메뉴 건너뛰기




Volumn 9, Issue , 2008, Pages 285-312

Support vector machinery for infinite ensemble learning

Author keywords

Boosting; Ensemble learning; Kernel; Support vector machine

Indexed keywords

ALGORITHMS; GAUSSIAN DISTRIBUTION; PARAMETER ESTIMATION; RADIAL BASIS FUNCTION NETWORKS;

EID: 41549137738     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (35)

References (41)
  • 2
    • 33745879331 scopus 로고
    • Conditionally positive functions and p-norm distance matrices
    • Brad J. C. Baxter. Conditionally positive functions and p-norm distance matrices. Constructive Approximation, 7(1):427-440, 1991.
    • (1991) Constructive Approximation , vol.7 , Issue.1 , pp. 427-440
    • Baxter, B.J.C.1
  • 5
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing algorithms
    • Leo Breiman. Prediction games and arcing algorithms. Neural Computation, 11(7): 1493-1517, 1999.
    • (1999) Neural Computation , vol.11 , Issue.7 , pp. 1493-1517
    • Breiman, L.1
  • 7
    • 0000667930 scopus 로고    scopus 로고
    • Training v-support vector classifiers: Theory and algorithms
    • Chih-Chung Chang and Chih-Jen Lin. Training v-support vector classifiers: Theory and algorithms. Neural Computation, 13(9):2119-2147, 2001b.
    • (2001) Neural Computation , vol.13 , Issue.9 , pp. 2119-2147
    • Chang, C.-C.1    Lin, C.-J.2
  • 8
    • 0032594951 scopus 로고    scopus 로고
    • Support vector machines for histogrambased image classification
    • Olivier Chapelle, Patrick Haffner, and Vladimir N. Vapnik. Support vector machines for histogrambased image classification. IEEE Transactions on Neural Networks, 10(5): 1055-1064, 1999.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.5 , pp. 1055-1064
    • Chapelle, O.1    Haffner, P.2    Vapnik, V.N.3
  • 9
    • 0036161257 scopus 로고    scopus 로고
    • Linear programming boosting via column generation
    • Ayhan Demiriz, Kristin P. Bennett, and John Shawe-Taylor. Linear programming boosting via column generation. Machine Learning, 46(1-3):225-254, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 225-254
    • Demiriz, A.1    Bennett, K.P.2    Shawe-Taylor, J.3
  • 10
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Thomas G. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40(2):139-157, 2000.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 13
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1): 119-139, 1997.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 15
    • 21244457634 scopus 로고    scopus 로고
    • PAC-Bayesian compression bounds on the prediction error of learning algorithms for classification
    • Thore Graepel, Ralf Herbrich, and John Shawe-Taylor. PAC-Bayesian compression bounds on the prediction error of learning algorithms for classification. Machine Learning, 59(1-2):55-76, 2005.
    • (2005) Machine Learning , vol.59 , Issue.1-2 , pp. 55-76
    • Graepel, T.1    Herbrich, R.2    Shawe-Taylor, J.3
  • 21
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • Robert C. Holte. Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11(1):63-91, 1993.
    • (1993) Machine Learning , vol.11 , Issue.1 , pp. 63-91
    • Holte, R.C.1
  • 22
    • 4944228528 scopus 로고    scopus 로고
    • A practical guide to support vector classification
    • Technical report, National Taiwan University
    • Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. A practical guide to support vector classification. Technical report, National Taiwan University, 2003.
    • (2003)
    • Hsu, C.-W.1    Chang, C.-C.2    Lin, C.-J.3
  • 23
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with Gaussian kernel
    • S. Sathiya Keerthi and Chih-Jen Lin. Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Computation, 15(7): 1667-1689, 2003.
    • (2003) Neural Computation , vol.15 , Issue.7 , pp. 1667-1689
    • Sathiya Keerthi, S.1    Lin, C.-J.2
  • 27
    • 41549145469 scopus 로고    scopus 로고
    • Analysis of SAGE results with combined learning techniques
    • P. Berka and B. Crémilleux, editors
