메뉴 건너뛰기




Volumn 227, Issue , 2007, Pages 609-619

Asymmetric boosting

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; COST EFFECTIVENESS; FACE RECOGNITION; HEURISTIC ALGORITHMS; OPTIMIZATION; STATISTICAL METHODS;

EID: 34547963287     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1273496.1273573     Document Type: Conference Paper
Times cited : (67)

References (18)
  • 2
    • 0002106691 scopus 로고    scopus 로고
    • Metacost: A general method for making classifiers cost-sensitive
    • ACM Press
    • Domingos, P. (1999). Metacost: a general method for making classifiers cost-sensitive. Proceedings of the fifth ACM SIGKDD. ACM Press.
    • (1999) Proceedings of the fifth ACM SIGKDD
    • Domingos, P.1
  • 4
    • 0013316935 scopus 로고    scopus 로고
    • Adacost: Misclassification cost-sensitive boosting
    • Fan, W., Stolfo, S., Zhang, J., & Chan, P. (1999). Adacost: Misclassification cost-sensitive boosting. ICML.
    • (1999) ICML
    • Fan, W.1    Stolfo, S.2    Zhang, J.3    Chan, P.4
  • 5
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y., & Schapire, R. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55, 119-139.
    • (1997) Journal of Computer and System Sciences , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 6
    • 34547983694 scopus 로고    scopus 로고
    • Freund, Y., & Schapire, R. (2004). A discussion of Process consistency for AdaBoost by Wenxin Jiang, On the Bayes-risk consistency of regularized boosting methods by Gabor Lugosi and Nicolas Vayatis, Statistical behavior and consistency of classification methods based on convex risk minimization by Tong Zhang. Annals of Statistics.
    • Freund, Y., & Schapire, R. (2004). A discussion of "Process consistency for AdaBoost" by Wenxin Jiang, "On the Bayes-risk consistency of regularized boosting methods" by Gabor Lugosi and Nicolas Vayatis, "Statistical behavior and consistency of classification methods based on convex risk minimization" by Tong Zhang. Annals of Statistics.
  • 8
    • 27144479454 scopus 로고    scopus 로고
    • Learning from unbalanced data sets with boosting and data generation: The databoost-im approach
    • Guo, H., & Viktor, H. L. (2004). Learning from unbalanced data sets with boosting and data generation: the databoost-im approach. SIGKDD Explor. Newsl.
    • (2004) SIGKDD Explor. Newsl
    • Guo, H.1    Viktor, H.L.2
  • 14
    • 0002804620 scopus 로고    scopus 로고
    • A comparative study of cost-sensitive boosting algorithms
    • Ting, K. M. (2000). A comparative study of cost-sensitive boosting algorithms. ICML.
    • (2000) ICML
    • Ting, K.M.1
  • 17
    • 84898979550 scopus 로고    scopus 로고
    • Fast and robust classification using asymmetric adaboost and a detector cascade
    • Viola, P., & Jones, M. (2002). Fast and robust classification using asymmetric adaboost and a detector cascade. NIPS.
    • (2002) NIPS
    • Viola, P.1    Jones, M.2
  • 18
    • 33745885436 scopus 로고    scopus 로고
    • A simple method for cost-sensitive learning
    • Technical Report RC22666, IBM
    • Zadrozny, B., Langford, J., & Abe, N. (2003). A simple method for cost-sensitive learning. Technical Report RC22666, IBM.
    • (2003)
    • Zadrozny, B.1    Langford, J.2    Abe, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.