메뉴 건너뛰기




Volumn 9, Issue 1, 2008, Pages 69-82

Intrusion detection in computer networks by a modular ensemble of one-class classifiers

Author keywords

Computer networks; Intrusion detection; Modular systems; Multiple classifier systems; One class classifiers

Indexed keywords

DATA STRUCTURES; DECISION THEORY; DEMODULATION; INTRUSION DETECTION; MATHEMATICAL MODELS; OPTIMIZATION;

EID: 35348821822     PISSN: 15662535     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.inffus.2006.10.002     Document Type: Article
Times cited : (188)

References (33)
  • 1
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behavior of several methods for balancing machine learning training data
    • Batista G., Prati R.C., and Monard M.C. A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explorations Newsletter 6 1 (2004) 20-29
    • (2004) ACM SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 20-29
    • Batista, G.1    Prati, R.C.2    Monard, M.C.3
  • 3
    • 27244448490 scopus 로고    scopus 로고
    • Network intrusion detection by a multi-stage classification system
    • Multiple Classifier Systems. Roli, Kittler, and Windeatt (Eds), Springer
    • Cordella L.P., Limongiello A., and Sansone C. Network intrusion detection by a multi-stage classification system. In: Roli, Kittler, and Windeatt (Eds). Multiple Classifier Systems. LNCS vol. 3077 (2004), Springer 324-333
    • (2004) LNCS , vol.3077 , pp. 324-333
    • Cordella, L.P.1    Limongiello, A.2    Sansone, C.3
  • 4
    • 0026850007 scopus 로고    scopus 로고
    • H. Debar, M. Becker, D. Siboni, A neural network component for an intrusion detection system, in: Proceedings of the IEEE Symposium on Research in Security and Privacy, Oakland, CA, USA, 1992, pp. 240-250.
  • 7
    • 0038428854 scopus 로고    scopus 로고
    • Results of the KDD'99 Classifier Learning
    • Elkan C. Results of the KDD'99 Classifier Learning. ACM SIGKDD Explorations 1 (2000) 63-64
    • (2000) ACM SIGKDD Explorations , vol.1 , pp. 63-64
    • Elkan, C.1
  • 8
    • 0141797880 scopus 로고    scopus 로고
    • A geometric framework for unsupervised anomaly detection: detecting intrusions in unlabeled data
    • Barbara D., and Jajodia S. (Eds), Kluwer
    • Eskin E., Arnold A., Prerau M., Portnoy L., and Stolfo S. A geometric framework for unsupervised anomaly detection: detecting intrusions in unlabeled data. In: Barbara D., and Jajodia S. (Eds). Applications of Data Mining in Computer Security (2002), Kluwer
    • (2002) Applications of Data Mining in Computer Security
    • Eskin, E.1    Arnold, A.2    Prerau, M.3    Portnoy, L.4    Stolfo, S.5
  • 9
    • 27244444099 scopus 로고    scopus 로고
    • G. Giacinto, F. Roli, L. Didaci, A modular multiple classifier system for the detection of intrusions in computer networks, in: T. Windeatt, F. Roli (Eds.), 4th International Workshop on Multiple Classifier Systems (MCS 2003), Guildford, United Kingdom, 11-13 June 2003, LNCS, vol. 2709, pp. 346-355.
  • 10
    • 0038330235 scopus 로고    scopus 로고
    • Fusion of multiple classifiers for intrusion detection in computer networks
    • Giacinto G., Roli F., and Didaci L. Fusion of multiple classifiers for intrusion detection in computer networks. Pattern Recognition Letters 24 12 (2003) 1795-1803
    • (2003) Pattern Recognition Letters , vol.24 , Issue.12 , pp. 1795-1803
    • Giacinto, G.1    Roli, F.2    Didaci, L.3
  • 12
    • 35348819799 scopus 로고    scopus 로고
    • H. Javits, A. Valdes. The NIDES statistical component: Description and justification. SRI Annual Report A010, SRI International, Computer Science Laboratory, March 1993.
  • 15
    • 84885774862 scopus 로고    scopus 로고
    • A Framework for Constructing Features and Models for Intrusion Detection Systems
    • Lee W., and Stolfo S. A Framework for Constructing Features and Models for Intrusion Detection Systems. ACM Transactions on Information and System Security 3 4 (2000)
