메뉴 건너뛰기




Volumn 28, Issue 1, 2007, Pages 156-165

Using boosting to prune bagging ensembles

Author keywords

Bagging; Boosting; Decision trees; Ensemble pruning; Ensembles; Machine learning

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA STORAGE EQUIPMENT; ERROR ANALYSIS; IDENTIFICATION (CONTROL SYSTEMS); LEARNING SYSTEMS; TREES (MATHEMATICS);

EID: 33750460241     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2006.06.018     Document Type: Article
Times cited : (110)

References (24)
  • 1
    • 0037337904 scopus 로고    scopus 로고
    • Clustering ensembles of neural network models
    • Bakker B., and Heskes T. Clustering ensembles of neural network models. Neural Networks 16 2 (2003) 261-269
    • (2003) Neural Networks , vol.16 , Issue.2 , pp. 261-269
    • Bakker, B.1    Heskes, T.2
  • 3
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer E., and Kohavi R. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learn. 36 1-2 (1999) 105-139
    • (1999) Machine Learn. , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 4
    • 33750476269 scopus 로고    scopus 로고
    • Blake, C.L., Merz, C.J. 1998. UCI repository of machine learning databases. URL Available from: .
  • 5
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learn. 24 2 (1996) 123-140
    • (1996) Machine Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 6
    • 33750451178 scopus 로고    scopus 로고
    • Breiman, L. 1996b. Bias, variance, and arcing classifiers. Tech. Rep. 460, Statistics Department, University of California.
  • 7
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • Breiman L. Arcing classifiers. Ann. Statist. 26 3 (1998) 801-849
    • (1998) Ann. Statist. , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 8
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Machine Learn. 45 1 (2001) 5-32
    • (2001) Machine Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 10
    • 25644439038 scopus 로고    scopus 로고
    • Cost-conscious classifier ensembles
    • Demir C., and Alpaydin E. Cost-conscious classifier ensembles. Pattern Recognition Lett. 26 14 (2005) 2206-2214
    • (2005) Pattern Recognition Lett. , vol.26 , Issue.14 , pp. 2206-2214
    • Demir, C.1    Alpaydin, E.2
  • 11
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich T.G. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learn. 40 2 (2000) 139-157
    • (2000) Machine Learn. , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 12
    • 0002160212 scopus 로고    scopus 로고
    • Knowledge acquisition from examples via multiple models
    • Morgan Kaufmann
    • Domingos P. Knowledge acquisition from examples via multiple models. Proc. 14th Internat. Conf. on Machine Learning (1997), Morgan Kaufmann 98-106
    • (1997) Proc. 14th Internat. Conf. on Machine Learning , pp. 98-106
    • Domingos, P.1
  • 13
    • 84983110889 scopus 로고    scopus 로고
    • Freund, Y., Schapire, R.E. 1995. A decision-theoretic generalization of on-line learning and an application to boosting. In: Proc. 2nd European Conf. on Computational Learning Theory, pp. 23-37.
  • 14
    • 0035202645 scopus 로고    scopus 로고
    • An approach to the automatic design of multiple classifier systems
    • Giacinto G., and Roli F. An approach to the automatic design of multiple classifier systems. Pattern Recognition Lett. 22 1 (2001) 25-33
    • (2001) Pattern Recognition Lett. , vol.22 , Issue.1 , pp. 25-33
    • Giacinto, G.1    Roli, F.2
  • 18
    • 22844439516 scopus 로고    scopus 로고
    • Switching class labels to generate classification ensembles
    • Martínez-Muñoz G., and Suárez A. Switching class labels to generate classification ensembles. Pattern Recognition 38 10 (2005) 1483-1494
    • (2005) Pattern Recognition , vol.38 , Issue.10 , pp. 1483-1494
    • Martínez-Muñoz, G.1    Suárez, A.2
  • 19
    • 0012467735 scopus 로고    scopus 로고
    • Cost complexity-based pruning of ensemble classifiers
    • Prodromidis A.L., and Stolfo S.J. Cost complexity-based pruning of ensemble classifiers. Knowl. Inform. Systems 3 4 (2001) 449-469
    • (2001) Knowl. Inform. Systems , vol.3 , Issue.4 , pp. 449-469
    • Prodromidis, A.L.1    Stolfo, S.J.2
  • 22
    • 0034247206 scopus 로고    scopus 로고
    • Multiboosting: A technique for combining boosting and wagging
    • Webb G.I. Multiboosting: A technique for combining boosting and wagging. Machine Learn. 40 2 (2000) 159-196
    • (2000) Machine Learn. , vol.40 , Issue.2 , pp. 159-196
    • Webb, G.I.1
  • 23
    • 8344279588 scopus 로고    scopus 로고
    • Selective ensemble of decision trees
    • Springer, Berlin
    • Zhou Z.-H., and Tang W. Selective ensemble of decision trees. Lecture Notes in Artificial Intelligence vol. 2639 (2003), Springer, Berlin 476-483
    • (2003) Lecture Notes in Artificial Intelligence , vol.2639 , pp. 476-483
    • Zhou, Z.-H.1    Tang, W.2
  • 24
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Zhou Z.-H., Wu J., and Tang W. Ensembling neural networks: Many could be better than all. Artif. Intell. 137 1-2 (2002) 239-263
    • (2002) Artif. Intell. , vol.137 , Issue.1-2 , pp. 239-263
    • Zhou, Z.-H.1    Wu, J.2    Tang, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.