메뉴 건너뛰기




Volumn 17, Issue 11, 2005, Pages 1529-1541

Tri-training: Exploiting unlabeled data using three classifiers

Author keywords

Co training, tri training; Data mining; Learning from unlabeled data; Machine learning; Semi supervised learning; Web page classification

Indexed keywords

DATA SETS; LEARNING FROM UNLABELED DATA; SEMI-SUPERVIZED LEARNING;

EID: 28244448186     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2005.186     Document Type: Article
Times cited : (1227)

References (29)
  • 1
    • 0000492326 scopus 로고
    • Learning from noisy examples
    • D. Angluin and P. Laird, "Learning from Noisy Examples," Machine Learning, vol. 2, no. 4, pp. 343-370, 1988.
    • (1988) Machine Learning , vol.2 , Issue.4 , pp. 343-370
    • Angluin, D.1    Laird, P.2
  • 3
    • 0003408496 scopus 로고    scopus 로고
    • Dept. of Information and Computer Science, Univ. of California, Irvine
    • C. Blake, E. Keogh, and C.J. Merz, "UCI Repository of Machine Learning Databases" http://www.ics.uci.edu/~mlearn/MLRepository.html, Dept. of Information and Computer Science, Univ. of California, Irvine, 1998.
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.1    Keogh, E.2    Merz, C.J.3
  • 4
    • 0010805362 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data using graph mincuts
    • A. Blum and S. Chawla, "Learning from Labeled and Unlabeled Data Using Graph Mincuts," Proc. 18th Int'l Conf. Machine Learning, pp. 19-26, 2001.
    • (2001) Proc. 18th Int'l Conf. Machine Learning , pp. 19-26
    • Blum, A.1    Chawla, S.2
  • 6
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging Predictors," Machine Learning, vol. 24, no. 2, pp. 123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 7
    • 0028424239 scopus 로고
    • Improved generalization with active learning
    • D. Cohn, L. Atlas, and R. Ladner, "Improved Generalization with Active Learning," Machine Learning, vol. 15, no. 2, pp. 201-221, 1994.
    • (1994) Machine Learning , vol.15 , Issue.2 , pp. 201-221
    • Cohn, D.1    Atlas, L.2    Ladner, R.3
  • 9
    • 84899006611 scopus 로고    scopus 로고
    • Semi-supervised marginboost
    • T.G. Dietterich, S. Becker, and Z. Ghahramani, eds., Cambridge, Mass.: MIT Press
    • F. D'Alché-Buc, Y. Grandvalet, and C. Ambroise, "Semi-Supervised Marginboost," Advances in Neural Information Processing Systems 14, T.G. Dietterich, S. Becker, and Z. Ghahramani, eds., pp. 553-560, Cambridge, Mass.: MIT Press, 2002.
    • (2002) Advances in Neural Information Processing Systems , vol.14 , pp. 553-560
    • D'Alché-Buc, F.1    Grandvalet, Y.2    Ambroise, C.3
  • 10
    • 84899008485 scopus 로고    scopus 로고
    • PAC generalization bounds for co-training
    • T.G. Dietterich, S. Becker, and Z. Ghahramani, eds., Cambridge, Mass.: MIT Press
    • S. Dasgupta, M. Littman, and D. McAllester, "PAC Generalization Bounds for Co-Training," Advances in Neural Information Processing Systems 14, T.G. Dietterich, S. Becker, and Z. Ghahramani, eds., pp. 375-382, Cambridge, Mass.: MIT Press, 2002.
    • (2002) Advances in Neural Information Processing Systems , vol.14 , pp. 375-382
    • Dasgupta, S.1    Littman, M.2    McAllester, D.3
  • 11
  • 12
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • J. Kittler and F. Roli, eds., Berlin: Springer
    • T.G. Dietterich, "Ensemble Methods in Machine Learning," Lecture Notes in Computer Science 1867, J. Kittler and F. Roli, eds., pp. 1-15, Berlin: Springer, 2000.
    • (2000) Lecture Notes in Computer Science 1867 , pp. 1-15
    • Dietterich, T.G.1
  • 16
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • T. Joachims, "Transductive Inference for Text Classification Using Support Vector Machines," Proc. 16th Int'l Conf. Machine Learning, pp. 200-209, 1999.
    • (1999) Proc. 16th Int'l Conf. Machine Learning , pp. 200-209
    • Joachims, T.1
  • 17
    • 84898980291 scopus 로고    scopus 로고
    • A mixture of experts classifier with learning based on both labelled and unlabelled data
    • M. Mozer, M.I. Jordan, and T. Petsche, eds., Cambridge, Mass.: MIT Press
    • D.J. Miller and H.S. Uyar, "A Mixture of Experts Classifier with Learning Based on Both Labelled and Unlabelled Data," Advances in Neural Information Processing Systems 9, M. Mozer, M.I. Jordan, and T. Petsche, eds., pp. 571-577, Cambridge, Mass.: MIT Press, 1997.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 571-577
    • Miller, D.J.1    Uyar, H.S.2
  • 20
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using em
    • K. Nigam, A.K. McCallum, S. Thrun, and T. Mitchell, "Text Classification from Labeled and Unlabeled Documents Using EM," Machine Learning, vol. 39, nos. 2-3, pp. 103-134, 2000.
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 103-134
    • Nigam, K.1    McCallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 23
    • 0032596539 scopus 로고    scopus 로고
    • Learning dictionaries for information extraction by multi-level bootstrapping
    • E. Riloff and R. Jones, "Learning Dictionaries for Information Extraction by Multi-Level Bootstrapping," Proc. 16th Nat'l Conf. Artificial Intelligence, pp. 474-479, 1999.
    • (1999) Proc. 16th Nat'l Conf. Artificial Intelligence , pp. 474-479
    • Riloff, E.1    Jones, R.2
  • 26
    • 0028499630 scopus 로고
    • The effect of unlabeled samples in reducing the small sample size problem and mitigating the hughes phenomenon
    • B. Shahshahani and D. Landgrebe, "The Effect of Unlabeled Samples in Reducing the Small Sample Size Problem and Mitigating the Hughes Phenomenon," IEEE Trans. Geoscience and Remote Sensing, vol. 32, no. 5, pp. 1087-1095, 1994.
    • (1994) IEEE Trans. Geoscience and Remote Sensing , vol.32 , Issue.5 , pp. 1087-1095
    • Shahshahani, B.1    Landgrebe, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.