL, Short DK. Tipping the balance: the pathophysiology of obesity and type 2 diabetes mellitus. Surg Clin N Am. 2011;91(6):1139-48. vii.
    • (2011) Surg Clin N Am , vol.91 , Issue.6
    • McKenney, R.L.1    Short, D.K.2
  • 6
    • 78649842241 scopus 로고    scopus 로고
    • Genomics, type 2 diabetes, and obesity
    • McCarthy MI. Genomics, type 2 diabetes, and obesity. N Engl J Med. 2010;363(24):2339-50.
    • (2010) N Engl J Med , vol.363 , Issue.24 , pp. 2339-2350
    • McCarthy, M.I.1
  • 7
    • 30044443649 scopus 로고    scopus 로고
    • Diabetes and obesity: The twin epidemics
    • DOI 10.1038/nm0106-75
    • Smyth S, Heron A. Diabetes and obesity: the twin epidemics. Nat Med. 2006;12(1):75-80. (Pubitemid 43050080)
    • (2006) Nature Medicine , vol.12 , Issue.1 , pp. 75-80
    • Smyth, S.1    Heron, A.2
  • 8
    • 0026021161 scopus 로고
    • Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease
    • DeFronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991;14(3):173-94.
    • (1991) Diabetes Care , vol.14 , Issue.3 , pp. 173-194
    • DeFronzo, R.A.1    Ferrannini, E.2
  • 9
    • 84857861919 scopus 로고    scopus 로고
    • Mechanisms for insulin resistance: Common threads and missing links
    • Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell. 2012;148(5):852-71.
    • (2012) Cell , vol.148 , Issue.5 , pp. 852-871
    • Samuel, V.T.1    Shulman, G.I.2
  • 10
    • 42949088997 scopus 로고    scopus 로고
    • The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance
    • DOI 10.1016/j.physbeh.2007.10.010, PII S0031938407004027
    • Goossens GH. The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiol Behav. 2008;94(2):206-18. (Pubitemid 351615418)
    • (2008) Physiology and Behavior , vol.94 , Issue.2 , pp. 206-218
    • Goossens, G.H.1
  • 11
    • 34250773451 scopus 로고    scopus 로고
    • Mechanisms of obesity-associated insulin resistance: Many choices on the menu
    • DOI 10.1101/gad.1550907
    • Qatanani M, Lazar MA. Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev. 2007;21(12):1443-55. (Pubitemid 46955717)
    • (2007) Genes and Development , vol.21 , Issue.12 , pp. 1443-1455
    • Qatanani, M.1    Lazar, M.A.2
  • 12
    • 34248581989 scopus 로고    scopus 로고
    • Disordered lipid metabolism and the pathogenesis of insulin resistance
    • DOI 10.1152/physrev.00024.2006
    • Savage DB, Petersen KF, Shulman GI. Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol Rev. 2007;87(2):507-20. (Pubitemid 47084679)
    • (2007) Physiological Reviews , vol.87 , Issue.2 , pp. 507-520
    • Savage, D.B.1    Petersen, K.F.2    Shulman, G.I.3
  • 14
    • 0000803875 scopus 로고
    • Plasma free fatty acid concentrations in obesity
    • Opie LH, Walfish PG. Plasma free fatty acid concentrations in obesity. N Engl J Med. 1963;268:757-60.
    • (1963) N Engl J Med , vol.268 , pp. 757-760
    • Opie, L.H.1    Walfish, P.G.2
  • 15
    • 0014501849 scopus 로고
    • Plasma free fatty acid turnover rate in obesity
    • Bjorntorp P, Bergman H, Varnauskas E. Plasma free fatty acid turnover rate in obesity. Acta Med Scand. 1969;185(4):351-6.
    • (1969) Acta Med Scand , vol.185 , Issue.4 , pp. 351-356
    • Bjorntorp, P.1    Bergman, H.2    Varnauskas, E.3
  • 16
    • 80053408094 scopus 로고    scopus 로고
    • Fatty acids, obesity, and insulin resistance: Time for a reevaluation
    • Karpe F, Dickmann JR, Frayn KN. Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes. 2011;60(10):2441-9.
    • (2011) Diabetes , vol.60 , Issue.10 , pp. 2441-2449
    • Karpe, F.1    Dickmann, J.R.2    Frayn, K.N.3
  • 17
    • 79952451443 scopus 로고    scopus 로고
    • Obesity, insulin resistance and free fatty acids
    • Boden G. Obesity, insulin resistance and free fatty acids. Curr Opin Endocrinol Diabetes Obes. 2011;18(2):139-43.
    • (2011) Curr Opin Endocrinol Diabetes Obes , vol.18 , Issue.2 , pp. 139-143
    • Boden, G.1
  • 18
    • 50549202600 scopus 로고
    • The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus
    • Randle PJ et al. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963;1(7285):785-9.
    • (1963) Lancet , vol.1 , Issue.7285 , pp. 785-789
    • Randle, P.J.1
  • 23
    • 78649462104 scopus 로고    scopus 로고
    • Taurine prevents free fatty acid-induced hepatic insulin resistance in association with inhibiting JNK1 activation and improving insulin signaling in vivo
    • Wu N et al. Taurine prevents free fatty acid-induced hepatic insulin resistance in association with inhibiting JNK1 activation and improving insulin signaling in vivo. Diabetes Res Clin Pract. 2010;90(3):288-96.
    • (2010) Diabetes Res Clin Pract , vol.90 , Issue.3 , pp. 288-296
    • Wu, N.1
  • 24
    • 84864015694 scopus 로고    scopus 로고
    • Effect of exposure to non-esterified fatty acid on progressive deterioration of insulin secretion in patients with Type 2 diabetes: A long-term follow-up study
    • Morita S, et al. Effect of exposure to non-esterified fatty acid on progressive deterioration of insulin secretion in patients with Type 2 diabetes: a long-term follow-up study. Diabet Med. 2012;29(8):980-5.
    • (2012) Diabet Med , vol.29 , Issue.8 , pp. 980-985
    • Morita, S.1
  • 25
    • 0030720085 scopus 로고    scopus 로고
    • Tissue triglycerides, insulin resistance, and insulin production: Implications for hyperinsulinemia of obesity
    • Koyama K et al. Tissue triglycerides, insulin resistance, and insulin production: implications for hyperinsulinemia of obesity. Am J Physiol. 1997;273(4 Pt 1):E708-13.
    • (1997) Am J Physiol , vol.273 , Issue.4 PART 1
    • Koyama, K.1
  • 29
    • 0025373728 scopus 로고
    • Glucose transport and glucose transporters in muscle and their metabolic regulation
    • Klip A, Paquet MR. Glucose transport and glucose transporters in muscle and their metabolic regulation. Diabetes Care. 1990;13(3):228-43. (Pubitemid 20092110)
    • (1990) Diabetes Care , vol.13 , Issue.3 , pp. 228-243
    • Klip, A.1    Paquet, M.R.2
  • 30
    • 0014056238 scopus 로고
    • Cell proliferation induced by insulin in organ culture of rat mammary carcinoma
    • Heuson JC, Coune A, Heimann R. Cell proliferation induced by insulin in organ culture of rat mammary carcinoma. Exp Cell Res. 1967;45(2):351-60.
    • (1967) Exp Cell Res , vol.45 , Issue.2 , pp. 351-360
    • Heuson, J.C.1    Coune, A.2    Heimann, R.3
  • 31
    • 65549113969 scopus 로고    scopus 로고
    • Mediator MED23 links insulin signaling to the adipogenesis transcription cascade
    • Wang W et al. Mediator MED23 links insulin signaling to the adipogenesis transcription cascade. Dev Cell. 2009;16(5):764-71.
    • (2009) Dev Cell , vol.16 , Issue.5 , pp. 764-771
    • Wang, W.1
  • 32
    • 0028034233 scopus 로고
    • Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function
    • Pause A et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature. 1994;371(6500):762-7.
    • (1994) Nature , vol.371 , Issue.6500 , pp. 762-767
    • Pause, A.1
  • 33
    • 77955082747 scopus 로고    scopus 로고
    • Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition
    • Fulzele K et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell. 2010;142(2):309-19.
    • (2010) Cell , vol.142 , Issue.2 , pp. 309-319
    • Fulzele, K.1
  • 34
    • 0035856949 scopus 로고    scopus 로고
    • Insulin signalling and the regulation of glucose and lipid metabolism
    • DOI 10.1038/414799a
    • Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414(6865):799-806. (Pubitemid 34000783)
    • (2001) Nature , vol.414 , Issue.6865 , pp. 799-806
    • Saltiel, A.R.1    Kahn, C.R.2
  • 35
    • 0015691094 scopus 로고
    • Insulin control of glucagon release from insulin-deficient rat islets
    • Buchanan KD, Mawhinney WA. Insulin control of glucagon release from insulin-deficient rat islets. Diabetes. 1973;22(11):801-3.
    • (1973) Diabetes , vol.22 , Issue.11 , pp. 801-803
    • Buchanan, K.D.1    Mawhinney, W.A.2
  • 37
    • 79958026765 scopus 로고    scopus 로고
    • Role for insulin signaling in catecholaminergic neurons in control of energy homeostasis
    • Konner AC et al. Role for insulin signaling in catecholaminergic neurons in control of energy homeostasis. Cell Metab. 2011;13(6):720-8.
    • (2011) Cell Metab , vol.13 , Issue.6 , pp. 720-728
    • Konner, A.C.1
  • 38
    • 0034703229 scopus 로고    scopus 로고
    • Role of brain insulin receptor in control of body weight and reproduction
    • Bruning JC et al. Role of brain insulin receptor in control of body weight and reproduction. Science. 2000;289(5487):2122-5.
    • (2000) Science , vol.289 , Issue.5487 , pp. 2122-2125
    • Bruning, J.C.1
  • 39
    • 17844391064 scopus 로고    scopus 로고
    • Insulin signaling in the central nervous system is critical for the normal sympathoadrenal response to hypoglycemia
    • DOI 10.2337/diabetes.54.5.1447
    • Fisher SJ et al. Insulin signaling in the central nervous system is critical for the normal sympathoadrenal response to hypoglycemia. Diabetes. 2005;54(5):1447-51. (Pubitemid 40586676)
    • (2005) Diabetes , vol.54 , Issue.5 , pp. 1447-1451
    • Fisher, S.J.1    Bruning, J.C.2    Lannon, S.3    Kahn, C.R.4
  • 40
    • 77950264425 scopus 로고    scopus 로고
    • Direct insulin and leptin action on pro-opiomelanocortin neurons is required for normal glucose homeostasis and fertility
    • Hill JW et al. Direct insulin and leptin action on pro-opiomelanocortin neurons is required for normal glucose homeostasis and fertility. Cell Metab. 2010;11(4):286-97.
    • (2010) Cell Metab , vol.11 , Issue.4 , pp. 286-297
    • Hill, J.W.1
  • 42
    • 0017112852 scopus 로고
    • Effects of insulin on cardiac muscle contraction and responsiveness to norepinephrine
    • Lee JC, Downing SE. Effects of insulin on cardiac muscle contraction and responsiveness to norepinephrine. Am J Physiol. 1976;230(5):1360-5.
    • (1976) Am J Physiol , vol.230 , Issue.5 , pp. 1360-1365
    • Lee, J.C.1    Downing, S.E.2
  • 44
    • 0026513742 scopus 로고
    • Effects of insulin on renal sodium excretion
    • Gupta AK, Clark RV, Kirchner KA. Effects of insulin on renal sodium excretion. Hypertension. 1992;19(1 Suppl):I78-82.
    • (1992) Hypertension , vol.19 , Issue.1 SUPPL.
    • Gupta, A.K.1    Clark, R.V.2    Kirchner, K.A.3
  • 46
    • 79955640848 scopus 로고    scopus 로고
    • Effects of insulin on the vasculature
    • Breen DM, Giacca A. Effects of insulin on the vasculature. Curr Vasc Pharmacol. 2011;9(3):321-32.
    • (2011) Curr Vasc Pharmacol , vol.9 , Issue.3 , pp. 321-332
    • Breen, D.M.1    Giacca, A.2
  • 48
    • 33750889630 scopus 로고    scopus 로고
    • Identification of insulin signaling elements in human beta-cells: Autocrine regulation of insulin gene expression
    • DOI 10.2337/db06-0532
    • Muller D et al. Identification of insulin signaling elements in human beta-cells: autocrine regulation of insulin gene expression. Diabetes. 2006;55(10):2835-42. (Pubitemid 44923684)
    • (2006) Diabetes , vol.55 , Issue.10 , pp. 2835-2842
    • Muller, D.1    Guo, C.H.2    Amiel, S.3    Jones, P.M.4    Persaud, S.J.5
  • 49
    • 0033524937 scopus 로고    scopus 로고
    • Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes
    • DOI 10.1016/S0092-8674(00)80546-2
    • Kulkarni RN et al. Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell. 1999;96(3):329-39. (Pubitemid 29077587)
    • (1999) Cell , vol.96 , Issue.3 , pp. 329-339
    • Kulkarni, R.N.1    Bruning, J.C.2    Winnay, J.N.3    Postic, C.4    Magnuson, M.A.5    Ronald, K.C.6
  • 50
    • 59649088932 scopus 로고    scopus 로고
    • Insulin regulates glucagon-like peptide-1 secretion from the enteroendocrine L cell
    • Lim GE et al. Insulin regulates glucagon-like peptide-1 secretion from the enteroendocrine L cell. Endocrinology. 2009;150(2):580-91.
