-
1
-
-
0345134164
-
Histogram intersection kernel for image classification
-
Annalisa Barla, Francesca Odone, and Alessandro Verri. Histogram intersection kernel for image classification. In Proceedings of the 2003 Conference on Image Processing, volume 3, pages 513-516, 2003.
-
(2003)
Proceedings of the 2003 Conference on Image Processing
, vol.3
, pp. 513-516
-
-
Barla, A.1
Odone, F.2
Verri, A.3
-
2
-
-
33745879331
-
Conditionally positive functions and p-norm distance matrices
-
Brad J. C. Baxter. Conditionally positive functions and p-norm distance matrices. Constructive Approximation, 7(1):427-440, 1991.
-
(1991)
Constructive Approximation
, vol.7
, Issue.1
, pp. 427-440
-
-
Baxter, B.J.C.1
-
4
-
-
33749268008
-
Generalized histogram intersection kernel for image recognition
-
Sabri Boughorbel, Jean-Philippe Tarel, and Nozha Boujemaa. Generalized histogram intersection kernel for image recognition. In Proceedings of the 2005 Conference on Image Processing, volume 3, pages 161-164, 2005.
-
(2005)
Proceedings of the 2005 Conference on Image Processing
, vol.3
, pp. 161-164
-
-
Boughorbel, S.1
Tarel, J.-P.2
Boujemaa, N.3
-
5
-
-
0000275022
-
Prediction games and arcing algorithms
-
Leo Breiman. Prediction games and arcing algorithms. Neural Computation, 11(7): 1493-1517, 1999.
-
(1999)
Neural Computation
, vol.11
, Issue.7
, pp. 1493-1517
-
-
Breiman, L.1
-
7
-
-
0000667930
-
Training v-support vector classifiers: Theory and algorithms
-
Chih-Chung Chang and Chih-Jen Lin. Training v-support vector classifiers: Theory and algorithms. Neural Computation, 13(9):2119-2147, 2001b.
-
(2001)
Neural Computation
, vol.13
, Issue.9
, pp. 2119-2147
-
-
Chang, C.-C.1
Lin, C.-J.2
-
8
-
-
0032594951
-
Support vector machines for histogrambased image classification
-
Olivier Chapelle, Patrick Haffner, and Vladimir N. Vapnik. Support vector machines for histogrambased image classification. IEEE Transactions on Neural Networks, 10(5): 1055-1064, 1999.
-
(1999)
IEEE Transactions on Neural Networks
, vol.10
, Issue.5
, pp. 1055-1064
-
-
Chapelle, O.1
Haffner, P.2
Vapnik, V.N.3
-
9
-
-
0036161257
-
Linear programming boosting via column generation
-
Ayhan Demiriz, Kristin P. Bennett, and John Shawe-Taylor. Linear programming boosting via column generation. Machine Learning, 46(1-3):225-254, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 225-254
-
-
Demiriz, A.1
Bennett, K.P.2
Shawe-Taylor, J.3
-
10
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
Thomas G. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40(2):139-157, 2000.
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 139-157
-
-
Dietterich, T.G.1
-
13
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1): 119-139, 1997.
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
15
-
-
21244457634
-
PAC-Bayesian compression bounds on the prediction error of learning algorithms for classification
-
Thore Graepel, Ralf Herbrich, and John Shawe-Taylor. PAC-Bayesian compression bounds on the prediction error of learning algorithms for classification. Machine Learning, 59(1-2):55-76, 2005.
-
(2005)
Machine Learning
, vol.59
, Issue.1-2
, pp. 55-76
-
-
Graepel, T.1
Herbrich, R.2
Shawe-Taylor, J.3
-
18
-
-
0003684449
-
-
Springer-Verlag
-
Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer-Verlag, 2001.
-
(2001)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
21
-
-
0027580356
-
Very simple classification rules perform well on most commonly used datasets
-
Robert C. Holte. Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11(1):63-91, 1993.
-
(1993)
Machine Learning
, vol.11
, Issue.1
, pp. 63-91
-
-
Holte, R.C.1
-
22
-
-
4944228528
-
A practical guide to support vector classification
-
Technical report, National Taiwan University
-
Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. A practical guide to support vector classification. Technical report, National Taiwan University, 2003.
-
(2003)
-
-
Hsu, C.-W.1
Chang, C.-C.2
Lin, C.-J.3
-
23
-
-
0037822222
-
Asymptotic behaviors of support vector machines with Gaussian kernel
-
S. Sathiya Keerthi and Chih-Jen Lin. Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Computation, 15(7): 1667-1689, 2003.
-
(2003)
Neural Computation
, vol.15
, Issue.7
, pp. 1667-1689
-
-
Sathiya Keerthi, S.1
Lin, C.-J.2
-
27
-
-
41549145469
-
Analysis of SAGE results with combined learning techniques
-
P. Berka and B. Crémilleux, editors
-
Hsuan-Tien Lin and Ling Li. Analysis of SAGE results with combined learning techniques. In P. Berka and B. Crémilleux, editors, Proceedings of the ECML/PKDD 2005 Discovery Challenge, pages 102-113, 2005b.