    • Hsuan-Tien Lin and Ling Li. Analysis of SAGE results with combined learning techniques. In P. Berka and B. Crémilleux, editors, Proceedings of the ECML/PKDD 2005 Discovery Challenge, pages 102-113, 2005b.
    • (2005) Proceedings of the ECML/PKDD 2005 Discovery Challenge , pp. 102-113
    • Lin, H.-T.1    Li, L.2
  • 28
    • 35248862907 scopus 로고    scopus 로고
    • An introduction to boosting and leveraging
    • S. Mendelson and A. J. Smola, editors, Springer-Verlag
    • Ron Meir and Gunnar Rätsch. An introduction to boosting and leveraging. In S. Mendelson and A. J. Smola, editors, Advanced Lectures on Machine Learning, pages 118-183. Springer-Verlag, 2003.
    • (2003) Advanced Lectures on Machine Learning , pp. 118-183
    • Meir, R.1    Rätsch, G.2
  • 29
    • 34250122797 scopus 로고
    • Interpolation of scattered data: Distance matrices and conditionally positive definite functions
    • Charles A. Micchelli. Interpolation of scattered data: Distance matrices and conditionally positive definite functions. Constructive Approximation, 2(1): 11-22, 1986.
    • (1986) Constructive Approximation , vol.2 , Issue.1 , pp. 11-22
    • Micchelli, C.A.1
  • 30
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Schölkopf, C. Burges, and A. Smola, editors, MIT Press
    • John C. Piatt. Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods: Support Vector Learning, pages 185-208. MIT Press, 1999.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 185-208
    • Piatt, J.C.1
  • 31
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J. Ross Quinlan. Induction of decision trees. Machine Learning, 1(1):81-106, 1986.
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Ross Quinlan, J.1
  • 33
    • 0342502195 scopus 로고    scopus 로고
    • Soft margins for AdaBoost
    • Gunnar Ratsch, Takashi Onoda, and Klaus-Robert Müller. Soft margins for AdaBoost. Machine Learning, 42(3):287-320, 2001.
    • (2001) Machine Learning , vol.42 , Issue.3 , pp. 287-320
    • Ratsch, G.1    Onoda, T.2    Müller, K.-R.3
  • 34
    • 0036643047 scopus 로고    scopus 로고
    • Sparse regression ensembles in infinite and finite hypothesis spaces
    • Gunnar Ratsch, Ayhan Demiriz, and Kristin P. Bennett. Sparse regression ensembles in infinite and finite hypothesis spaces. Machine Learning, 48(1-3): 189-218, 2002.
    • (2002) Machine Learning , vol.48 , Issue.1-3 , pp. 189-218
    • Ratsch, G.1    Demiriz, A.2    Bennett, K.P.3
  • 36
    • 41549115610 scopus 로고    scopus 로고
    • Michael Reed and Barry Simon. Functional Analysis. Academic Press, revised and enlarged edition, 1980.
    • Michael Reed and Barry Simon. Functional Analysis. Academic Press, revised and enlarged edition, 1980.
  • 37
    • 12844274244 scopus 로고    scopus 로고
    • Boosting as a regularized path to a maximum margin classifier
    • Saharon Rosset, Ji Zhu, and Trevor Hastie. Boosting as a regularized path to a maximum margin classifier. Journal of Machine Learning Research, 5:941-973, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 941-973
    • Rosset, S.1    Zhu, J.2    Hastie, T.3
  • 38
    • 41549122993 scopus 로고    scopus 로고
    • 1 regularization in infinite dimensional feature spaces. In N. H. Bshouty and C. Gentile, editors, Learning Theory: 20th Annual Conference on Learning Theory, 4539 of Lecture Notes in Computer Science, pages 544558. Springer-Verlag, 2007.
    • 1 regularization in infinite dimensional feature spaces. In N. H. Bshouty and C. Gentile, editors, Learning Theory: 20th Annual Conference on Learning Theory, volume 4539 of Lecture Notes in Computer Science, pages 544558. Springer-Verlag, 2007.
  • 41
    • 0000704059 scopus 로고    scopus 로고
    • Computation with infinite neural networks
    • Christopher K. I. Williams. Computation with infinite neural networks. Neural Computation, 10 (5): 1203-1216, 1998.
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1203-1216
    • Williams, C.K.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.