    • (2009) Endocrinology , vol.150 , Issue.2 , pp. 580-591
    • Lim, G.E.1
  • 51
    • 0028897477 scopus 로고
    • Characterization of the endogenous insulin receptor-related receptor in neuroblastomas
    • Kovacina KS, Roth RA. Characterization of the endogenous insulin receptor-related receptor in neuroblastomas. J Biol Chem. 1995;270(4):1881-7.
    • (1995) J Biol Chem , vol.270 , Issue.4 , pp. 1881-1887
    • Kovacina, K.S.1    Roth, R.A.2
  • 52
    • 85047682715 scopus 로고    scopus 로고
    • Tissue-specific versus generalized gene targeting of the IGF1 and IGF1R genes and their roles in insulin-like growth factor physiology
    • DOI 10.1210/en.142.5.1685
    • Butler AA, LeRoith D. Minireview: tissue-specific versus generalized gene targeting of the igf1 and igf1r genes and their roles in insulin-like growth factor physiology. Endocrinology. 2001;142(5):1685-8. (Pubitemid 32405920)
    • (2001) Endocrinology , vol.142 , Issue.5 , pp. 1685-1688
    • Butler, A.A.1    LeRoith, D.2
  • 54
    • 0036782071 scopus 로고    scopus 로고
    • Structural biology of insulin and IGF1 receptors: Implications for drug design
    • DOI 10.1038/nrd917
    • De Meyts P, Whittaker J. Structural biology of insulin and IGF1 receptors: implications for drug design. Nat Rev Drug Discov. 2002;1(10):769-83. (Pubitemid 37361561)
    • (2002) Nature Reviews Drug Discovery , vol.1 , Issue.10 , pp. 769-783
    • De Meyts, P.1    Whittaker, J.2
  • 55
    • 0037007124 scopus 로고    scopus 로고
    • The insulin signalling pathway
    • Lizcano JM, Alessi DR. The insulin signalling pathway. Curr Biol. 2002;12(7):R236-8.
    • (2002) Curr Biol , vol.12 , Issue.7
    • Lizcano, J.M.1    Alessi, D.R.2
  • 56
    • 0029995773 scopus 로고    scopus 로고
    • A 60-kilodalton protein in rat hepatoma cells overexpressing insulin receptor was tyrosine phosphorylated and associated with Syp, phophatidylinositol 3-kinase, and Grb2 in an insulin-dependent manner
    • Zhang-Sun G et al. A 60-kilodalton protein in rat hepatoma cells overexpressing insulin receptor was tyrosine phosphorylated and associated with Syp, phophatidylinositol 3-kinase, and Grb2 in an insulin-dependent manner. Endocrinology. 1996;137(7):2649-58.
    • (1996) Endocrinology , vol.137 , Issue.7 , pp. 2649-2658
    • Zhang-Sun, G.1
  • 57
    • 0033574585 scopus 로고    scopus 로고
    • Identification of the APS protein as a novel insulin receptor substrate
    • Moodie SA, Alleman-Sposeto J, Gustafson TA. Identification of the APS protein as a novel insulin receptor substrate. J Biol Chem. 1999;274(16):11186- 93.
    • (1999) J Biol Chem , vol.274 , Issue.16 , pp. 11186-11193
    • Moodie, S.A.1    Alleman-Sposeto, J.2    Gustafson, T.A.3
  • 59
    • 21444460644 scopus 로고    scopus 로고
    • Differential contribution of insulin receptor substrates 1 versus 2 to insulin signaling and glucose uptake in L6 myotubes
    • DOI 10.1074/jbc.M412317200
    • Huang C et al. Differential contribution of insulin receptor substrates 1 versus 2 to insulin signaling and glucose uptake in l6 myotubes. J Biol Chem. 2005;280(19):19426-35. (Pubitemid 41379651)
    • (2005) Journal of Biological Chemistry , vol.280 , Issue.19 , pp. 19426-19435
    • Huang, C.1    Thirone, A.C.P.2    Huang, X.3    Klip, A.4
  • 60
    • 0034671645 scopus 로고    scopus 로고
    • Contrasting effects of IRS-1 versus IRS-2 gene disruption on carbohydrate and lipid metabolism in vivo
    • DOI 10.1074/jbc.M006490200
    • Previs SF et al. Contrasting effects of IRS-1 versus IRS-2 gene disruption on carbohydrate and lipid metabolism in vivo. J Biol Chem. 2000;275(50):38990-4. (Pubitemid 32058910)
    • (2000) Journal of Biological Chemistry , vol.275 , Issue.50 , pp. 38990-38994
    • Previs, S.F.1    Withers, D.J.2    Ren, J.-M.3    White, M.F.4    Shulman, G.I.5
  • 65
    • 0029897280 scopus 로고    scopus 로고
    • Insulin signalling and insulin actions in the muscles and livers of insulin-resistant, insulin receptor substrate 1-deficient mice
    • Yamauchi T et al. Insulin signalling and insulin actions in the muscles and livers of insulin-resistant, insulin receptor substrate 1-deficient mice. Mol Cell Biol. 1996;16(6):3074-84.
    • (1996) Mol Cell Biol , vol.16 , Issue.6 , pp. 3074-3084
    • Yamauchi, T.1
  • 69
    • 0034750801 scopus 로고    scopus 로고
    • Insulin receptor substrate 3 (IRS-3) and IRS-4 impair IRS-1- and IRS-2-mediated signaling
    • Tsuruzoe K et al. Insulin receptor substrate 3 (IRS-3) and IRS-4 impair IRS-1- and IRS-2-mediated signaling. Mol Cell Biol. 2001;21(1):26-38.
    • (2001) Mol Cell Biol , vol.21 , Issue.1 , pp. 26-38
    • Tsuruzoe, K.1
  • 70
    • 0031918624 scopus 로고    scopus 로고
    • The IRS-signalling system: A network of docking proteins that mediate insulin action
    • DOI 10.1023/A:1006806722619
    • White MF. The IRS-signalling system: a network of docking proteins that mediate insulin action. Mol Cell Biochem. 1998;182(1-2):3-11. (Pubitemid 28181643)
    • (1998) Molecular and Cellular Biochemistry , vol.182 , Issue.1-2 , pp. 3-11
    • White, M.F.1
  • 71
    • 0026544517 scopus 로고
    • Insulin stimulation of phosphatidylinositol 3-kinase activity maps to insulin receptor regions required for endogenous substrate phosphorylation
    • Backer JM et al. Insulin stimulation of phosphatidylinositol 3-kinase activity maps to insulin receptor regions required for endogenous substrate phosphorylation. J Biol Chem. 1992;267(2):1367-74.
    • (1992) J Biol Chem , vol.267 , Issue.2 , pp. 1367-1374
    • Backer, J.M.1
  • 72
    • 0033634785 scopus 로고    scopus 로고
    • Structural basis of 3-phosphoinositide recognition by pleckstrin homology domains
    • Lietzke SE et al. Structural basis of 3-phosphoinositide recognition by pleckstrin homology domains. Mol Cell. 2000;6(2):385-94.
    • (2000) Mol Cell , vol.6 , Issue.2 , pp. 385-394
    • Lietzke, S.E.1
  • 73
    • 0033565773 scopus 로고    scopus 로고
    • Kinase phosphorylation: Keeping it all in the family
    • DOI 10.1016/S0960-9822(99)80326-1
    • Peterson RT, Schreiber SL. Kinase phosphorylation: keeping it all in the family. Curr Biol. 1999;9(14):R521-4. (Pubitemid 29350845)
    • (1999) Current Biology , vol.9 , Issue.14
    • Peterson, R.T.1    Schreiber, S.L.2
  • 75
    • 0027481312 scopus 로고
    • Molecular cloning and characterization of a novel receptor protein tyrosine kinase from human placenta
    • Ziegler SF et al. Molecular cloning and characterization of a novel receptor protein tyrosine kinase from human placenta. Oncogene. 1993;8(3):663-70. (Pubitemid 23093129)
    • (1993) Oncogene , vol.8 , Issue.3 , pp. 663-670
    • Ziegler, S.F.1    Bird, T.A.2    Schneringer, J.A.3    Schooley, K.A.4    Baum, P.R.5
  • 78
    • 13844312400 scopus 로고    scopus 로고
    • Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
    • DOI 10.1126/science.1106148
    • Sarbassov DD et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307(5712):1098-101. (Pubitemid 40262113)
    • (2005) Science , vol.307 , Issue.5712 , pp. 1098-1101
    • Sarbassov, D.D.1    Guertin, D.A.2    Ali, S.M.3    Sabatini, D.M.4
  • 79
    • 0033214461 scopus 로고    scopus 로고
    • Phosphorylation of insulin receptor substrate-1 (IRS-1) by protein kinase B positively regulates IRS-1 function
    • Paz K et al. Phosphorylation of insulin receptor substrate-1 (IRS-1) by protein kinase B positively regulates IRS-1 function. J Biol Chem. 1999;274(40):28816-22.
    • (1999) J Biol Chem , vol.274 , Issue.40 , pp. 28816-28822
    • Paz, K.1
  • 80
    • 0030810216 scopus 로고    scopus 로고
    • Protein kinase C-zeta as a downstream effector of phosphatidylinositol 3- kinase during insulin stimulation in rat adipocytes. Potential role in glucose transport
    • DOI 10.1074/jbc.272.48.30075
    • Standaert ML et al. Protein kinase C-zeta as a downstream effector of phosphatidylinositol 3-kinase during insulin stimulation in rat adipocytes. Potential role in glucose transport. J Biol Chem. 1997;272(48):30075-82. (Pubitemid 27512203)
    • (1997) Journal of Biological Chemistry , vol.272 , Issue.48 , pp. 30075-30082
    • Standaert, M.L.1    Galloway, L.2    Karnam, P.3    Bandyopadhyay, G.4    Moscat, J.5    Farese, R.V.6
  • 83
    • 0029587224 scopus 로고
    • Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B
    • DOI 10.1038/378785a0
    • Cross DA et al. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995;378(6559):785-9. (Pubitemid 26004411)
    • (1995) Nature , vol.378 , Issue.6559 , pp. 785-789
    • Cross, D.A.E.1    Alessi, D.R.2    Cohen, P.3    Andjelkovich, M.4    Hemmings, B.A.5
  • 84
    • 34250740323 scopus 로고    scopus 로고
    • Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator
    • LiXet al. Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator. Nature. 2007;447(7147):1012-6.
    • (2007) Nature , vol.447 , Issue.7147 , pp. 1012-1016
    • Li, X.1
  • 85
    • 0033522897 scopus 로고    scopus 로고
    • Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a Wortmannin-sensitive pathway
    • Nakae J, Park BC, Accili D. Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a Wortmannin-sensitive pathway. J Biol Chem. 1999;274(23):15982-5.
    • (1999) J Biol Chem , vol.274 , Issue.23 , pp. 15982-15985
    • Nakae, J.1    Park, B.C.2    Accili, D.3
  • 86
    • 0037151101 scopus 로고    scopus 로고
    • Transcriptional effects of chronic Akt activation in the heart
    • DOI 10.1074/jbc.M201462200
    • Cook SA et al. Transcriptional effects of chronic Akt activation in the heart. J Biol Chem. 2002;277(25):22528-33. (Pubitemid 34967227)
    • (2002) Journal of Biological Chemistry , vol.277 , Issue.25 , pp. 22528-22533
    • Cook, S.A.1    Matsui, T.2    Li, N.3    Rosenzweig, A.4
  • 89
    • 0025823448 scopus 로고
    • ERKs: A family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF
    • Boulton TG et al. ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell. 1991;65(4):663-75.
    • (1991) Cell , vol.65 , Issue.4 , pp. 663-675
    • Boulton, T.G.1
  • 90
    • 0029131895 scopus 로고
    • Mitogen-activated protein kinase kinase inhibition does not block the stimulation of glucose utilization by insulin
    • Lazar DF et al. Mitogen-activated protein kinase kinase inhibition does not block the stimulation of glucose utilization by insulin. J Biol Chem. 1995;270(35):20801-7.
    • (1995) J Biol Chem , vol.270 , Issue.35 , pp. 20801-20807
    • Lazar, D.F.1
  • 91
    • 0028124504 scopus 로고
    • Role of SH-PTP2, a protein-tyrosine phosphatase with Src homology 2 domains, in insulin-stimulated Ras activation
    • Noguchi T et al. Role of SH-PTP2, a protein-tyrosine phosphatase with Src homology 2 domains, in insulin-stimulated Ras activation. Mol Cell Biol. 1994;14(10):6674-82. (Pubitemid 24299736)
    • (1994) Molecular and Cellular Biology , vol.14 , Issue.10 , pp. 6674-6682
    • Noguchi, T.1    Matozaki, T.2    Horita, K.3    Fujioka, Y.4    Kasuga, M.5
  • 92
    • 0028242350 scopus 로고
    • Evidence for a functional role of Shc proteins in mitogenic signaling induced by insulin, insulin-like growth factor-1, and epidermal growth factor
    • Sasaoka T et al. Evidence for a functional role of Shc proteins in mitogenic signaling induced by insulin, insulin-like growth factor-1, and epidermal growth factor. J Biol Chem. 1994;269(18):13689-94. (Pubitemid 24206151)
    • (1994) Journal of Biological Chemistry , vol.269 , Issue.18 , pp. 13689-13694
    • Sasaoka, T.1    Rose, D.W.2    Jhun, B.H.3    Saltiel, A.R.4    Draznin, B.5    Olefsky, J.M.6
  • 93
    • 81055140893 scopus 로고    scopus 로고
    • Feedback on fat: P62-mTORC1-autophagy connections
    • Moscat J, Diaz-Meco MT. Feedback on fat: p62-mTORC1-autophagy connections. Cell. 2011;147(4):724-7.
