메뉴 건너뛰기




Volumn 45, Issue 6, 1998, Pages 983-1006

Efficient noise-tolerant learning from statistical queries

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL METHODS; INFORMATION THEORY; LEARNING ALGORITHMS; MATHEMATICAL MODELS; PROBABILITY; QUERY LANGUAGES; STATISTICAL METHODS;

EID: 0032202014     PISSN: 00045411     EISSN: None     Source Type: Journal    
DOI: 10.1145/293347.293351     Document Type: Article
Times cited : (681)

References (34)
  • 1
    • 0000492326 scopus 로고
    • Learning from noisy examples
    • ANGLUIN, D., AND LAIRD, P. 1988. Learning from noisy examples. Mach. Learn. 2, 4, 343-370.
    • (1988) Mach. Learn. , vol.2 , Issue.4 , pp. 343-370
    • Angluin, D.1    Laird, P.2
  • 2
    • 0027873988 scopus 로고
    • General bounds on statistical query learning and PAC learning with noise via hypothesis boosting
    • IEEE Computer Society Press, Los Alamitos, Calif.
    • ASLAM, J. A., AND DECATUR, S. E. 1993. General bounds on statistical query learning and PAC learning with noise via hypothesis boosting. In Proceedings of the 34th Annual Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, Calif. pp. 282-291.
    • (1993) Proceedings of the 34th Annual Symposium on Foundations of Computer Science , pp. 282-291
    • Aslam, J.A.1    Decatur, S.E.2
  • 3
    • 0346963421 scopus 로고
    • Specification and simulation of statistical query algorithms for efficiency and noise tolerance
    • Santa Cruz, Calif., July 5-8. ACM, New York
    • ASLAM, J. A., AND DECATUR, S. E. 1995. Specification and simulation of statistical query algorithms for efficiency and noise tolerance. In Proceedings of the 8th Annual Conference on Computational Learning Theory (Santa Cruz, Calif., July 5-8). ACM, New York, pp. 437-446.
    • (1995) Proceedings of the 8th Annual Conference on Computational Learning Theory , pp. 437-446
    • Aslam, J.A.1    Decatur, S.E.2
  • 4
    • 0003862690 scopus 로고
    • The transition to perfect generalization in perceptrons
    • BAUM, E. B., AND LYUU, Y.-D. 1991. The transition to perfect generalization in perceptrons. Neural Comput. 3, 386-401.
    • (1991) Neural Comput. , vol.3 , pp. 386-401
    • Baum, E.B.1    Lyuu, Y.-D.2
  • 7
    • 0024750852 scopus 로고
    • Learnability and Vapnik-Chervonenkis dimension
    • Oct.
    • BLUMER, A., EHRENFEUCHT, A., HAUSSLER, D., AND WARMUTH, M. K. 1989. Learnability and Vapnik-Chervonenkis dimension. J. ACM 36, 4 (Oct.), 929-965.
    • (1989) J. ACM , vol.36 , Issue.4 , pp. 929-965
    • Blumer, A.1    Ehrenfeucht, A.2    Haussler, D.3    Warmuth, M.K.4
  • 8
  • 10
    • 0026820701 scopus 로고
    • On learning ring-sum expansions
    • FISHER, P., AND SIMON, H. U. 1992. On learning ring-sum expansions. SIAM J. Comput. 21, 1, 181-192.
    • (1992) SIAM J. Comput. , vol.21 , Issue.1 , pp. 181-192
    • Fisher, P.1    Simon, H.U.2
  • 12
    • 0000534344 scopus 로고
    • Three unfinished works on the optimal storage capacity of networks
    • GARDNER, E., AND DERRIDA, B. 1989. Three unfinished works on the optimal storage capacity of networks. J. Phys. A: Math. Gen. 22, 1983-1994.
    • (1989) J. Phys. A: Math. Gen. , vol.22 , pp. 1983-1994
    • Gardner, E.1    Derrida, B.2
  • 14
    • 0024082469 scopus 로고
    • Quantifying inductive bias: AI learning algorithms and Valiant's learning framework
    • HAUSSLER, D. 1988. Quantifying inductive bias: AI learning algorithms and Valiant's learning framework. Artif. Int. 36, 177-221.
    • (1988) Artif. Int. , vol.36 , pp. 177-221
    • Haussler, D.1
  • 17
    • 0027640858 scopus 로고
    • Learning in the presence of malicious errors
    • KEARNS, M., AND LI, M. 1993. Learning in the presence of malicious errors. SIAM J. Comput. 22, 4, 807-837.
