-
1
-
-
0037337904
-
Clustering ensembles of neural network models
-
Bakker B., and Heskes T. Clustering ensembles of neural network models. Neural Networks 16 2 (2003) 261-269
-
(2003)
Neural Networks
, vol.16
, Issue.2
, pp. 261-269
-
-
Bakker, B.1
Heskes, T.2
-
2
-
-
10444241978
-
Ensemble diversity measures and their application to thinning
-
Banfield R.E., Hall L.O., Bowyer K.W., and Kegelmeyer W.P. Ensemble diversity measures and their application to thinning. Inform. Fusion J. 6 1 (2005) 49-62
-
(2005)
Inform. Fusion J.
, vol.6
, Issue.1
, pp. 49-62
-
-
Banfield, R.E.1
Hall, L.O.2
Bowyer, K.W.3
Kegelmeyer, W.P.4
-
3
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
Bauer E., and Kohavi R. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learn. 36 1-2 (1999) 105-139
-
(1999)
Machine Learn.
, vol.36
, Issue.1-2
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
4
-
-
33750476269
-
-
Blake, C.L., Merz, C.J. 1998. UCI repository of machine learning databases. URL Available from: .
-
-
-
-
5
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Machine Learn. 24 2 (1996) 123-140
-
(1996)
Machine Learn.
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
6
-
-
33750451178
-
-
Breiman, L. 1996b. Bias, variance, and arcing classifiers. Tech. Rep. 460, Statistics Department, University of California.
-
-
-
-
7
-
-
0346786584
-
Arcing classifiers
-
Breiman L. Arcing classifiers. Ann. Statist. 26 3 (1998) 801-849
-
(1998)
Ann. Statist.
, vol.26
, Issue.3
, pp. 801-849
-
-
Breiman, L.1
-
8
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Machine Learn. 45 1 (2001) 5-32
-
(2001)
Machine Learn.
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
9
-
-
0003802343
-
-
Chapman & Hall, New York
-
Breiman L., Friedman J.H., Olshen R.A., and Stone C.J. Classification and Regression Trees (1984), Chapman & Hall, New York
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.A.3
Stone, C.J.4
-
10
-
-
25644439038
-
Cost-conscious classifier ensembles
-
Demir C., and Alpaydin E. Cost-conscious classifier ensembles. Pattern Recognition Lett. 26 14 (2005) 2206-2214
-
(2005)
Pattern Recognition Lett.
, vol.26
, Issue.14
, pp. 2206-2214
-
-
Demir, C.1
Alpaydin, E.2
-
11
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
Dietterich T.G. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learn. 40 2 (2000) 139-157
-
(2000)
Machine Learn.
, vol.40
, Issue.2
, pp. 139-157
-
-
Dietterich, T.G.1
-
12
-
-
0002160212
-
Knowledge acquisition from examples via multiple models
-
Morgan Kaufmann
-
Domingos P. Knowledge acquisition from examples via multiple models. Proc. 14th Internat. Conf. on Machine Learning (1997), Morgan Kaufmann 98-106
-
(1997)
Proc. 14th Internat. Conf. on Machine Learning
, pp. 98-106
-
-
Domingos, P.1
-
13
-
-
84983110889
-
-
Freund, Y., Schapire, R.E. 1995. A decision-theoretic generalization of on-line learning and an application to boosting. In: Proc. 2nd European Conf. on Computational Learning Theory, pp. 23-37.
-
-
-
-
14
-
-
0035202645
-
An approach to the automatic design of multiple classifier systems
-
Giacinto G., and Roli F. An approach to the automatic design of multiple classifier systems. Pattern Recognition Lett. 22 1 (2001) 25-33
-
(2001)
Pattern Recognition Lett.
, vol.22
, Issue.1
, pp. 25-33
-
-
Giacinto, G.1
Roli, F.2
-
18
-
-
22844439516
-
Switching class labels to generate classification ensembles
-
Martínez-Muñoz G., and Suárez A. Switching class labels to generate classification ensembles. Pattern Recognition 38 10 (2005) 1483-1494
-
(2005)
Pattern Recognition
, vol.38
, Issue.10
, pp. 1483-1494
-
-
Martínez-Muñoz, G.1
Suárez, A.2
-
19
-
-
0012467735
-
Cost complexity-based pruning of ensemble classifiers
-
Prodromidis A.L., and Stolfo S.J. Cost complexity-based pruning of ensemble classifiers. Knowl. Inform. Systems 3 4 (2001) 449-469
-
(2001)
Knowl. Inform. Systems
, vol.3
, Issue.4
, pp. 449-469
-
-
Prodromidis, A.L.1
Stolfo, S.J.2
-
22
-
-
0034247206
-
Multiboosting: A technique for combining boosting and wagging
-
Webb G.I. Multiboosting: A technique for combining boosting and wagging. Machine Learn. 40 2 (2000) 159-196
-
(2000)
Machine Learn.
, vol.40
, Issue.2
, pp. 159-196
-
-
Webb, G.I.1
-
23
-
-
8344279588
-
Selective ensemble of decision trees
-
Springer, Berlin
-
Zhou Z.-H., and Tang W. Selective ensemble of decision trees. Lecture Notes in Artificial Intelligence vol. 2639 (2003), Springer, Berlin 476-483
-
(2003)
Lecture Notes in Artificial Intelligence
, vol.2639
, pp. 476-483
-
-
Zhou, Z.-H.1
Tang, W.2
-
24
-
-
0036567392
-
Ensembling neural networks: Many could be better than all
-
Zhou Z.-H., Wu J., and Tang W. Ensembling neural networks: Many could be better than all. Artif. Intell. 137 1-2 (2002) 239-263
-
(2002)
Artif. Intell.
, vol.137
, Issue.1-2
, pp. 239-263
-
-
Zhou, Z.-H.1
Wu, J.2
Tang, W.3
|