    • (2011) Cell , vol.147 , Issue.4 , pp. 724-727
    • Moscat, J.1    Diaz-Meco, M.T.2
  • 95
    • 32044465506 scopus 로고    scopus 로고
    • TOR signaling in growth and metabolism
    • DOI 10.1016/j.cell.2006.01.016, PII S0092867406001085
    • Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124(3):471-84. (Pubitemid 43199434)
    • (2006) Cell , vol.124 , Issue.3 , pp. 471-484
    • Wullschleger, S.1    Loewith, R.2    Hall, M.N.3
  • 96
    • 67349241955 scopus 로고    scopus 로고
    • DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival
    • Peterson TR et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell. 2009;137(5):873-86.
    • (2009) Cell , vol.137 , Issue.5 , pp. 873-886
    • Peterson, T.R.1
  • 97
    • 60149091189 scopus 로고    scopus 로고
    • Regulation of translation initiation in eukaryotes: Mechanisms and biological targets
    • Sonenberg N, Hinnebusch AG. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell. 2009;136(4):731-45.
    • (2009) Cell , vol.136 , Issue.4 , pp. 731-745
    • Sonenberg, N.1    Hinnebusch, A.G.2
  • 99
    • 70450204007 scopus 로고    scopus 로고
    • An emerging role of mTOR in lipid biosynthesis
    • Laplante M, Sabatini DM. An emerging role of mTOR in lipid biosynthesis. Curr Biol. 2009;19(22):R1046-52.
    • (2009) Curr Biol , vol.19 , Issue.22
    • Laplante, M.1    Sabatini, D.M.2
  • 100
    • 65649128580 scopus 로고    scopus 로고
    • Amino acid regulation of TOR complex 1
    • Avruch J et al. Amino acid regulation of TOR complex 1. Am J Physiol Endocrinol Metab. 2009;296(4):E592-602.
    • (2009) Am J Physiol Endocrinol Metab , vol.296 , Issue.4
    • Avruch, J.1
  • 101
    • 0347716759 scopus 로고    scopus 로고
    • Rheb fills a GAP between TSC and TOR
    • DOI 10.1016/j.tibs.2003.09.003, PII S0968000403002275
    • Manning BD, Cantley LC. Rheb fills a GAP between TSC and TOR. Trends Biochem Sci. 2003;28(11):573-6. (Pubitemid 38352801)
    • (2003) Trends in Biochemical Sciences , vol.28 , Issue.11 , pp. 573-576
    • Manning, B.D.1    Cantley, L.C.2
  • 102
    • 0033429554 scopus 로고    scopus 로고
    • Mammalian target of rapamycin is a direct target for protein kinase B: Identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation
    • DOI 10.1042/0264-6021:3440427
    • Nave BT et al. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J. 1999;344(Pt 2):427-31. (Pubitemid 30011599)
    • (1999) Biochemical Journal , vol.344 , Issue.2 , pp. 427-431
    • Nave, B.T.1    Ouwens, D.M.2    Withers, D.J.3    Alessi, D.R.4    Shepherd, P.R.5
  • 103
    • 33644886769 scopus 로고    scopus 로고
    • Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation
    • Tzatsos A, Kandror KV. Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation. Mol Cell Biol. 2006;26(1):63-76.
    • (2006) Mol Cell Biol , vol.26 , Issue.1 , pp. 63-76
    • Tzatsos, A.1    Kandror, K.V.2
  • 104
    • 0035851205 scopus 로고    scopus 로고
    • Amino acid and insulin signaling via the mTOR/p70 S6 kinase pathway. A negative feedback mechanism leading to insulin resistance in skeletal muscle cells
    • Tremblay F, Marette A. Amino acid and insulin signaling via the mTOR/p70 S6 kinase pathway. A negative feedback mechanism leading to insulin resistance in skeletal muscle cells. J Biol Chem. 2001;276(41):38052-60.
    • (2001) J Biol Chem , vol.276 , Issue.41 , pp. 38052-38060
    • Tremblay, F.1    Marette, A.2
  • 105
    • 14244252683 scopus 로고    scopus 로고
    • Activation of the mammalian target of rapamycin pathway acutely inhibits insulin signaling to Akt and glucose transport in 3T3-L1 and human adipocytes
    • DOI 10.1210/en.2004-0777
    • Tremblay F et al. Activation of the mammalian target of rapamycin pathway acutely inhibits insulin signaling to Akt and glucose transport in 3T3-L1 and human adipocytes. Endocrinology. 2005;146(3):1328-37. (Pubitemid 40289320)
    • (2005) Endocrinology , vol.146 , Issue.3 , pp. 1328-1337
    • Tremblay, F.1    Gagnon, A.2    Veilleux, A.3    Sorisky, A.4    Marette, A.5
  • 106
    • 0033927667 scopus 로고    scopus 로고
    • Cellular mechanisms of insulin resistance
    • Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest. 2000;106(2):171-6. (Pubitemid 30483118)
    • (2000) Journal of Clinical Investigation , vol.106 , Issue.2 , pp. 171-176
    • Shulman, G.I.1
  • 107
    • 0032587240 scopus 로고    scopus 로고
    • The role of TNFalpha and TNF receptors in obesity and insulin resistance
    • DOI 10.1046/j.1365-2796.1999.00490.x
    • Hotamisligil GS. The role of TNFalpha and TNF receptors in obesity and insulin resistance. J Intern Med. 1999;245(6):621-5. (Pubitemid 29278870)
    • (1999) Journal of Internal Medicine , vol.245 , Issue.6 , pp. 621-625
    • Hotamisligil, G.S.1
  • 108
    • 0032238299 scopus 로고    scopus 로고
    • The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway
    • Ogg S, Ruvkun G. The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway. Mol Cell. 1998;2(6):887-93. (Pubitemid 128378996)
    • (1998) Molecular Cell , vol.2 , Issue.6 , pp. 887-893
    • Ogg, S.1    Ruvkun, G.2
  • 109
    • 0033304860 scopus 로고    scopus 로고
    • Role of the Src homology 2 (SH2) domain and c-terminus tyrosine phosphorylation sites of SH2-containing inositol phosphatase (SHIP) in the regulation of insulin-induced mitogenesis
    • Wada T et al. Role of the Src homology 2 (SH2) domain and C-terminus tyrosine phosphorylation sites of SH2-containing inositol phosphatase (SHIP) in the regulation of insulin-induced mitogenesis. Endocrinology. 1999;140(10):4585-94. (Pubitemid 30666124)
    • (1999) Endocrinology , vol.140 , Issue.10 , pp. 4585-4594
    • Wada, T.1    Sasaoka, T.2    Ishiki, M.3    Hori, H.4    Haruta, T.5    Ishihara, H.6    Kobayashi, M.7
  • 110
    • 33645466144 scopus 로고    scopus 로고
    • Lipid phosphatases as drug discovery targets for type 2 diabetes
    • Lazar DF, Saltiel AR. Lipid phosphatases as drug discovery targets for type 2 diabetes. Nat Rev Drug Discov. 2006;5(4):333-42.
    • (2006) Nat Rev Drug Discov , vol.5 , Issue.4 , pp. 333-342
    • Lazar, D.F.1    Saltiel, A.R.2
  • 111
    • 17744367455 scopus 로고    scopus 로고
    • Integral membrane lipid phosphatases/phosphotransferases: Common structure and diverse functions
    • DOI 10.1042/BJ20041771
    • Sigal YJ, McDermott MI, Morris AJ. Integral membrane lipid phosphatases/phosphotransferases: common structure and diverse functions. Biochem J. 2005;387(Pt 2):281-93. (Pubitemid 40575751)
    • (2005) Biochemical Journal , vol.387 , Issue.2 , pp. 281-293
    • Sigal, Y.J.1    McDermott, M.I.2    Morris, A.J.3
  • 112
    • 77956236967 scopus 로고    scopus 로고
    • Purinergic receptor-mediated rapid depletion of nuclear phosphorylated Akt depends on pleckstrin homology domain leucine-rich repeat phosphatase, calcineurin, protein phosphatase 2A, and PTEN phosphatases
    • Mistafa O et al. Purinergic receptor-mediated rapid depletion of nuclear phosphorylated Akt depends on pleckstrin homology domain leucine-rich repeat phosphatase, calcineurin, protein phosphatase 2A, and PTEN phosphatases. J Biol Chem. 2010;285(36):27900-10.
    • (2010) J Biol Chem , vol.285 , Issue.36 , pp. 27900-27910
    • Mistafa, O.1
  • 114
    • 79961165137 scopus 로고    scopus 로고
    • mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
    • Peterson TR et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell. 2011;146(3):408-20.
    • (2011) Cell , vol.146 , Issue.3 , pp. 408-420
    • Peterson, T.R.1
  • 115
    • 0032535595 scopus 로고    scopus 로고
    • Identification of the separate domains in the hepatic glycogen-targeting subunit of protein phosphatase 1 that interact with phosphorylase a, glycogen and protein phosphatase 1
    • Armstrong CG, Doherty MJ, Cohen PT. Identification of the separate domains in the hepatic glycogen-targeting subunit of protein phosphatase 1 that interact with phosphorylase a, glycogen and protein phosphatase 1. Biochem J. 1998;336(Pt 3):699-704. (Pubitemid 29008030)
    • (1998) Biochemical Journal , vol.336 , Issue.3 , pp. 699-704
    • Armstrong, C.G.1    Doherty, M.J.2    Cohen, P.T.W.3
  • 116
    • 78149500681 scopus 로고    scopus 로고
    • Insulin signaling in fatty acid and fat synthesis: A transcriptional perspective
    • Wong RH, Sul HS. Insulin signaling in fatty acid and fat synthesis: a transcriptional perspective. Curr Opin Pharmacol. 2010;10(6):684-91.
    • (2010) Curr Opin Pharmacol , vol.10 , Issue.6 , pp. 684-691
    • Wong, R.H.1    Sul, H.S.2
  • 117
    • 80455174428 scopus 로고    scopus 로고
    • Free fatty acid-induced PP2A hyperactivity selectively impairs hepatic insulin action on glucose metabolism
    • Galbo T et al. Free fatty acid-induced PP2A hyperactivity selectively impairs hepatic insulin action on glucose metabolism. PLoS One. 2011;6(11):e27424.
    • (2011) PLoS One , vol.6 , Issue.11
    • Galbo, T.1
  • 118
    • 84860873833 scopus 로고    scopus 로고
    • The B55 α-containing PP2A holoenzyme dephosphorylates FOXO1 in islet β-cells under oxidative stress
    • Yan L, et al. The B55 α-containing PP2A holoenzyme dephosphorylates FOXO1 in islet β-cells under oxidative stress. Biochem J. 2012;444(2):239-47.
    • (2012) Biochem J , vol.444 , Issue.2 , pp. 239-247
    • Yan, L.1
  • 119
    • 79959686257 scopus 로고    scopus 로고
    • Increased levels of the Akt-specific phosphatase PH domain leucine-rich repeat protein phosphatase (PHLPP)-1 in obese participants are associated with insulin resistance
    • Andreozzi F et al. Increased levels of the Akt-specific phosphatase PH domain leucine-rich repeat protein phosphatase (PHLPP)-1 in obese participants are associated with insulin resistance. Diabetologia. 2011;54(7):1879-87.
    • (2011) Diabetologia , vol.54 , Issue.7 , pp. 1879-1887
    • Andreozzi, F.1
  • 120
    • 77955711839 scopus 로고    scopus 로고
    • Protein phosphatase-1 regulates Akt1 signal transduction pathway to control gene expression, cell survival and differentiation
    • Xiao L et al. Protein phosphatase-1 regulates Akt1 signal transduction pathway to control gene expression, cell survival and differentiation. Cell Death Differ. 2010;17(9):1448-62.
    • (2010) Cell Death Differ , vol.17 , Issue.9 , pp. 1448-1462
    • Xiao, L.1
  • 122
    • 15944406764 scopus 로고    scopus 로고
    • PHLPP: A phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth
    • DOI 10.1016/j.molcel.2005.03.008
    • Gao T, Furnari F, Newton AC. PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell. 2005;18(1):13-24. (Pubitemid 40444644)
    • (2005) Molecular Cell , vol.18 , Issue.1 , pp. 13-24
    • Gao, T.1    Furnari, F.2    Newton, A.C.3
  • 123
    • 0019877124 scopus 로고
    • Phosphotyrosyl-protein phosphatase. Specific inhibition by Zn
    • Brautigan DL, Bornstein P, Gallis B. Phosphotyrosyl-protein phosphatase. Specific inhibition by Zn. J Biol Chem. 1981;256(13):6519-22.