    • (2000) ACM Transactions on Information and System Security , vol.3 , Issue.4
    • Lee, W.1    Stolfo, S.2
  • 16
    • 0034836392 scopus 로고    scopus 로고
    • W. Lee, D. Xiang, Information-theoretic measures for anomaly detection, IEEE Symposium on Security and Privacy, 2001.
  • 17
    • 35348824739 scopus 로고    scopus 로고
    • K. Leung, C. Leckie, Unsupervised anomaly detection in network intrusion detection using clusters, in: Proceedings of the 28th Australasian Computer Science Conference, ACSC 2005.
  • 19
    • 35348847581 scopus 로고    scopus 로고
    • M.V. Mahoney, P.K. Chan, An analysis of the 1999 DARPA/Lincoln Laboratory evaluation data for network anomaly detection, in: 6th International Symposium on Recent Advances in Intrusion Detection, RAID 2003.
  • 20
    • 0034270431 scopus 로고    scopus 로고
    • Defending yourself: the role of intrusion detection systems
    • September/October
    • McHugh J., Christie A., and Allen J. Defending yourself: the role of intrusion detection systems. IEEE Software (2000) 42-51 September/October
    • (2000) IEEE Software , pp. 42-51
    • McHugh, J.1    Christie, A.2    Allen, J.3
  • 21
    • 85019691440 scopus 로고    scopus 로고
    • Testing intrusion detection systems: a critique of the 1998 and 1999 DARPA intrusion detection system evaluations as performed by Lincoln Laboratory
    • McHugh J. Testing intrusion detection systems: a critique of the 1998 and 1999 DARPA intrusion detection system evaluations as performed by Lincoln Laboratory. ACM Transactions on Information and System Security 3 4 (2000) 262-294
    • (2000) ACM Transactions on Information and System Security , vol.3 , Issue.4 , pp. 262-294
    • McHugh, J.1
  • 22
    • 35348872957 scopus 로고    scopus 로고
    • L. Portnoy, E. Eskin, S. Stolfo, Intrusion detection with unlabeled data using clustering, in: Proceedings of ACM CSS Workshop on Data Mining Applied to Security, DMSA-2001.
  • 25
    • 35348875853 scopus 로고    scopus 로고
    • D.M.J. Tax, R.P.W. Duin, Combining one-class classifiers, in: Proceedings of Multiple Classifier Systems, MCS, 2001.
  • 26
    • 35348884674 scopus 로고    scopus 로고
    • D.M.J. Tax, One-class classification, concept learning in the absence of counter examples, Ph.D. Thesis, 2001, Delft University of Technology, Delft, Netherland.
  • 27
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • Tax D.M.J., and Duin R.P.W. Support vector data description. Machine Learning 54 1 (2004) 45-66
    • (2004) Machine Learning , vol.54 , Issue.1 , pp. 45-66
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 29
    • 14844322335 scopus 로고    scopus 로고
    • G. Vigna, W. Robertson, D. Balzarotti, Testing network-based intrusion detection signatures using mutant exploits, in: The Proceedings of the 11th ACM Conference on Computer and Communications Security (CCS), Washington DC, USA, October 2004.
  • 30
    • 35348866595 scopus 로고    scopus 로고
    • H.J. Wang, C. Guo, D.R. Simon, A. Zugenmaier, Shield: vulnerability-driven network filters for preventing known vulnerability exploits, in: Proceedings of the ACM SIGCOMM Conference, 2004.
  • 31
    • 35348886518 scopus 로고    scopus 로고
    • K. Wang, S.J. Stolfo, Anomalous payload-based network intrusion detection, in: Proceedings of the International Symposium on Recent Advances on Intrusion Detection, RAID 2004.
  • 32
    • 1642588421 scopus 로고    scopus 로고
    • Y. Yang, F. Ma, An unsupervised anomaly detection patterns learning algorithm, in: Proceedings of ICCT 2003.
  • 33
    • 2442526701 scopus 로고    scopus 로고
    • S. Zanero, S.M. Savaresi, Unsupervised learning techniques for an intrusion detection system, in: Proceedings of the ACM symposium on Applied computing, 2004.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.