메뉴 건너뛰기




Volumn 51, Issue 2, 2003, Pages 181-207

Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy

Author keywords

Dependency and diversity; Majority vote; Multiple classifiers ensemble committee of learners; Pattern recognition

Indexed keywords

ALGORITHMS; NUMERICAL METHODS; PATTERN RECOGNITION; STATISTICAL METHODS;

EID: 0037403516     PISSN: 08856125     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1022859003006     Document Type: Article
Times cited : (2136)

References (39)
  • 2
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36, 105-142.
    • (1999) Machine Learning , vol.36 , pp. 105-142
    • Bauer, E.1    Kohavi, R.2
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996). Bagging predictors. Machine Learning, 26:2, 123-140.
    • (1996) Machine Learning , vol.26 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 4
    • 0001963137 scopus 로고    scopus 로고
    • Combining predictors
    • In A. Sharkey (Ed.); London: Springer-Verlag
    • Breiman, L. (1999). Combining predictors. In A. Sharkey (Ed.), Combining artificial neural nets (pp. 31-50). London: Springer-Verlag.
    • (1999) Combining Artificial Neural Nets , pp. 31-50
    • Breiman, L.1
  • 5
    • 0003954942 scopus 로고    scopus 로고
    • Diversity versus quality in classification ensembles based on feature selection
    • Technical Report TCD-CS-2000-02, Department of Computer Science, Trinity College Dublin
    • Cunningham, P., & Carney, J., (2000). Diversity versus quality in classification ensembles based on feature selection. Technical Report TCD-CS-2000-02, Department of Computer Science, Trinity College Dublin.
    • (2000)
    • Cunningham, P.1    Carney, J.2
  • 7
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization
    • Dietterich, T. (2000b). An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization. Machine Learning, 40:2, 139-157.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.1
  • 11
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y., & Schapire, R. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55:1, 119-139.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 12
    • 0035420134 scopus 로고    scopus 로고
    • Design of effective neural network ensembles for image classification processes
    • Giacinto, G., & Roli, F. (2001). Design of effective neural network ensembles for image classification processes. Image Vision and Computing Journal, 19:9/10, 699-707.
    • (2001) Image Vision and Computing Journal , vol.19 , Issue.9-10 , pp. 699-707
    • Giacinto, G.1    Roli, F.2
  • 14
    • 0001122278 scopus 로고    scopus 로고
    • Treating harmful collinearity in neural network ensembles
    • In A. Sharkey (Ed.); London: Springer-Verlag
    • Hashem, S. (1999). Treating harmful collinearity in neural network ensembles. In A. Sharkey (Ed.), Combining artificial neural nets (pp. 101-125). London: Springer-Verlag.
    • (1999) Combining Artificial Neural Nets , pp. 101-125
    • Hashem, S.1
  • 16
    • 0029230267 scopus 로고
    • A method of combining multiple experts for the recognition of unconstrained handwritten numerals
    • Huang, Y., & Suen, C. (1995). A method of combining multiple experts for the recognition of unconstrained handwritten numerals. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17, 90-93.
    • (1995) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.17 , pp. 90-93
    • Huang, Y.1    Suen, C.2
  • 18
    • 0002872346 scopus 로고    scopus 로고
    • Bias plus variance decomposition for zero-one loss functions
    • In L. Saitta (Ed.); Morgan Kaufmann
    • Kohavi, R., & Wolpert, D. (1996). Bias plus variance decomposition for zero-one loss functions. In L. Saitta (Ed.), Machine Learning: Proc. 13th International Conference (pp. 275-283). Morgan Kaufmann.
    • (1996) Machine Learning: Proc. 13th International Conference , pp. 275-283
    • Kohavi, R.1    Wolpert, D.2
  • 19
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation and active learning
    • In G. Tesauro, D. Touretzky, & T. Leen (Eds.); Cambridge, MA: MIT Press
    • Krogh, A., & Vedelsby, J. (1995). Neural network ensembles, cross validation and active learning. In G. Tesauro, D. Touretzky, & T. Leen (Eds.), Advances in neural information processing systems (Vol. 7, pp. 231-238), Cambridge, MA: MIT Press.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 21
    • 0034830461 scopus 로고    scopus 로고
    • Decision templates for multiple classifier fusion: An experimental comparison
    • Kuncheva, L., Bezdek, J., & Duin, R. (2001). Decision templates for multiple classifier fusion: An experimental comparison. Pattern Recognition, 34:2, 299-314.
    • (2001) Pattern Recognition , vol.34 , Issue.2 , pp. 299-314
    • Kuncheva, L.1    Bezdek, J.2    Duin, R.3
  • 23
    • 84867038166 scopus 로고    scopus 로고
    • Classifier combinations: Implementations and theoretical issues
    • In J. Kittler, & F. Roli (Eds.); Cagliari, Italy, Springer
    • Lam, L. (2000). Classifier combinations: Implementations and theoretical issues. In J. Kittler, & F. Roli (Eds.), Multiple classifier systems, Vol. 1857 of Lecture Notes in Computer Science (pp. 78-96). Cagliari, Italy, Springer.