    • (1981) J Biol Chem , vol.256 , Issue.13 , pp. 6519-6522
    • Brautigan, D.L.1    Bornstein, P.2    Gallis, B.3
  • 124
    • 0031282154 scopus 로고    scopus 로고
    • Receptor-like protein tyrosine phosphatases: Alike and yet so different
    • DOI 10.1023/A:1006870016238
    • Schaapveld R, Wieringa B, Hendriks W. Receptor-like protein tyrosine phosphatases: alike and yet so different. Mol Biol Rep. 1997;24(4):247-62. (Pubitemid 27506833)
    • (1997) Molecular Biology Reports , vol.24 , Issue.4 , pp. 247-262
    • Schaapveld, R.1    Wieringa, B.2    Hendriks, W.3
  • 126
    • 36549059075 scopus 로고    scopus 로고
    • Inhibition of the protein tyrosine phosphatase PTP1B: Potential therapy for obesity, insulin resistance and type-2 diabetes mellitus
    • DOI 10.1016/j.beem.2007.08.004, PII S1521690X07000814, New Therapies for Diabetes
    • Koren S, Fantus IG. Inhibition of the protein tyrosine phosphatase PTP1B: potential therapy for obesity, insulin resistance and type-2 diabetes mellitus. Best Pract Res Clin Endocrinol Metab. 2007;21(4):621-40. (Pubitemid 350185860)
    • (2007) Best Practice and Research in Clinical Endocrinology and Metabolism , vol.21 , Issue.4 , pp. 621-640
    • Koren, S.1    Fantus, I.G.2
  • 127
    • 0026643477 scopus 로고
    • Insulin receptor protein-tyrosine phosphatases. Leukocyte common antigen-related phosphatase rapidly deactivates the insulin receptor kinase by preferential dephosphorylation of the receptor regulatory domain
    • Hashimoto N et al. Insulin receptor protein-tyrosine phosphatases. Leukocyte common antigen-related phosphatase rapidly deactivates the insulin receptor kinase by preferential dephosphorylation of the receptor regulatory domain. J Biol Chem. 1992;267(20):13811-4.
    • (1992) J Biol Chem , vol.267 , Issue.20 , pp. 13811-13814
    • Hashimoto, N.1
  • 128
    • 0026584285 scopus 로고
    • The nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence
    • Frangioni JV et al. The nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence. Cell. 1992;68(3):545-60.
    • (1992) Cell , vol.68 , Issue.3 , pp. 545-560
    • Frangioni, J.V.1
  • 129
    • 0035971065 scopus 로고    scopus 로고
    • Protein-tyrosine phosphatase-1B negatively regulates insulin signaling in l6 myocytes and Fao hepatoma cells
    • Egawa K et al. Protein-tyrosine phosphatase-1B negatively regulates insulin signaling in l6 myocytes and Fao hepatoma cells. J Biol Chem. 2001;276(13):10207-11.
    • (2001) J Biol Chem , vol.276 , Issue.13 , pp. 10207-10211
    • Egawa, K.1
  • 130
    • 0034635374 scopus 로고    scopus 로고
    • Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by protein-tyrosine phosphatase 1B. Possible facilitation by the formation of a ternary complex with the GRB2 adaptor protein
    • DOI 10.1074/jbc.275.6.4283
    • Goldstein BJ et al. Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by protein-tyrosine phosphatase 1B. Possible facilitation by the formation of a ternary complex with the Grb2 adaptor protein. J Biol Chem. 2000;275(6):4283-9. (Pubitemid 30094668)
    • (2000) Journal of Biological Chemistry , vol.275 , Issue.6 , pp. 4283-4289
    • Goldstein, B.J.1    Bittner-Kowalczyk, A.2    White, M.F.3    Harbeck, M.4
  • 131
    • 33646551477 scopus 로고    scopus 로고
    • The SHP-1 protein tyrosine phosphatase negatively modulates glucose homeostasis
    • Dubois MJ et al. The SHP-1 protein tyrosine phosphatase negatively modulates glucose homeostasis. Nat Med. 2006;12(5):549-56.
    • (2006) Nat Med , vol.12 , Issue.5 , pp. 549-556
    • Dubois, M.J.1
  • 133
    • 0028816605 scopus 로고
    • Insulin receptor signaling is augmented by antisense inhibition of the protein tyrosine phosphatase LAR
    • Kulas DTet al. Insulin receptor signaling is augmented by antisense inhibition of the protein tyrosine phosphatase LAR. J Biol Chem. 1995;270(6):2435-8.
    • (1995) J Biol Chem , vol.270 , Issue.6 , pp. 2435-2438
    • Kulas, D.T.1
  • 134
    • 0018139377 scopus 로고
    • Obese and diabetes: Two mutant genes causing diabetes-obesity syndromes in mice
    • Coleman DL. Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia. 1978;14(3):141-8. (Pubitemid 8286141)
    • (1978) Diabetologia , vol.14 , Issue.3 , pp. 141-148
    • Coleman, D.L.1
  • 135
    • 33845866857 scopus 로고    scopus 로고
    • Inflammation and metabolic disorders
    • DOI 10.1038/nature05485, PII NATURE05485
    • Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860-7. (Pubitemid 46024993)
    • (2006) Nature , vol.444 , Issue.7121 , pp. 860-867
    • Hotamisligil, G.S.1
  • 136
    • 33745838578 scopus 로고    scopus 로고
    • Central insulin action in energy and glucose homeostasis
    • DOI 10.1172/JCI29063
    • Plum L, Belgardt BF, Bruning JC. Central insulin action in energy and glucose homeostasis. J Clin Invest. 2006;116(7):1761-6. (Pubitemid 44033295)
    • (2006) Journal of Clinical Investigation , vol.116 , Issue.7 , pp. 1761-1766
    • Plum, L.1    Belgardt, B.F.2    Bruning, J.C.3
  • 137
    • 84866168894 scopus 로고    scopus 로고
    • Functional interactions between the gut microbiota and host metabolism
    • Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489(7415):242-9.
    • (2012) Nature , vol.489 , Issue.7415 , pp. 242-249
    • Tremaroli, V.1    Backhed, F.2
  • 138
    • 77950343252 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress and the inflammatory basis of metabolic disease
    • Hotamisligil GS. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell. 2010;140(6):900-17.
    • (2010) Cell , vol.140 , Issue.6 , pp. 900-917
    • Hotamisligil, G.S.1
  • 139
    • 84856415487 scopus 로고    scopus 로고
    • The role of mitochondria in insulin resistance and type 2 diabetes mellitus
    • Szendroedi J, Phielix E, Roden M. The role of mitochondria in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol. 2012;8(2):92-103.
    • (2012) Nat Rev Endocrinol , vol.8 , Issue.2 , pp. 92-103
    • Szendroedi, J.1    Phielix, E.2    Roden, M.3
  • 140
    • 29044440189 scopus 로고    scopus 로고
    • Cellular location of insulin-triggered signals and implications for glucose uptake
    • DOI 10.1007/s00424-005-1475-6
    • Patel N, Huang C, Klip A. Cellular location of insulin-triggered signals and implications for glucose uptake. Pflugers Arch. 2006;451(4):499-510. (Pubitemid 41789790)
    • (2006) Pflugers Archiv European Journal of Physiology , vol.451 , Issue.4 , pp. 499-510
    • Patel, N.1    Huang, C.2    Klip, A.3
  • 141
    • 84867033830 scopus 로고    scopus 로고
    • Insulin activates Erk1/2 signaling in the dorsal vagal complex to inhibit glucose production
    • Filippi BM et al. Insulin activates Erk1/2 signaling in the dorsal vagal complex to inhibit glucose production. Cell Metab. 2012;16(4):500-10.
    • (2012) Cell Metab , vol.16 , Issue.4 , pp. 500-510
    • Filippi, B.M.1
  • 142
    • 57849115277 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress plays a central role in development of leptin resistance
    • Ozcan L et al. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab. 2009;9(1):35-51.
    • (2009) Cell Metab , vol.9 , Issue.1 , pp. 35-51
    • Ozcan, L.1
  • 143
    • 0001334931 scopus 로고    scopus 로고
    • Functional association between the insulin receptor and the transmembrane protein-tyrosine phosphatase LAR in intact cells
    • DOI 10.1074/jbc.272.1.448
    • Ahmad F, Goldstein BJ. Functional association between the insulin receptor and the transmembrane protein-tyrosine phosphatase LAR in intact cells. J Biol Chem. 1997;272(1):448-57. (Pubitemid 27021179)
    • (1997) Journal of Biological Chemistry , vol.272 , Issue.1 , pp. 448-457
    • Ahmad, F.1    Goldstern, B.J.2
  • 145
    • 0029968832 scopus 로고    scopus 로고
    • Modulation of insulin signal transduction by eutopic overexpression of the receptor-type protein-tyrosine phosphatase LAR
    • Zhang WR et al. Modulation of insulin signal transduction by eutopic overexpression of the receptor-type protein-tyrosine phosphatase LAR. Mol Endocrinol. 1996;10(5):575-84.
    • (1996) Mol Endocrinol , vol.10 , Issue.5 , pp. 575-584
    • Zhang, W.R.1
  • 146
    • 0030293685 scopus 로고    scopus 로고
    • Suppression of insulin receptor activation by overexpression of the protein-tyrosine phosphatase LAR in hepatoma cells
    • DOI 10.1016/S0898-6568(96)00101-5, PII S0898656896001015
    • Li PM, Zhang WR, Goldstein BJ. Suppression of insulin receptor activation by overexpression of the protein-tyrosine phosphatase LAR in hepatoma cells. Cell Signal. 1996;8(7):467-73. (Pubitemid 27028857)
    • (1996) Cellular Signalling , vol.8 , Issue.7 , pp. 467-473
    • Li, P.-M.1    Zhang, W.-R.2    Goldstein, B.J.3
  • 147
    • 0031594367 scopus 로고    scopus 로고
    • Transgenic mice deficient in the LAR protein-tyrosine phosphatase exhibit profound defects in glucose homeostasis
    • Ren JMet al. Transgenic mice deficient in the LAR protein-tyrosine phosphatase exhibit profound defects in glucose homeostasis. Diabetes. 1998;47(3):493-7.
    • (1998) Diabetes , vol.47 , Issue.3 , pp. 493-497
    • Ren, J.M.1
  • 149
    • 0029018196 scopus 로고
    • Increased abundance of the receptor-type protein-tyrosine phosphatase LAR accounts for the elevated insulin receptor dephosphorylating activity in adipose tissue of obese human subjects
    • Ahmad F, Considine RV, Goldstein BJ. Increased abundance of the receptor-type protein-tyrosine phosphatase LAR accounts for the elevated insulin receptor dephosphorylating activity in adipose tissue of obese human subjects. J Clin Invest. 1995;95(6):2806-12.
    • (1995) J Clin Invest , vol.95 , Issue.6 , pp. 2806-2812
    • Ahmad, F.1    Considine, R.V.2    Goldstein, B.J.3
  • 150
    • 0029548985 scopus 로고
    • Increased abundance of specific skeletal muscle protein-tyrosine phosphatases in a genetic model of insulin-resistant obesity and diabetes mellitus
    • DOI 10.1016/0026-0495(95)90012-8
    • Ahmad F, Goldstein BJ. Increased abundance of specific skeletal muscle protein-tyrosine phosphatases in a genetic model of insulin-resistant obesity and diabetes mellitus. Metabolism. 1995;44(9):1175-84. (Pubitemid 26084039)
    • (1995) Metabolism: Clinical and Experimental , vol.44 , Issue.9 , pp. 1175-1184
    • Ahmad, F.1    Goldstein, B.J.2
  • 151
    • 84884419438 scopus 로고    scopus 로고
    • LAR-RPTPs: Synaptic adhesion molecules that shape synapse development
    • Um JW, Ko J. LAR-RPTPs: synaptic adhesion molecules that shape synapse development. Trends Cell Biol. 2013;23(10):465-75.
    • (2013) Trends Cell Biol , vol.23 , Issue.10 , pp. 465-475
    • Um, J.W.1    Ko, J.2
  • 152
    • 84864068362 scopus 로고    scopus 로고
    • Involvement of protein tyrosine phosphatases and inflammation in hypothalamic insulin resistance associated with ageing: Effect of caloric restriction
    • Garcia-San Frutos M et al. Involvement of protein tyrosine phosphatases and inflammation in hypothalamic insulin resistance associated with ageing: effect of caloric restriction. Mech Ageing Dev. 2012;133(7):489-97.
    • (2012) Mech Ageing Dev , vol.133 , Issue.7 , pp. 489-497
    • Garcia-San Frutos, M.1
  • 154
    • 0033051169 scopus 로고    scopus 로고
    • Neuronal defects and posterior pituitary hypoplasia in mice lacking the receptor tyrosine phosphatase PTPsigma
    • DOI 10.1038/6866
    • Wallace MJ et al. Neuronal defects and posterior pituitary hypoplasia in mice lacking the receptor tyrosine phosphatase PTPsigma. Nat Genet. 1999;21(3):334-8. (Pubitemid 29124947)
    • (1999) Nature Genetics , vol.21 , Issue.3 , pp. 334-338
    • Wallace, M.J.1    Batt, J.2    Fladd, C.A.3    Henderson, J.T.4    Skarnes, W.5    Rotin, D.6
  • 155
    • 67649203024 scopus 로고    scopus 로고
    • CNS regulation of glucose homeostasis
    • Bethesda
    • Lam CK, Chari M, Lam TK. CNS regulation of glucose homeostasis. Physiology (Bethesda). 2009;24:159-70.
    • (2009) Physiology , vol.24 , pp. 159-170
    • Lam, C.K.1    Chari, M.2    Lam, T.K.3
  • 156
    • 84879589744 scopus 로고    scopus 로고
    • Protein tyrosine phosphatase variants in human hereditary disorders and disease susceptibilities
    • Hendriks WJ, Pulido R. Protein tyrosine phosphatase variants in human hereditary disorders and disease susceptibilities. Biochim Biophys Acta. 2013;1832(10):1673-96.
    • (2013) Biochim Biophys Acta , vol.1832 , Issue.10 , pp. 1673-1696
    • Hendriks, W.J.1    Pulido, R.2
  • 158
    • 84862777315 scopus 로고    scopus 로고
    • Essential role of protein tyrosine phosphatase 1B in obesity-induced inflammation and peripheral insulin resistance during aging
    • Gonzalez-Rodriguez A et al. Essential role of protein tyrosine phosphatase 1B in obesity-induced inflammation and peripheral insulin resistance during aging. Aging Cell. 2012;11(2):284-96.
