메뉴 건너뛰기




Volumn 2639, Issue , 2003, Pages 476-483

Selective ensemble of decision trees

Author keywords

[No Author keywords available]

Indexed keywords

DECISION TREES; FORESTRY; FUZZY SETS; GRANULAR COMPUTING; ROUGH SET THEORY; TREES (MATHEMATICS); ALGORITHMS; LEARNING SYSTEMS; NEURAL NETWORKS;

EID: 8344279588     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-39205-x_81     Document Type: Conference Paper
Times cited : (111)

References (27)
  • 2
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer E., Kohavi R.: An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Machine Learning 36 (1999) 105–139.
    • (1999) Machine Learning , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 3
    • 0003408496 scopus 로고    scopus 로고
    • Department of Information and Computer Science, University of California, Irvine, CA
    • Blake C., Keogh E., Merz C. J.: UCI repository of machine learning databases [http://www.ics.uci.edu/~mlearn/MLRepository.html]. Department of Information and Computer Science, University of California, Irvine, CA, 1998.
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.1    Keogh, E.2    Merz, C.J.3
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L.: Bagging predictors. Machine Learning 24 (1996) 123–140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 5
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • Breiman L.: Arcing classifiers. Annals of Statistics 26 (1998) 801–849.
    • (1998) Annals of Statistics , vol.26 , pp. 801-849
    • Breiman, L.1
  • 7
    • 0034333684 scopus 로고    scopus 로고
    • Stability problems with artificial neural networks and the ensemble solution
    • Cunningham P., Carney J., Jacob S.: Stability problems with artificial neural networks and the ensemble solution. Artificial Intelligence in Medicine 20 (2000) 217–225.
    • (2000) Artificial Intelligence in Medicine , vol.20 , pp. 217-225
    • Cunningham, P.1    Carney, J.2    Jacob, S.3
  • 8
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich T. G.: An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Machine Learning 40 (2000) 139–157.
    • (2000) Machine Learning , vol.40 , pp. 139-157
    • Dietterich, T.G.1
  • 9
    • 0002552358 scopus 로고
    • Improving performance in neural networks using a boosting algorithm
    • In: Hanson S. J., Cowan J. D., Giles C. L. (eds.), Morgan Kaufmann, San Mateo, CA
    • Drucker H., Schapire R., Simard P.: Improving performance in neural networks using a boosting algorithm. In: Hanson S. J., Cowan J. D., Giles C. L. (eds.): Advances in Neural Information Processing Systems 5, Morgan Kaufmann, San Mateo, CA (1993) 42–49.
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 42-49
    • Drucker, H.1    Schapire, R.2    Simard, P.3
  • 15
    • 4544223395 scopus 로고    scopus 로고
    • Using rough sets theory and database operations to construct a good ensemble of classifiers for data mining applications
    • Hu X.: Using rough sets theory and database operations to construct a good ensemble of classifiers for data mining applications. In: Proceedings of the IEEE International Conference on Data Mining (2001) 233–240.
    • (2001) Proceedings of the IEEE International Conference on Data Mining , pp. 233-240
    • Hu, X.1
  • 24
    • 0034247206 scopus 로고    scopus 로고
    • MultiBoosting: A technique for combining boosting and wagging
    • Webb G. I.: MultiBoosting: a technique for combining boosting and wagging. Machine Learning 40 (2000) 159–196.
    • (2000) Machine Learning , vol.40 , pp. 159-196
    • Webb, G.I.1
  • 25
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert D.: Stacked generalization. Neural Networks 5 (1992) 241–259.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.1
  • 27
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Zhou Z.-H., Wu J., Tang W.: Ensembling neural networks: many could be better than all. Artificial Intelligence 137 (2002) 239–263.
    • (2002) Artificial Intelligence , vol.137 , pp. 239-263
    • Zhou, Z.-H.1    Wu, J.2    Tang, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.