-
(2005)
Proceedings of the ECML/PKDD 2005 Discovery Challenge
, pp. 102-113
-
-
Lin, H.-T.1
Li, L.2
-
28
-
-
35248862907
-
An introduction to boosting and leveraging
-
S. Mendelson and A. J. Smola, editors, Springer-Verlag
-
Ron Meir and Gunnar Rätsch. An introduction to boosting and leveraging. In S. Mendelson and A. J. Smola, editors, Advanced Lectures on Machine Learning, pages 118-183. Springer-Verlag, 2003.
-
(2003)
Advanced Lectures on Machine Learning
, pp. 118-183
-
-
Meir, R.1
Rätsch, G.2
-
29
-
-
34250122797
-
Interpolation of scattered data: Distance matrices and conditionally positive definite functions
-
Charles A. Micchelli. Interpolation of scattered data: Distance matrices and conditionally positive definite functions. Constructive Approximation, 2(1): 11-22, 1986.
-
(1986)
Constructive Approximation
, vol.2
, Issue.1
, pp. 11-22
-
-
Micchelli, C.A.1
-
30
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
B. Schölkopf, C. Burges, and A. Smola, editors, MIT Press
-
John C. Piatt. Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods: Support Vector Learning, pages 185-208. MIT Press, 1999.
-
(1999)
Advances in Kernel Methods: Support Vector Learning
, pp. 185-208
-
-
Piatt, J.C.1
-
31
-
-
33744584654
-
Induction of decision trees
-
J. Ross Quinlan. Induction of decision trees. Machine Learning, 1(1):81-106, 1986.
-
(1986)
Machine Learning
, vol.1
, Issue.1
, pp. 81-106
-
-
Ross Quinlan, J.1
-
33
-
-
0342502195
-
Soft margins for AdaBoost
-
Gunnar Ratsch, Takashi Onoda, and Klaus-Robert Müller. Soft margins for AdaBoost. Machine Learning, 42(3):287-320, 2001.
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 287-320
-
-
Ratsch, G.1
Onoda, T.2
Müller, K.-R.3
-
34
-
-
0036643047
-
Sparse regression ensembles in infinite and finite hypothesis spaces
-
Gunnar Ratsch, Ayhan Demiriz, and Kristin P. Bennett. Sparse regression ensembles in infinite and finite hypothesis spaces. Machine Learning, 48(1-3): 189-218, 2002.
-
(2002)
Machine Learning
, vol.48
, Issue.1-3
, pp. 189-218
-
-
Ratsch, G.1
Demiriz, A.2
Bennett, K.P.3
-
35
-
-
0036709275
-
Constructing boosting algorithms from SVMs: An application to one-class classification
-
Gunnar Ratsch, Sebastian Mika, Bernhard Schölkopf, and Klaus-Robert Müller. Constructing boosting algorithms from SVMs: an application to one-class classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(9): 1184-1199, 2002.
-
(2002)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.24
, Issue.9
, pp. 1184-1199
-
-
Ratsch, G.1
Mika, S.2
Schölkopf, B.3
Müller, K.-R.4
-
36
-
-
41549115610
-
-
Michael Reed and Barry Simon. Functional Analysis. Academic Press, revised and enlarged edition, 1980.
-
Michael Reed and Barry Simon. Functional Analysis. Academic Press, revised and enlarged edition, 1980.
-
-
-
-
37
-
-
12844274244
-
Boosting as a regularized path to a maximum margin classifier
-
Saharon Rosset, Ji Zhu, and Trevor Hastie. Boosting as a regularized path to a maximum margin classifier. Journal of Machine Learning Research, 5:941-973, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 941-973
-
-
Rosset, S.1
Zhu, J.2
Hastie, T.3
-
38
-
-
41549122993
-
-
1 regularization in infinite dimensional feature spaces. In N. H. Bshouty and C. Gentile, editors, Learning Theory: 20th Annual Conference on Learning Theory, 4539 of Lecture Notes in Computer Science, pages 544558. Springer-Verlag, 2007.
-
1 regularization in infinite dimensional feature spaces. In N. H. Bshouty and C. Gentile, editors, Learning Theory: 20th Annual Conference on Learning Theory, volume 4539 of Lecture Notes in Computer Science, pages 544558. Springer-Verlag, 2007.
-
-
-
-
41
-
-
0000704059
-
Computation with infinite neural networks
-
Christopher K. I. Williams. Computation with infinite neural networks. Neural Computation, 10 (5): 1203-1216, 1998.
-
(1998)
Neural Computation
, vol.10
, Issue.5
, pp. 1203-1216
-
-
Williams, C.K.I.1
|