    • (2012) Aging Cell , vol.11 , Issue.2 , pp. 284-296
    • Gonzalez-Rodriguez, A.1
  • 159
    • 47249148827 scopus 로고    scopus 로고
    • Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo
    • Zabolotny JM et al. Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo. J Biol Chem. 2008;283(21):14230-41.
    • (2008) J Biol Chem , vol.283 , Issue.21 , pp. 14230-14241
    • Zabolotny, J.M.1
  • 160
    • 0033525870 scopus 로고    scopus 로고
    • Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene
    • Elchebly M et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science. 1999;283(5407):1544-8.
    • (1999) Science , vol.283 , Issue.5407 , pp. 1544-1548
    • Elchebly, M.1
  • 161
    • 62749115187 scopus 로고    scopus 로고
    • Liver-specific deletion of protein-tyrosine phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet-induced endoplasmic reticulum stress
    • Delibegovic M et al. Liver-specific deletion of protein-tyrosine phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet-induced endoplasmic reticulum stress. Diabetes. 2009;58(3):590-9.
    • (2009) Diabetes , vol.58 , Issue.3 , pp. 590-599
    • Delibegovic, M.1
  • 162
    • 80051694072 scopus 로고    scopus 로고
    • Liver-specific deletion of protein tyrosine phosphatase (PTP) 1B improves obesity- and pharmacologically induced endoplasmic reticulum stress
    • Agouni A, et al. Liver-specific deletion of protein tyrosine phosphatase (PTP) 1B improves obesity- and pharmacologically induced endoplasmic reticulum stress. Biochem J. 2011;438(2):369-78.
    • (2011) Biochem J , vol.438 , Issue.2 , pp. 369-378
    • Agouni, A.1
  • 163
    • 84890116532 scopus 로고    scopus 로고
    • Inducible liver-specific knockdown of protein tyrosine phosphatase 1B improves glucose and lipid homeostasis in adult mice
    • Owen C et al. Inducible liver-specific knockdown of protein tyrosine phosphatase 1B improves glucose and lipid homeostasis in adult mice. Diabetologia. 2013;56(10):2286-96.
    • (2013) Diabetologia , vol.56 , Issue.10 , pp. 2286-2296
    • Owen, C.1
  • 164
    • 84881266007 scopus 로고    scopus 로고
    • Regulation of the SNARE-interacting protein Munc18c tyrosine phosphorylation in adipocytes by protein-tyrosine phosphatase 1B
    • Bakke J et al. Regulation of the SNARE-interacting protein Munc18c tyrosine phosphorylation in adipocytes by protein-tyrosine phosphatase 1B. Cell Commun Signal. 2013;11(1):57.
    • (2013) Cell Commun Signal , vol.11 , Issue.1 , pp. 57
    • Bakke, J.1
  • 165
    • 84883023198 scopus 로고    scopus 로고
    • Protein tyrosine phosphatase 1B inhibits adipocyte differentiation and mediates TNFalpha action in obesity
    • Song DD et al. Protein tyrosine phosphatase 1B inhibits adipocyte differentiation and mediates TNFalpha action in obesity. Biochim Biophys Acta. 2013;1831(8):1368-76.
    • (2013) Biochim Biophys Acta , vol.1831 , Issue.8 , pp. 1368-1376
    • Song, D.D.1
  • 166
    • 84857623752 scopus 로고    scopus 로고
    • Adipocyte-specific protein tyrosine phosphatase 1B deletion increases lipogenesis, adipocyte cell size and is a minor regulator of glucose homeostasis
    • Owen C et al. Adipocyte-specific protein tyrosine phosphatase 1B deletion increases lipogenesis, adipocyte cell size and is a minor regulator of glucose homeostasis. PLoS One. 2012;7(2):e32700.
    • (2012) PLoS One , vol.7 , Issue.2
    • Owen, C.1
  • 168
    • 77954175048 scopus 로고    scopus 로고
    • Modulation of hypothalamic PTP1B in the TNF-alpha-induced insulin and leptin resistance
    • Picardi PK et al. Modulation of hypothalamic PTP1B in the TNF-alpha-induced insulin and leptin resistance. FEBS Lett. 2010;584(14):3179- 84.
    • (2010) FEBS Lett , vol.584 , Issue.14 , pp. 3179-3184
    • Picardi, P.K.1
  • 169
    • 84881246589 scopus 로고    scopus 로고
    • Protein tyrosine phosphatase 1B deficiency ameliorates murine experimental colitis via the expansion of myeloid-derived suppressor cells
    • Zhang J et al. Protein tyrosine phosphatase 1B deficiency ameliorates murine experimental colitis via the expansion of myeloid-derived suppressor cells. PLoS One. 2013;8(8):e70828.
    • (2013) PLoS One , vol.8 , Issue.8
    • Zhang, J.1
  • 170
    • 84873719926 scopus 로고    scopus 로고
    • Protein tyrosine phosphatase 1B (PTP1B) modulates palmitate-induced cytokine production in macrophage cells
    • Nasimian A et al. Protein tyrosine phosphatase 1B (PTP1B) modulates palmitate-induced cytokine production in macrophage cells. Inflamm Res. 2013;62(2):239-46.
    • (2013) Inflamm Res , vol.62 , Issue.2 , pp. 239-246
    • Nasimian, A.1
  • 171
    • 46749119743 scopus 로고    scopus 로고
    • Phosphatase PTP1B negatively regulates MyD88- and TRIF-dependent proinflammatory cytokine and type I interferon production in TLR-triggered macrophages
    • Xu H et al. Phosphatase PTP1B negatively regulates MyD88- and TRIF-dependent proinflammatory cytokine and type I interferon production in TLR-triggered macrophages. Mol Immunol. 2008;45(13):3545-52.
    • (2008) Mol Immunol , vol.45 , Issue.13 , pp. 3545-3552
    • Xu, H.1
  • 172
    • 84880770109 scopus 로고    scopus 로고
    • The LIM domain only 4 protein is a metabolic responsive inhibitor of protein tyrosine phosphatase 1B that controls hypothalamic leptin signaling
    • Pandey NR et al. The LIM domain only 4 protein is a metabolic responsive inhibitor of protein tyrosine phosphatase 1B that controls hypothalamic leptin signaling. J Neurosci. 2013;33(31):12647-55.
    • (2013) J Neurosci , vol.33 , Issue.31 , pp. 12647-12655
    • Pandey, N.R.1
  • 173
    • 79953225155 scopus 로고    scopus 로고
    • Differential regulation of endoplasmic reticulum stress by protein tyrosine phosphatase 1B and Tcell protein tyrosine phosphatase
    • Bettaieb A et al. Differential regulation of endoplasmic reticulum stress by protein tyrosine phosphatase 1B and Tcell protein tyrosine phosphatase. J Biol Chem. 2011;286(11):9225-35.
    • (2011) J Biol Chem , vol.286 , Issue.11 , pp. 9225-9235
    • Bettaieb, A.1
  • 174
    • 60849120123 scopus 로고    scopus 로고
    • HF diets increase hypothalamic PTP1B and induce leptin resistance through both leptin-dependent and -independent mechanisms
    • White CL et al. HF diets increase hypothalamic PTP1B and induce leptin resistance through both leptin-dependent and -independent mechanisms. Am J Physiol Endocrinol Metab. 2009;296(2):E291-9.
    • (2009) Am J Physiol Endocrinol Metab , vol.296 , Issue.2
    • White, C.L.1
  • 176
    • 77949673935 scopus 로고    scopus 로고
    • PTP1B and SHP2 in POMC neurons reciprocally regulate energy balance inmice
    • Banno R et al. PTP1B and SHP2 in POMC neurons reciprocally regulate energy balance inmice. J Clin Invest. 2010;120(3):720-34.
    • (2010) J Clin Invest , vol.120 , Issue.3 , pp. 720-734
    • Banno, R.1
  • 178
    • 84886647368 scopus 로고    scopus 로고
    • A conserved rod domain phosphotyrosine that is targeted by the phosphatase PTP1B promotes keratin 8 insolubility and filament organization
    • Snider NT, Park H, Omary MB. A conserved rod domain phosphotyrosine that is targeted by the phosphatase PTP1B promotes keratin 8 insolubility and filament organization. J Biol Chem. 2013;288(43):31329-37.
    • (2013) J Biol Chem , vol.288 , Issue.43 , pp. 31329-31337
    • Snider, N.T.1    Park, H.2    Omary, M.B.3
  • 181
    • 33748331432 scopus 로고    scopus 로고
    • Identification of the tyrosine phosphatase PTP-MEG2 as an antagonist of hepatic insulin signaling
    • Cho CYet al. Identification of the tyrosine phosphatase PTP-MEG2 as an antagonist of hepatic insulin signaling. Cell Metab. 2006;3(5):367-78.
    • (2006) Cell Metab , vol.3 , Issue.5 , pp. 367-378
    • Cho, C.Y.1
  • 182
    • 0029117217 scopus 로고
    • Selective down-regulation of the insulin receptor signal by protein-tyrosine phosphatases alpha and epsilon
    • Moller NP et al. Selective down-regulation of the insulin receptor signal by protein-tyrosine phosphatases alpha and epsilon. J Biol Chem. 1995;270(39):23126-31.
    • (1995) J Biol Chem , vol.270 , Issue.39 , pp. 23126-23131
    • Moller, N.P.1
  • 183
    • 0031035983 scopus 로고    scopus 로고
    • The transmembrane protein tyrosine phosphatase alpha dephosphorylates the insulin receptor in intact cells
    • DOI 10.1016/S0014-5793(97)00080-X, PII S001457939700080X
    • Lammers R, Moller NP, Ullrich A. The transmembrane protein tyrosine phosphatase alpha dephosphorylates the insulin receptor in intact cells. FEBS Lett. 1997;404(1):37-40. (Pubitemid 27107803)
    • (1997) FEBS Letters , vol.404 , Issue.1 , pp. 37-40
    • Lammers, R.1    Moller, N.P.H.2    Ullrich, A.3
  • 184
    • 0033573953 scopus 로고    scopus 로고
    • Overexpression of protein tyrosine phosphatase-alpha (PTP-alpha) but not PTP-kappa inhibits translocation of GLUT4 in rat adipose cells
    • Cong LN et al. Overexpression of protein tyrosine phosphatase-alpha (PTP-alpha) but not PTP-kappa inhibits translocation of GLUT4 in rat adipose cells. Biochem Biophys Res Commun. 1999;255(2):200-7.
    • (1999) Biochem Biophys Res Commun , vol.255 , Issue.2 , pp. 200-207
    • Cong, L.N.1
  • 186
    • 0033543747 scopus 로고    scopus 로고
    • Use of an antisense strategy to dissect the signaling role of protein-tyrosine phosphatase alpha
    • Arnott CH et al. Use of an antisense strategy to dissect the signaling role of protein-tyrosine phosphatase alpha. J Biol Chem. 1999;274(37):26105-12.
    • (1999) J Biol Chem , vol.274 , Issue.37 , pp. 26105-26112
    • Arnott, C.H.1
  • 187
    • 0347004670 scopus 로고    scopus 로고
    • Insulin signaling and glucose homeostasis in mice lacking protein tyrosine phosphatase alpha
    • DOI 10.1016/j.bbrc.2003.12.087
    • Le HT, Ponniah S, Pallen CJ. Insulin signaling and glucose homeostasis in mice lacking protein tyrosine phosphatase alpha. Biochem Biophys Res Commun. 2004;314(2):321-9. (Pubitemid 38084720)
    • (2004) Biochemical and Biophysical Research Communications , vol.314 , Issue.2 , pp. 321-329
    • Le, H.T.1    Ponniah, S.2    Pallen, C.J.3
  • 188
    • 0035868264 scopus 로고    scopus 로고
    • Comparative study of protein tyrosine phosphatase-epsilon isoforms: Membrane localization confers specificity in cellular signalling
    • DOI 10.1042/0264-6021:3540581
    • Andersen JN et al. Comparative study of protein tyrosine phosphatase-epsilon isoforms: membrane localization confers specificity in cellular signalling. Biochem J. 2001;354(Pt 3):581-90. (Pubitemid 32269721)
    • (2001) Biochemical Journal , vol.354 , Issue.3 , pp. 581-590
    • Andersen, J.N.1    Elson, A.2    Lammers, R.3    Romer, J.4    Clausen, J.T.5    Moller, K.B.6    Moller, N.P.H.7
  • 189
    • 38549109176 scopus 로고    scopus 로고
    • Cytosolic protein tyrosine phosphatase-epsilon is a negative regulator of insulin signaling in skeletal muscle
    • DOI 10.1210/en.2007-0908
    • Aga-Mizrachi S et al. Cytosolic protein tyrosine phosphatase-epsilon is a negative regulator of insulin signaling in skeletal muscle. Endocrinology. 2008;149(2):605-14. (Pubitemid 351159339)
    • (2008) Endocrinology , vol.149 , Issue.2 , pp. 605-614
    • Aga-Mizrachi, S.1    Brutman-Barazani, T.2    Jacob, A.I.3    Bak, A.4    Elson, A.5    Sampson, S.R.6
  • 190
    • 0037119469 scopus 로고    scopus 로고
    • Serine/threonine phosphorylation of ShcA. Regulation of protein-tyrosine phosphatase-pest binding and involvement in insulin signaling
    • Faisal A et al. Serine/threonine phosphorylation of ShcA. Regulation of protein-tyrosine phosphatase-pest binding and involvement in insulin signaling. J Biol Chem. 2002;277(33):30144-52.