    • (1993) SIAM J. Comput. , vol.22 , Issue.4 , pp. 807-837
    • Kearns, M.1    Li, M.2
  • 19
    • 85037544614 scopus 로고
    • A polynomial-time algorithm for learning k-variable pattern languages from examples
    • July. ACM, New York
    • KEARNS, M., AND PITT, L. 1989. A polynomial-time algorithm for learning k-variable pattern languages from examples. In Proceedings of the 2nd Annual Workshop on Computational Learning Theory (July). ACM, New York, pp. 57-71.
    • (1989) Proceedings of the 2nd Annual Workshop on Computational Learning Theory , pp. 57-71
    • Kearns, M.1    Pitt, L.2
  • 20
    • 0028460231 scopus 로고
    • Efficient distribution-free learning of probabilistic concepts
    • KEARNS, M. J., AND SCHAPIRE, R. E. 1994. Efficient distribution-free learning of probabilistic concepts. J. Comput. Syst. Sci. 48, 3, 464-497.
    • (1994) J. Comput. Syst. Sci. , vol.48 , Issue.3 , pp. 464-497
    • Kearns, M.J.1    Schapire, R.E.2
  • 22
    • 0003460706 scopus 로고
    • Kluwer International Series in Engineering and Computer Science. Kluwer Academic Publishers, Boston, Mass.
    • LAIRD, P. D. 1988. Learning from Good and Bad Data. Kluwer International Series in Engineering and Computer Science. Kluwer Academic Publishers, Boston, Mass.
    • (1988) Learning from Good and Bad Data
    • Laird, P.D.1
  • 25
    • 0024092215 scopus 로고
    • Computational limitations on learning from examples
    • Oct.
    • PITT, L., AND VALIANT, L. G. 1988. Computational limitations on learning from examples. J. ACM 35, 4 (Oct.), 965-984.
    • (1988) J. ACM , vol.35 , Issue.4 , pp. 965-984
    • Pitt, L.1    Valiant, L.G.2
  • 26
    • 1442267080 scopus 로고
    • Learning decision lists
    • RIVEST, R. L. 1987. Learning decision lists. Mach. Learn. 2, 3, 229-246.
    • (1987) Mach. Learn. , vol.2 , Issue.3 , pp. 229-246
    • Rivest, R.L.1
  • 27
    • 0346776750 scopus 로고
    • Ph.D. dissertation. Tokyo Institute of Technology. Res. Rep. IIAD-RR-91-22E. International Institute for Advanced Study of Social Information Science, Fujitsu Laboratories, Ltd., Tokyo, Japan
    • SAKAKIBARA, Y. 1991. Algorithmic learning of formal languages and decision trees. Ph.D. dissertation. Tokyo Institute of Technology. Res. Rep. IIAD-RR-91-22E. International Institute for Advanced Study of Social Information Science, Fujitsu Laboratories, Ltd., Tokyo, Japan.
    • (1991) Algorithmic Learning of Formal Languages and Decision Trees
    • Sakakibara, Y.1
  • 28
    • 0025448521 scopus 로고
    • Learning probabilistic read-once formulas on product distributions
    • SCHAPIRE, R. E. 1990. Learning probabilistic read-once formulas on product distributions. Mach. Learn. 5, 2, 197-227.
    • (1990) Mach. Learn. , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 30
    • 0000755030 scopus 로고
    • Statistical mechanics of learning from examples
    • Apr.
    • SEUNG, H. S., SOMPOLINSKY, H., AND TISHBY, N. 1992. Statistical mechanics of learning from examples. Phys. Rev. A 45, 8 (Apr.), 6056-6091.
    • (1992) Phys. Rev. A , vol.45 , Issue.8 , pp. 6056-6091
    • Seung, H.S.1    Sompolinsky, H.2    Tishby, N.3
  • 32
    • 0021518106 scopus 로고
    • A theory of the learnable
    • Nov.
    • VALIANT, L. G. 1984. A theory of the learnable. Commun. ACM 27, 11 (Nov.), 1134-1142.
    • (1984) Commun. ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L.G.1
  • 34
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • VAPNIK, V. N., AND CHERVONENKIS, A. YA. 1971. On the uniform convergence of relative frequencies of events to their probabilities. Theory Prob. Appl. XVI, 2, 264-280.
    • (1971) Theory Prob. Appl. , vol.16 , Issue.2 , pp. 264-280
    • Vapnik, V.N.1    Chervonenkis, A.Ya.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.