    • (2000) Multiple Classifier Systems, Vol. 1857 of Lecture Notes in Computer Science , pp. 78-86
    • Lam, L.1
  • 24
    • 0024884032 scopus 로고
    • Conceptual modeling of coincident failures in multiversion software
    • Littlewood, B., & Miller, D. (1989). Conceptual modeling of coincident failures in multiversion software. IEEE Transactions on Software Engineering, 15:12, 1596-1614.
    • (1989) IEEE Transactions on Software Engineering , vol.15 , Issue.12 , pp. 1596-1614
    • Littlewood, B.1    Miller, D.2
  • 25
    • 0033485370 scopus 로고    scopus 로고
    • Ensemble learning via negative correlation
    • Liu, Y., & Yao, X. (1999). Ensemble learning via negative correlation. Neural Networks, 12, 1399-1404.
    • (1999) Neural Networks , vol.12 , pp. 1399-1404
    • Liu, Y.1    Yao, X.2
  • 26
    • 0024193278 scopus 로고
    • A statistical technique for comparing the accuracies of several classifiers
    • Looney, S. (1988). A statistical technique for comparing the accuracies of several classifiers. Pattern Recognition Letters, 8, 5-9.
    • (1988) Pattern Recognition Letters , vol.8 , pp. 5-9
    • Looney, S.1
  • 27
    • 0012987265 scopus 로고    scopus 로고
    • A genetic algorithm approach for creating neural network ensembles
    • In A. Sharkey (Ed.); London: Springer-Verlag
    • Opitz, D., & Shavlik, J. (1999). A genetic algorithm approach for creating neural network ensembles. In A. Sharkey (Ed.), Combining artificial neural nets (pp. 79-99). London: Springer-Verlag.
    • (1999) Combining Artificial Neural Nets , pp. 79-99
    • Opitz, D.1    Shavlik, J.2
  • 28
    • 0030352275 scopus 로고    scopus 로고
    • Reducing variance of committee prediction with resampling techniques
    • Parmanto, B., Munro, P., & Doyle, H. (1996). Reducing variance of committee prediction with resampling techniques. Connection Science, 8:3/4, 405-425.
    • (1996) Connection Science , vol.8 , Issue.3-4 , pp. 405-425
    • Parmanto, B.1    Munro, P.2    Doyle, H.3
  • 29
    • 0031244715 scopus 로고    scopus 로고
    • Software diversity: Practical statistics for its measurement and exploitation
    • Partridge, D., & Krzanowski, W. J. (1997). Software diversity: Practical statistics for its measurement and exploitation. Information & Software Technology, 39, 707-717.
    • (1997) Information & Software Technology , vol.39 , pp. 707-717
    • Partridge, D.1    Krzanowski, W.J.2
  • 30
    • 0030367578 scopus 로고    scopus 로고
    • Ensemble learning using decorrelated neural networks
    • Rosen, B. (1996). Ensemble learning using decorrelated neural networks. Connection Science, 8:3/4, 373-383.
    • (1996) Connection Science , vol.8 , Issue.3-4 , pp. 373-383
    • Rosen, B.1
  • 31
    • 84956988905 scopus 로고    scopus 로고
    • Application of the evolutionary algorithms for classifier selection in multiple classifier systems with majority voting
    • In J. Kittle, & F. Roli (Eds.); Cambridge, UK. Springer-Verlag
    • Ruta, D., & Gabrys, B. (2001). Application of the evolutionary algorithms for classifier selection in multiple classifier systems with majority voting. In J. Kittle, & F. Roli (Eds.), Proc. Second International Workshop on Multiple Classifier Systems, Vol. 2096 of Lecture Notes in Computer Science (pp. 399-408). Cambridge, UK. Springer-Verlag.
    • (2001) Proc. Second International Workshop on Multiple Classifier Systems, Vol. 2096 of Lecture Notes in Computer Science , pp. 399-408
    • Ruta, D.1    Gabrys, B.2
  • 36
    • 0030085913 scopus 로고    scopus 로고
    • Analysis of decision boundaries in linearly combined neural classifiers
    • Turner, K., & Ghosh, J. (1996a). Analysis of decision boundaries in linearly combined neural classifiers, Pattern Recognition, 29:2, 341-348.
    • (1996) Pattern Recognition , vol.29 , Issue.2 , pp. 341-348
    • Turner, K.1    Ghosh, J.2
  • 37
    • 0030365938 scopus 로고    scopus 로고
    • Error correlation and error reduction in ensemble classifiers
    • Turner, K., & Ghosh, J. (1996b). Error correlation and error reduction in ensemble classifiers. Connection Science, 8: 3/4, 385-404.
    • (1996) Connection Science , vol.8 , Issue.3-4 , pp. 385-404
    • Turner, K.1    Ghosh, J.2
  • 38
    • 0001562581 scopus 로고    scopus 로고
    • Linear and order statistics combiners for pattern classification
    • In A. Sharkey (Ed.); London: Springer-Verlag
    • Turner, K., & Ghosh, J. (1999). Linear and order statistics combiners for pattern classification. In A. Sharkey (Ed.), Combining artificial neural nets (pp. 127-161). London: Springer-Verlag.
    • (1999) Combining Artificial Neural Nets , pp. 127-161
    • Turner, K.1    Ghosh, J.2
  • 39
    • 0001218846 scopus 로고
    • On the association of attributes in statistics
    • Yule, G. (1900). On the association of attributes in statistics. Phil. Trans., A, 194, 257-319.
    • (1900) Phil. Trans., A , vol.194 , pp. 257-319
    • Yule, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.