    • (2002) J Biol Chem , vol.277 , Issue.33 , pp. 30144-30152
    • Faisal, A.1
  • 192
    • 33846312506 scopus 로고    scopus 로고
    • Effects of small interference RNA against PTP1B and TCPTP on insulin signaling pathway in mouse liver: Evidence for non-synergetic cooperation
    • DOI 10.1016/j.cellbi.2006.09.010, PII S1065699506002022
    • Xu J et al. Effects of small interference RNA against PTP1B and TCPTP on insulin signaling pathway in mouse liver: evidence for non-synergetic cooperation. Cell Biol Int. 2007;31(1):88-91. (Pubitemid 46124032)
    • (2007) Cell Biology International , vol.31 , Issue.1 , pp. 88-91
    • Xu, J.1    Li, L.2    Hong, J.3    Huang, W.4
  • 193
    • 77955352846 scopus 로고    scopus 로고
    • T-cell protein tyrosine phosphatase attenuates STAT3 and insulin signaling in the liver to regulate gluconeogenesis
    • Fukushima A et al. T-cell protein tyrosine phosphatase attenuates STAT3 and insulin signaling in the liver to regulate gluconeogenesis. Diabetes. 2010;59(8):1906-14.
    • (2010) Diabetes , vol.59 , Issue.8 , pp. 1906-1914
    • Fukushima, A.1
  • 194
    • 84856691770 scopus 로고    scopus 로고
    • Tcell protein tyrosine phosphatase (TCPTP) deficiency in muscle does not alter insulin signalling and glucose homeostasis in mice
    • Loh K et al. Tcell protein tyrosine phosphatase (TCPTP) deficiency in muscle does not alter insulin signalling and glucose homeostasis in mice. Diabetologia. 2012;55(2):468-78.
    • (2012) Diabetologia , vol.55 , Issue.2 , pp. 468-478
    • Loh, K.1
  • 195
    • 84857885423 scopus 로고    scopus 로고
    • T-cell protein tyrosine phosphatase regulates bone resorption and whole-body insulin sensitivity through its expression in osteoblasts
    • Zee T et al. T-cell protein tyrosine phosphatase regulates bone resorption and whole-body insulin sensitivity through its expression in osteoblasts. Mol Cell Biol. 2012;32(6):1080-8.
    • (2012) Mol Cell Biol , vol.32 , Issue.6 , pp. 1080-1088
    • Zee, T.1
  • 196
    • 84881101746 scopus 로고    scopus 로고
    • Role of PTPalpha in the destruction of periodontal connective tissues
    • Rajshankar D et al. Role of PTPalpha in the destruction of periodontal connective tissues. PLoS One. 2013;8(8):e70659.
    • (2013) PLoS One , vol.8 , Issue.8
    • Rajshankar, D.1
  • 197
    • 84872770077 scopus 로고    scopus 로고
    • PTP1B and TCPTP- nonredundant phosphatases in insulin signaling and glucose homeostasis
    • Tiganis T. PTP1B and TCPTP- nonredundant phosphatases in insulin signaling and glucose homeostasis. FEBS J. 2013;280(2):445-58.
    • (2013) FEBS J , vol.280 , Issue.2 , pp. 445-458
    • Tiganis, T.1
  • 198
    • 80455122701 scopus 로고    scopus 로고
    • Elevated hypothalamic TCPTP in obesity contributes to cellular leptin resistance
    • Loh K et al. Elevated hypothalamic TCPTP in obesity contributes to cellular leptin resistance. Cell Metab. 2011;14(5):684-99.
    • (2011) Cell Metab , vol.14 , Issue.5 , pp. 684-699
    • Loh, K.1
  • 199
    • 0027195626 scopus 로고
    • Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene
    • Tsui HW et al. Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene. Nat Genet. 1993;4(2):124-9.
    • (1993) Nat Genet , vol.4 , Issue.2 , pp. 124-129
    • Tsui, H.W.1
  • 200
    • 0027197067 scopus 로고
    • Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene
    • DOI 10.1016/0092-8674(93)90369-2
    • Shultz LD et al. Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene. Cell. 1993;73(7):1445-54. (Pubitemid 23201156)
    • (1993) Cell , vol.73 , Issue.7 , pp. 1445-1454
    • Shultz, L.D.1    Schweitzer, P.A.2    Rajan, T.V.3    Yi, T.4    Ihle, J.N.5    Matthews, R.J.6    Thomas, M.L.7    Beier, D.R.8
  • 201
    • 0037064549 scopus 로고    scopus 로고
    • Role of the SHP-2 tyrosine phosphatase in cytokine-induced signaling and cellular response
    • Qu CK. Role of the SHP-2 tyrosine phosphatase in cytokine-induced signaling and cellular response. Biochim Biophys Acta. 2002;1592(3):297-301.
    • (2002) Biochim Biophys Acta , vol.1592 , Issue.3 , pp. 297-301
    • Qu, C.K.1
  • 202
    • 23944518951 scopus 로고    scopus 로고
    • A SHPing tale: Perspectives on the regulation of SHP-1 and SHP-2 tyrosine phosphatases by the C-terminal tail
    • DOI 10.1016/j.cellsig.2005.05.016, PII S0898656805001233
    • Poole AW, Jones ML. A SHPing tale: perspectives on the regulation of SHP-1 and SHP-2 tyrosine phosphatases by the C-terminal tail. Cell Signal. 2005;17(11):1323-32. (Pubitemid 41206642)
    • (2005) Cellular Signalling , vol.17 , Issue.11 , pp. 1323-1332
    • Poole, A.W.1    Jones, M.L.2
  • 203
    • 34748831102 scopus 로고    scopus 로고
    • The Src homology 2 domain tyrosine phosphatases SHP-1 and SHP-2: Diversified control of cell growth, inflammation, and injury
    • Chong ZZ, Maiese K. The Src homology 2 domain tyrosine phosphatases SHP-1 and SHP-2: diversified control of cell growth, inflammation, and injury. Histol Histopathol. 2007;22(11):1251-67. (Pubitemid 47470319)
    • (2007) Histology and Histopathology , vol.22 , Issue.10-12 , pp. 1251-1267
    • Chong, Z.Z.1    Maiese, K.2
  • 204
    • 0029059985 scopus 로고
    • Human protein tyrosine phosphatase 1C (PTPN6) gene structure: Alternate promoter usage and exon skipping generate multiple transcripts
    • Banville D, Stocco R, Shen SH. Human protein tyrosine phosphatase 1C (PTPN6) gene structure: alternate promoter usage and exon skipping generate multiple transcripts. Genomics. 1995;27(1):165-73.
    • (1995) Genomics , vol.27 , Issue.1 , pp. 165-173
    • Banville, D.1    Stocco, R.2    Shen, S.H.3
  • 205
    • 0033215475 scopus 로고    scopus 로고
    • Human 70-kDa SHP-1L differs from 68-kDa SHP-1 in its C-terminal structure and catalytic activity
    • Jin YJ, Yu CL, Burakoff SJ. Human 70-kDa SHP-1L differs from 68-kDa SHP-1 in its C-terminal structure and catalytic activity. J Biol Chem. 1999;274(40):28301-7.
    • (1999) J Biol Chem , vol.274 , Issue.40 , pp. 28301-28307
    • Jin, Y.J.1    Yu, C.L.2    Burakoff, S.J.3
  • 206
    • 0026547356 scopus 로고
    • Protein tyrosine phosphatase containing SH2 domains: Characterization, preferential expression in hematopoietic cells, and localization to human chromosome 12p12-p13
    • Yi TL, Cleveland JL, Ihle JN. Protein tyrosine phosphatase containing SH2 domains: characterization, preferential expression in hematopoietic cells, and localization to human chromosome 12p12-p13. Mol Cell Biol. 1992;12(2):836-46.
    • (1992) Mol Cell Biol , vol.12 , Issue.2 , pp. 836-846
    • Yi, T.L.1    Cleveland, J.L.2    Ihle, J.N.3
  • 208
    • 0034729089 scopus 로고    scopus 로고
    • Tyrosine phosphatase SHP-1 immunoreactivity increases in a subset of astrocytes following deafferentation of the chicken auditory brainstem
    • DOI 10.1002/(SICI)1096-9861(20000529)421:2<199::AI
    • Lurie DI et al. Tyrosine phosphatase SHP-1 immunoreactivity increases in a subset of astrocytes following deafferentation of the chicken auditory brainstem. J Comp Neurol. 2000;421(2):199-214. (Pubitemid 30246970)
    • (2000) Journal of Comparative Neurology , vol.421 , Issue.2 , pp. 199-214
    • Lurie, D.I.1    Solca, F.2    Fischer, E.H.3    Rubel, E.W.4
  • 209
    • 0034652537 scopus 로고    scopus 로고
    • Expression and function of the protein tyrosine phosphatase SHP-1 in oligodendrocytes
    • DOI 10.1002/(SICI)1098-1136(20000215)29:4<376::AID
    • Massa PT et al. Expression and function of the protein tyrosine phosphatase SHP-1 in oligodendrocytes. Glia. 2000;29(4):376-85. (Pubitemid 30121427)
    • (2000) GLIA , vol.29 , Issue.4 , pp. 376-385
    • Massa, P.T.1    Saha, S.2    Wu, C.3    Jarosinski, K.W.4
  • 210
    • 33744960877 scopus 로고    scopus 로고
    • Raft-mediated Src homology 2 domain-containing proteintyrosine phosphatase 2 (SHP-2) regulation in microglia
    • Kim HY et al. Raft-mediated Src homology 2 domain-containing proteintyrosine phosphatase 2 (SHP-2) regulation in microglia. J Biol Chem. 2006;281(17):11872-8.
    • (2006) J Biol Chem , vol.281 , Issue.17 , pp. 11872-11878
    • Kim, H.Y.1
  • 211
    • 0030990384 scopus 로고    scopus 로고
    • Identification of a protein-tyrosine phosphatase (SHP1) different from that associated with acid phosphatase in rat prostate
    • Valencia AM et al. Identification of a protein-tyrosine phosphatase (SHP1) different from that associated with acid phosphatase in rat prostate. FEBS Lett. 1997;406(1-2):42-8.
    • (1997) FEBS Lett , vol.406 , Issue.1-2 , pp. 42-48
    • Valencia, A.M.1
  • 212
    • 0027399168 scopus 로고
    • Activation of a phosphotyrosine phosphatase by tyrosine phosphorylation
    • Vogel W et al. Activation of a phosphotyrosine phosphatase by tyrosine phosphorylation. Science. 1993;259(5101):1611-4. (Pubitemid 23114640)
    • (1993) Science , vol.259 , Issue.5101 , pp. 1611-1614
    • Vogel, W.1    Lammers, R.2    Huang, J.3    Ullrich, A.4
  • 214
    • 0026516065 scopus 로고
    • Isolation of a src homology 2-containing tyrosine phosphatase
    • Plutzky J, Neel BG, Rosenberg RD. Isolation of a src homology 2-containing tyrosine phosphatase. Proc Natl Acad Sci U S A. 1992;89(3):1123-7.
    • (1992) Proc Natl Acad Sci U S A , vol.89 , Issue.3 , pp. 1123-1127
    • Plutzky, J.1    Neel, B.G.2    Rosenberg, R.D.3
  • 215
    • 79952957889 scopus 로고    scopus 로고
    • Substrate specificity of protein tyrosine phosphatases 1B, RPTPalpha, SHP-1, and SHP-2
    • Ren L et al. Substrate specificity of protein tyrosine phosphatases 1B, RPTPalpha, SHP-1, and SHP-2. Biochemistry. 2011;50(12):2339-56.
    • (2011) Biochemistry , vol.50 , Issue.12 , pp. 2339-2356
    • Ren, L.1
  • 216
    • 0032561478 scopus 로고    scopus 로고
    • Crystal structure of the catalytic domain of protein-tyrosine phosphatase SHP-1
    • DOI 10.1074/jbc.273.43.28199
    • Yang J et al. Crystal structure of the catalytic domain of protein-tyrosine phosphatase SHP-1. J Biol Chem. 1998;273(43):28199-207. (Pubitemid 28496118)
    • (1998) Journal of Biological Chemistry , vol.273 , Issue.43 , pp. 28199-28207
    • Yang, J.1    Liang, X.2    Niu, T.3    Meng, W.4    Zhao, Z.5    Zhou, G.W.6
  • 217
    • 84884996061 scopus 로고    scopus 로고
    • Identification of cryptotanshinone as an inhibitor of Oncogenic protein tyrosine phosphatase SHP2 (PTPN11)
    • Liu W, et al. Identification of cryptotanshinone as an inhibitor of Oncogenic protein tyrosine phosphatase SHP2 (PTPN11). J Med Chem. 2013;56(18):7212-21.
    • (2013) J Med Chem , vol.56 , Issue.18 , pp. 7212-7221
    • Liu, W.1
  • 218
    • 0028580116 scopus 로고
    • Intramolecular regulation of protein tyrosine phosphatase SH-PTP1: A new function for Src homology 2 domains
    • Pei D et al. Intramolecular regulation of protein tyrosine phosphatase SH-PTP1: a new function for Src homology 2 domains. Biochemistry. 1994;33(51):15483-93.
    • (1994) Biochemistry , vol.33 , Issue.51 , pp. 15483-15493
    • Pei, D.1
  • 220
    • 0028179013 scopus 로고
    • Protein-tyrosine-phosphatase SHPTP2 couples platelet-derived growth factor receptor beta to Ras
    • Bennett AM et al. Protein-tyrosine-phosphatase SHPTP2 couples platelet-derived growth factor receptor beta to Ras. Proc Natl Acad Sci U S A. 1994;91(15):7335-9.
