메뉴 건너뛰기




Volumn 20, Issue 1, 2004, Pages 18-36

A multiple resampling method for learning from imbalanced data sets

Author keywords

Class imbalance problem; Decision trees; Inductive learning; Multiple resampling; Text classification

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); PROBLEM SOLVING; SAMPLING;

EID: 1442356040     PISSN: 08247935     EISSN: None     Source Type: Journal    
DOI: 10.1111/j.0824-7935.2004.t01-1-00228.x     Document Type: Article
Times cited : (896)

References (18)
  • 1
    • 0002271245 scopus 로고    scopus 로고
    • Combining Predictors
    • Statistics Department, 1998
    • BREIMAN, L. 1998. Combining Predictors. Technical Report, Statistics Department, 1998.
    • (1998) Technical Report
    • Breiman, L.1
  • 6
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: A systematic study
    • JAPKOWICZ, N., and S. STEPHEN. 2002. The class imbalance problem: a systematic study. Intelligent Data Analysis, 6(5):429-450.
    • (2002) Intelligent Data Analysis , vol.6 , Issue.5 , pp. 429-450
    • Japkowicz, N.1    Stephen, S.2
  • 9
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar images
    • KUBAT, M., R. HOLTE, and S. MATWIN. 1998, Machine learning for the detection of oil spills in satellite radar images. Machine Learning, 30:195-215.
    • (1998) Machine Learning , vol.30 , pp. 195-215
    • Kubat, M.1    Holte, R.2    Matwin, S.3
  • 11
    • 85161651554 scopus 로고    scopus 로고
    • Data mining for direct marketing: Problems and solutions
    • LING, C., and C. LI. 1998, Data mining for direct marketing: problems and solutions. In Proceedings of KDD-98.
    • (1998) Proceedings of KDD-98
    • Ling, C.1    Li, C.2
  • 13
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • PROVOST, F., and T. FAWCETT. 2001, Robust classification for imprecise environments. Machine Learning Journal, 42(3).
    • (2001) Machine Learning Journal , vol.42 , Issue.3
    • Provost, F.1    Fawcett, T.2
  • 14
    • 0028202408 scopus 로고
    • Representation design and brute-force induction in a Boeing manufacturing domain
    • RIDDLE, P., R. SECAL, and O. ETZIONI. 1991: Representation design and brute-force induction in a Boeing manufacturing domain. Applied Artificial Intelligence, 8:125-147.
    • (1991) Applied Artificial Intelligence , vol.8 , pp. 125-147
    • Riddle, P.1    Secal, R.2    Etzioni, O.3
  • 17
    • 0003213694 scopus 로고
    • An empirical comparison of pattern recognition, neural nets and machine learning methods
    • Edited by J. W Shavlik and T. G. Dietterich. Morgan-Kauffman, San Maeto, CA
    • WEISS, S., and I. KAPOULEAS. 1990, An empirical comparison of pattern recognition, neural nets and machine learning methods. In Readings in Machine Learning. Edited by J. W Shavlik and T. G. Dietterich. Morgan-Kauffman, San Maeto, CA.
    • (1990) Readings in Machine Learning
    • Weiss, S.1    Kapouleas, I.2
  • 18
    • 1442275185 scopus 로고    scopus 로고
    • Learning when training data are costly: The effect of class distribution on tree induction
    • WEISS, G., and F. PROVOST. 2003, Learning when training data are costly: the effect of class distribution on tree induction. Journal of Artificial Intelligence Research, 19: 315-354.
    • (2003) Journal of Artificial Intelligence Research , vol.19 , pp. 315-354
    • Weiss, G.1    Provost, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.