    • (1994) Proc Natl Acad Sci U S A , vol.91 , Issue.15 , pp. 7335-7339
    • Bennett, A.M.1
  • 222
    • 0028342629 scopus 로고
    • Insulin stimulates the phosphorylation of Tyr538 and the catalytic activity of PTP1C, a protein tyrosine phosphatase with Src homology-2 domains
    • Uchida Tet al. Insulin stimulates the phosphorylation of Tyr538 and the catalytic activity of PTP1C, a protein tyrosine phosphatase with Src homology-2 domains. J Biol Chem. 1994;269(16):12220-8.
    • (1994) J Biol Chem , vol.269 , Issue.16 , pp. 12220-12228
    • Uchida, T.1
  • 223
    • 77950890821 scopus 로고    scopus 로고
    • Enhancement of insulin responsiveness by nitric oxide-mediated inactivation of protein-tyrosine phosphatases
    • Hsu MF, Meng TC. Enhancement of insulin responsiveness by nitric oxide-mediated inactivation of protein-tyrosine phosphatases. J Biol Chem. 2009;285(11):7919-28.
    • (2009) J Biol Chem , vol.285 , Issue.11 , pp. 7919-7928
    • Hsu, M.F.1    Meng, T.C.2
  • 224
    • 34548780771 scopus 로고    scopus 로고
    • Negative autoregulation of Src homology region 2-domain-containing phosphatase-1 in rat basophilic leukemia-2H3 cells
    • DOI 10.1093/intimm/dxm070
    • Ozawa T et al. Negative autoregulation of Src homology region 2-domain-containing phosphatase-1 in rat basophilic leukemia-2H3 cells. Int Immunol. 2007;19(9):1049-61. (Pubitemid 47434238)
    • (2007) International Immunology , vol.19 , Issue.9 , pp. 1049-1061
    • Ozawa, T.1    Nakata, K.2    Mizuno, K.3    Yakura, H.4
  • 225
  • 226
    • 0030878257 scopus 로고    scopus 로고
    • Interaction of growth hormone-activated STATs with SH2-containing phosphotyrosine phosphatase SHP-1 and nuclear JAK2 tyrosine kinase
    • DOI 10.1074/jbc.272.28.17694
    • Ram PA, Waxman DJ. Interaction of growth hormone-activated STATs with SH2-containing phosphotyrosine phosphatase SHP-1 and nuclear JAK2 tyrosine kinase. J Biol Chem. 1997;272(28):17694-702. (Pubitemid 27311207)
    • (1997) Journal of Biological Chemistry , vol.272 , Issue.28 , pp. 17694-17702
    • Ram, P.A.1    Waxman, D.J.2
  • 227
    • 0036102113 scopus 로고    scopus 로고
    • A bipartite NLS at the SHP-1 C-terminus mediates cytokine-induced SHP-1 nuclear localization in cell growth control
    • DOI 10.1006/bcmd.2002.0485
    • Yang W, Tabrizi M, Yi T. A bipartite NLS at the SHP-1 C-terminus mediates cytokine-induced SHP-1 nuclear localization in cell growth control. Blood Cells Mol Dis. 2002;28(1):63-74. (Pubitemid 34408989)
    • (2002) Blood Cells, Molecules, and Diseases , vol.28 , Issue.1 , pp. 63-74
    • Yang, W.1    Tabrizi, M.2    Yi, T.3
  • 228
    • 0035968310 scopus 로고    scopus 로고
    • A functional nuclear localization sequence in the C-terminal domain of SHP-1
    • Craggs G, Kellie S. A functional nuclear localization sequence in the C-terminal domain of SHP-1. J Biol Chem. 2001;276(26):23719-25.
    • (2001) J Biol Chem , vol.276 , Issue.26 , pp. 23719-23725
    • Craggs, G.1    Kellie, S.2
  • 229
    • 84890451693 scopus 로고    scopus 로고
    • Heterogeneous nuclear ribonucleoprotein Q (hnRNP Q) is a novel substrate of SH2 domain-containing phosphatase-2 (SHP2)
    • Watanabe N, et al. Heterogeneous nuclear ribonucleoprotein Q (hnRNP Q) is a novel substrate of SH2 domain-containing phosphatase-2 (SHP2). J Biochem. 2013;154(5):475-80.
    • (2013) J Biochem , vol.154 , Issue.5 , pp. 475-480
    • Watanabe, N.1
  • 230
    • 84864383688 scopus 로고    scopus 로고
    • Hepatocyte-specific Ptpn6 deletion protects from obesity-linked hepatic insulin resistance
    • Xu E, et al. Hepatocyte-specific Ptpn6 deletion protects from obesity-linked hepatic insulin resistance. Diabetes. 2012;61(8):1949-58.
    • (2012) Diabetes , vol.61 , Issue.8 , pp. 1949-1958
    • Xu, E.1
  • 231
    • 0032488828 scopus 로고    scopus 로고
    • SHP-1 associates with both platelet-derived growth factor receptor and the p85 subunit of phosphatidylinositol 3-kinase
    • DOI 10.1074/jbc.273.6.3687
    • Yu Z et al. SHP-1 associateswith both platelet-derived growth factor receptor and the p85 subunit of phosphatidylinositol 3-kinase. J Biol Chem. 1998;273(6):3687-94. (Pubitemid 28109796)
    • (1998) Journal of Biological Chemistry , vol.273 , Issue.6 , pp. 3687-3694
    • Yu, Z.1    Su, L.2    Hoglinger, O.3    Jaramillo, M.L.4    Banville, D.5    Shen, S.-H.6
  • 232
    • 0035920129 scopus 로고    scopus 로고
    • Tyrosine phosphorylation of p85 relieves its inhibitory activity on phosphatidylinositol 3-kinase
    • Cuevas BD et al. Tyrosine phosphorylation of p85 relieves its inhibitory activity on phosphatidylinositol 3-kinase. J Biol Chem. 2001;276(29):27455-61.
    • (2001) J Biol Chem , vol.276 , Issue.29 , pp. 27455-27461
    • Cuevas, B.D.1
  • 233
    • 0141994730 scopus 로고    scopus 로고
    • Src family protein-tyrosine kinases alter the function of PTEN to regulate phosphatidylinositol 3-kinase/AKT cascades
    • Lu Yet al. Src family protein-tyrosine kinases alter the function of PTEN to regulate phosphatidylinositol 3-kinase/AKT cascades. J Biol Chem. 2003;278(41):40057-66.
    • (2003) J Biol Chem , vol.278 , Issue.41 , pp. 40057-40066
    • Lu, Y.1
  • 234
    • 0036718382 scopus 로고    scopus 로고
    • Angiotensin II subtype 2 receptor activation inhibits insulin-induced phosphoinositide 3-kinase and Akt and induces apoptosis in PC12W cells
    • Cui TX et al. Angiotensin II subtype 2 receptor activation inhibits insulin-induced phosphoinositide 3-kinase and Akt and induces apoptosis in PC12W cells. Mol Endocrinol. 2002;16(9):2113-23.
    • (2002) Mol Endocrinol , vol.16 , Issue.9 , pp. 2113-2123
    • Cui, T.X.1
  • 235
    • 82355165101 scopus 로고    scopus 로고
    • Inhibition of the protein tyrosine phosphatase SHP-1 increases glucose uptake in skeletal muscle cells by augmenting insulin receptor signaling and GLUT4 expression
    • Bergeron S et al. Inhibition of the protein tyrosine phosphatase SHP-1 increases glucose uptake in skeletal muscle cells by augmenting insulin receptor signaling and GLUT4 expression. Endocrinology. 2011;152(12):4581-8.
    • (2011) Endocrinology , vol.152 , Issue.12 , pp. 4581-4588
    • Bergeron, S.1
  • 236
    • 78751474014 scopus 로고    scopus 로고
    • Prep1 controls insulin glucoregulatory function in liver by transcriptional targeting of SHP1 tyrosine phosphatase
    • Oriente F et al. Prep1 controls insulin glucoregulatory function in liver by transcriptional targeting of SHP1 tyrosine phosphatase. Diabetes. 2011;60(1):138-47.
    • (2011) Diabetes , vol.60 , Issue.1 , pp. 138-147
    • Oriente, F.1
  • 237
    • 79951855236 scopus 로고    scopus 로고
    • Compartmentalized CDK2 is connected with SHP-1 and beta-catenin and regulates insulin internalization
    • Fiset A et al. Compartmentalized CDK2 is connected with SHP-1 and beta-catenin and regulates insulin internalization. Cell Signal. 2011;23(5):911-9.
    • (2011) Cell Signal , vol.23 , Issue.5 , pp. 911-919
    • Fiset, A.1
  • 238
    • 0015952837 scopus 로고
    • Quantitative aspects of the insulin-receptor interaction in liver plasma membranes
    • Kahn CR et al. Quantitative aspects of the insulin-receptor interaction in liver plasma membranes. J Biol Chem. 1974;249(7):2249-57.
    • (1974) J Biol Chem , vol.249 , Issue.7 , pp. 2249-2257
    • Kahn, C.R.1
  • 240
    • 0025864656 scopus 로고
    • Receptor-recycling model of clearance and distribution of insulin in the perfused mouse liver
    • Sato H et al. Receptor-recycling model of clearance and distribution of insulin in the perfused mouse liver. Diabetologia. 1991;34(9):613-21.
    • (1991) Diabetologia , vol.34 , Issue.9 , pp. 613-621
    • Sato, H.1
  • 241
    • 0026937908 scopus 로고
    • Pharmacological doses of insulin equalize insulin receptor phosphotyrosine content but not tyrosine kinase activity in plasmalemmal and endosomal membranes
    • Burgess JW et al. Pharmacological doses of insulin equalize insulin receptor phosphotyrosine content but not tyrosine kinase activity in plasmalemmal and endosomal membranes. Biochem Cell Biol. 1992;70(10-11):1151-8.
    • (1992) Biochem Cell Biol , vol.70 , Issue.10-11 , pp. 1151-1158
    • Burgess, J.W.1
  • 242
    • 0021894454 scopus 로고
    • Uptake of insulin and other ligands into receptor-rich endocytic components of target cells: The endosomal apparatus
    • Bergeron JJ et al. Uptake of insulin and other ligands into receptor-rich endocytic components of target cells: the endosomal apparatus. Annu Rev Physiol. 1985;47:383-403. (Pubitemid 15142388)
    • (1985) Annual Review of Physiology , vol.47 , pp. 383-403
    • Bergeron, J.J.M.1    Cruz, J.2    Khan, M.N.3    Posner, B.I.4
  • 245
    • 0025014756 scopus 로고
    • Selective degradation of insulin within rat liver endosomes
    • Doherty 2nd JJ et al. Selective degradation of insulin within rat liver endosomes. J Cell Biol. 1990;110(1):35-42.
    • (1990) J Cell Biol , vol.110 , Issue.1 , pp. 35-42
    • Doherty II, J.J.1
  • 246
    • 0025105992 scopus 로고
    • The dissociation and degradation of internalized insulin occur in the endosomes of rat hepatoma cells
    • Backer JM, Kahn CR, White MF. The dissociation and degradation of internalized insulin occur in the endosomes of rat hepatoma cells. J Biol Chem. 1990;265(25):14828-35.
    • (1990) J Biol Chem , vol.265 , Issue.25 , pp. 14828-14835
    • Backer, J.M.1    Kahn, C.R.2    White, M.F.3
  • 249
    • 67651162136 scopus 로고    scopus 로고
    • Targeted disruption of carcinoembryonic antigen-related cell adhesion molecule 1 promotes diet-induced hepatic steatosis and insulin resistance
    • Xu E et al. Targeted disruption of carcinoembryonic antigen-related cell adhesion molecule 1 promotes diet-induced hepatic steatosis and insulin resistance. Endocrinology. 2009;150(8):3503-12.
    • (2009) Endocrinology , vol.150 , Issue.8 , pp. 3503-3512
    • Xu, E.1
  • 250
    • 0036675186 scopus 로고    scopus 로고
    • Regulation of insulin action by CEACAM1
    • DOI 10.1016/S1043-2760(02)00608-2, PII S1043276002006082
    • Najjar SM. Regulation of insulin action by CEACAM1. Trends Endocrinol Metab. 2002;13(6):240-5. (Pubitemid 36733968)
    • (2002) Trends in Endocrinology and Metabolism , vol.13 , Issue.6 , pp. 240-245
    • Najjar, S.M.1
  • 251
    • 0032951724 scopus 로고    scopus 로고
    • The carboxyl-terminal region of biliary glycoprotein controls its tyrosine phosphorylation and association with protein-tyrosine phosphatases SHP-1 and SHP-2 in epithelial cells
    • DOI 10.1074/jbc.274.1.335
    • Huber M, Izzi L, Grondin P, Houde C, Kunath T, Veillette A, et al. The carboxyl-terminal region of biliary glycoprotein controls its tyrosine phosphorylation and association with protein-tyrosine phosphatases SHP-1 and SHP-2 in epithelial cells. J Biol Chem. 1999;274(1):335-44. (Pubitemid 29035067)
    • (1999) Journal of Biological Chemistry , vol.274 , Issue.1 , pp. 335-344
    • Huber, M.1    Izzi, L.2    Grondin, P.3    Houde, C.4    Kunath, T.5    Veillette, A.6    Beauchemin, N.7
  • 252
    • 0029824779 scopus 로고    scopus 로고
    • Interaction of SH2-containing protein tyrosine phosphatase 2 with the insulin receptor and the insulin-like growth factor-I receptor: Studies of the domains involved using the yeast two-hybrid system
    • DOI 10.1210/en.137.11.4944
    • Rocchi S et al. Interaction of SH2-containing protein tyrosine phosphatase 2 with the insulin receptor and the insulin-like growth factor-I receptor: studies of the domains involved using the yeast two-hybrid system. Endocrinology. 1996;137(11):4944-52. (Pubitemid 26403338)
    • (1996) Endocrinology , vol.137 , Issue.11 , pp. 4944-4952
    • Rocchi, S.1    Tartare-Deckert, S.2    Sawka-Verhelle, D.3    Gamha, A.4    Van Obberghen, E.5
  • 253
    • 0039619868 scopus 로고    scopus 로고
    • Identification of tyrosine phosphatases that dephosphorylate the insulin receptor. A brute force approach based on 'substrate-trapping' mutants
    • DOI 10.1074/jbc.275.13.9792
    • Walchli S et al. Identification of tyrosine phosphatases that dephosphorylate the insulin receptor. A brute force approach based on "substrate-trapping" mutants. J Biol Chem. 2000;275(13):9792-6. (Pubitemid 30185214)
    • (2000) Journal of Biological Chemistry , vol.275 , Issue.13 , pp. 9792-9796
    • Walchli, S.1    Curchod, M.-L.2    Gobert, R.P.3    Arkinstall, S.4    Van Huijsduijnen, R.H.5
  • 256
    • 0033570225 scopus 로고    scopus 로고
    • Expression of a dominant negative SHP-2 in transgenic mice induces insulin resistance
    • Maegawa H et al. Expression of a dominant negative SHP-2 in transgenic mice induces insulin resistance. J Biol Chem. 1999;274(42):30236-43.
    • (1999) J Biol Chem , vol.274 , Issue.42 , pp. 30236-30243
    • Maegawa, H.1
  • 258
    • 0030769166 scopus 로고    scopus 로고
    • Biological effects of human insulin receptor substrate-1 overexpression in hepatocytes
    • Tanaka S et al. Biological effects of human insulin receptor substrate-1 overexpression in hepatocytes. Hepatology. 1997;26(3):598-604. (Pubitemid 27392349)
    • (1997) Hepatology , vol.26 , Issue.3 , pp. 598-604
    • Tanaka, S.1    Mohr, L.2    Schmidt, E.V.3    Sugimachi, K.4    Wands, J.R.5
  • 259
    • 4644373631 scopus 로고    scopus 로고
    • Insulin receptor substrate-1/SHP-2 interaction, a phenotype-dependent switching machinery of insulin-like growth factor-I signaling in vascular smooth muscle cells
    • DOI 10.1074/jbc.M405100200
    • Hayashi K et al. Insulin receptor substrate-1/SHP-2 interaction, a phenotype-dependent switching machinery of insulin-like growth factor-I signaling in vascular smooth muscle cells. J Biol Chem. 2004;279(39):40807-18. (Pubitemid 39287678)
    • (2004) Journal of Biological Chemistry , vol.279 , Issue.39 , pp. 40807-40818
    • Hayashi, K.1    Shibata, K.2    Morita, T.3    Iwasaki, K.4    Watanabe, M.5    Sobue, K.6
  • 261
    • 58249115040 scopus 로고    scopus 로고
    • Deletion of Shp2 tyrosine phosphatase in muscle leads to dilated cardiomyopathy, insulin resistance, and premature death
    • Princen F et al. Deletion of Shp2 tyrosine phosphatase in muscle leads to dilated cardiomyopathy, insulin resistance, and premature death. Mol Cell Biol. 2009;29(2):378-88.
    • (2009) Mol Cell Biol , vol.29 , Issue.2 , pp. 378-388
    • Princen, F.1
  • 262
    • 78650044708 scopus 로고    scopus 로고
    • Altered glucose homeostasis in mice with liver-specific deletion of Src homology phosphatase 2
    • Matsuo K et al. Altered glucose homeostasis in mice with liver-specific deletion of Src homology phosphatase 2. J Biol Chem. 2010;285(51):39750-8.
    • (2010) J Biol Chem , vol.285 , Issue.51 , pp. 39750-39758
    • Matsuo, K.1
  • 263
    • 84862745368 scopus 로고    scopus 로고
    • Hepatic Src homology phosphatase 2 regulates energy balance in mice
    • Nagata N et al. Hepatic Src homology phosphatase 2 regulates energy balance in mice. Endocrinology. 2012;153(7):3158-69.
    • (2012) Endocrinology , vol.153 , Issue.7 , pp. 3158-3169
    • Nagata, N.1
  • 264
    • 79960555997 scopus 로고    scopus 로고
    • Adipose-specific deletion of Src homology phosphatase 2 does not significantly alter systemic glucose homeostasis
    • Bettaieb A et al. Adipose-specific deletion of Src homology phosphatase 2 does not significantly alter systemic glucose homeostasis. Metabolism. 2011;60(8):1193-201.
    • (2011) Metabolism , vol.60 , Issue.8 , pp. 1193-1201
    • Bettaieb, A.1
  • 265
    • 84871987193 scopus 로고    scopus 로고
    • Nonreceptor tyrosine phosphatase Shp2 promotes adipogenesis through inhibition of p38 MAP kinase
    • He Z et al. Nonreceptor tyrosine phosphatase Shp2 promotes adipogenesis through inhibition of p38 MAP kinase. Proc Natl Acad Sci U S A. 2013;110(1):E79-88.
    • (2013) Proc Natl Acad Sci U S a , vol.110 , Issue.1
    • He, Z.1
  • 266
    • 84873643973 scopus 로고    scopus 로고
    • Modulation of fatty acid synthase degradation by concerted action of p38 MAP kinase, E3 ligase COP1, and SH2-tyrosine phosphatase Shp2
    • Yu J et al. Modulation of fatty acid synthase degradation by concerted action of p38 MAP kinase, E3 ligase COP1, and SH2-tyrosine phosphatase Shp2. J Biol Chem. 2013;288(6):3823-30.
    • (2013) J Biol Chem , vol.288 , Issue.6 , pp. 3823-3830
    • Yu, J.1
  • 267
    • 0036731485 scopus 로고    scopus 로고
    • STATs: Transcriptional control and biological impact
    • DOI 10.1038/nrm909
    • Levy DE, Darnell Jr JE. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol. 2002;3(9):651-62. (Pubitemid 34987786)
    • (2002) Nature Reviews Molecular Cell Biology , vol.3 , Issue.9 , pp. 651-662
    • Levy, D.E.1    Darnell Jr., J.E.2
  • 268
    • 33746570647 scopus 로고    scopus 로고
    • Tracking STAT nuclear traffic
    • DOI 10.1038/nri1885, PII NRI1885
    • Reich NC, Liu L. Tracking STAT nuclear traffic. Nat Rev Immunol. 2006;6(8):602-12. (Pubitemid 44134093)
    • (2006) Nature Reviews Immunology , vol.6 , Issue.8 , pp. 602-612
    • Reich, N.C.1    Liu, L.2
  • 269
    • 42649118836 scopus 로고    scopus 로고
    • Protein tyrosine phosphatases in the JAK/STAT pathway
    • DOI 10.2741/3051
    • Xu D, Qu CK. Protein tyrosine phosphatases in the JAK/STAT pathway. Front Biosci. 2008;13:4925-32. (Pubitemid 351599646)
    • (2008) Frontiers in Bioscience , vol.13 , Issue.13 , pp. 4925-4932
    • Xu, D.1    Qu, C.-K.2
  • 270
    • 84878998921 scopus 로고    scopus 로고
    • Central regulation of metabolism by protein tyrosine phosphatases
    • Tsou RC, Bence KK. Central regulation of metabolism by protein tyrosine phosphatases. Front Neurosci. 2012;6:192.
    • (2012) Front Neurosci , vol.6 , pp. 192
    • Tsou, R.C.1    Bence, K.K.2
  • 271
    • 79959861920 scopus 로고    scopus 로고
    • SHP2 tyrosine phosphatase converts parafibromin/Cdc73 from a tumor suppressor to an oncogenic driver
    • Takahashi A et al. SHP2 tyrosine phosphatase converts parafibromin/Cdc73 from a tumor suppressor to an oncogenic driver. Mol Cell. 2011;43(1):45-56.
    • (2011) Mol Cell , vol.43 , Issue.1 , pp. 45-56
    • Takahashi, A.1
  • 272
    • 0038190977 scopus 로고    scopus 로고
    • Negative regulation of beta-catenin signaling by tyrosine phosphatase SHP-1 in intestinal epithelial cells
    • DOI 10.1074/jbc.M300425200
    • Duchesne C et al. Negative regulation of beta-catenin signaling by tyrosine phosphatase SHP-1 in intestinal epithelial cells. J Biol Chem. 2003;278(16):14274-83. (Pubitemid 36799976)
    • (2003) Journal of Biological Chemistry , vol.278 , Issue.16 , pp. 14274-14283
    • Duchesne, C.1    Charland, S.2    Asselin, C.3    Nahmias, C.4    Rivard, N.5
  • 273
    • 77957822414 scopus 로고    scopus 로고
    • SHP-1 inhibits beta-catenin function by inducing its degradation and interfering with its association with TATA-binding protein
    • Simoneau M et al. SHP-1 inhibits beta-catenin function by inducing its degradation and interfering with its association with TATA-binding protein. Cell Signal. 2011;23(1):269-79.
    • (2011) Cell Signal , vol.23 , Issue.1 , pp. 269-279
    • Simoneau, M.1
  • 274
    • 84881367433 scopus 로고    scopus 로고
    • Cembrane diterpenoids from the soft coral Sarcophyton trocheliophorum Marenzeller as a new class of PTP1B inhibitors
    • Liang LF et al. Cembrane diterpenoids from the soft coral Sarcophyton trocheliophorum Marenzeller as a new class of PTP1B inhibitors. Bioorg Med Chem. 2013;21(17):5076-80.
    • (2013) Bioorg Med Chem , vol.21 , Issue.17 , pp. 5076-5080
    • Liang, L.F.1
  • 275
    • 33748882713 scopus 로고    scopus 로고
    • Ursolic acid and its derivative inhibit protein tyrosine phosphatase 1B, enhancing insulin receptor phosphorylation and stimulating glucose uptake
    • DOI 10.1016/j.bbagen.2006.05.009, PII S0304416506001607
    • Zhang W et al. Ursolic acid and its derivative inhibit protein tyrosine phosphatase 1B, enhancing insulin receptor phosphorylation and stimulating glucose uptake. Biochim Biophys Acta. 2006;1760(10):1505-12. (Pubitemid 44428024)
    • (2006) Biochimica et Biophysica Acta - General Subjects , vol.1760 , Issue.10 , pp. 1505-1512
    • Zhang, W.1    Hong, D.2    Zhou, Y.3    Zhang, Y.4    Shen, Q.5    Li, J.-y.6    Hu, L.-h.7    Li, J.8
  • 276
    • 77950890821 scopus 로고    scopus 로고
    • Enhancement of insulin responsiveness by nitric oxide-mediated inactivation of protein-tyrosine phosphatases
    • Hsu MF, Meng TC. Enhancement of insulin responsiveness by nitric oxide-mediated inactivation of protein-tyrosine phosphatases. J Biol Chem. 2010;285(11):7919-28.
    • (2010) J Biol Chem , vol.285 , Issue.11 , pp. 7919-7928
    • Hsu, M.F.1    Meng, T.C.2
  • 277
    • 84868088782 scopus 로고    scopus 로고
    • A highly selective and potent PTP-MEG2 inhibitor with therapeutic potential for type 2 diabetes
    • Zhang S et al. A highly selective and potent PTP-MEG2 inhibitor with therapeutic potential for type 2 diabetes. J Am Chem Soc. 2012;134(43):18116-24.
    • (2012) J Am Chem Soc , vol.134 , Issue.43 , pp. 18116-18124
    • Zhang, S.1
  • 278
    • 0028783629 scopus 로고
    • COOH-terminal sequence motifs target the T cell protein tyrosine phosphatase to the ER and nucleus
    • Lorenzen JA, Dadabay CY, Fischer EH. COOH-terminal sequence motifs target the T cell protein tyrosine phosphatase to the ER and nucleus. J Cell Biol. 1995;131(3):631-43.
    • (1995) J Cell Biol , vol.131 , Issue.3 , pp. 631-643
    • Lorenzen, J.A.1    Dadabay, C.Y.2    Fischer, E.H.3
  • 279
    • 0037163109 scopus 로고    scopus 로고
    • Prolactin induces SHP-2 association with Stat5, nuclear translocation, and binding to the beta-casein gene promoter in mammary cells
    • DOI 10.1074/jbc.M200156200
    • Chughtai N et al. Prolactin induces SHP-2 association with Stat5, nuclear translocation, and binding to the beta-casein gene promoter in mammary cells. J Biol Chem. 2002;277(34):31107-14. (Pubitemid 34970816)
    • (2002) Journal of Biological Chemistry , vol.277 , Issue.34 , pp. 31107-31114
    • Chughtai, N.1    Schimchowitsch, S.2    Lebrun, J.-J.3    Ali, S.4
  • 281
    • 33645795212 scopus 로고    scopus 로고
    • Proteomic analysis reveals novel molecules involved in insulin signaling pathway
    • Wang Y et al. Proteomic analysis reveals novel molecules involved in insulin signaling pathway. J Proteome Res. 2006;5(4):846-55.
    • (2006) J Proteome Res , vol.5 , Issue.4 , pp. 846-855
    • Wang, Y.1
  • 283
    • 84857047339 scopus 로고    scopus 로고
    • PhosphoSitePlus: A comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse
    • Hornbeck PV et al. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res. 2012;40(Database issue): D261-70.
    • (2012) Nucleic Acids Res , vol.40 , Issue.DATABASE ISSUE
    • Hornbeck, P.V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.