-
2
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
Bauer E., Kohavi R.: An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Machine Learning 36 (1999) 105–139.
-
(1999)
Machine Learning
, vol.36
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
3
-
-
0003408496
-
-
Department of Information and Computer Science, University of California, Irvine, CA
-
Blake C., Keogh E., Merz C. J.: UCI repository of machine learning databases [http://www.ics.uci.edu/~mlearn/MLRepository.html]. Department of Information and Computer Science, University of California, Irvine, CA, 1998.
-
(1998)
UCI Repository of Machine Learning Databases
-
-
Blake, C.1
Keogh, E.2
Merz, C.J.3
-
4
-
-
0030211964
-
Bagging predictors
-
Breiman L.: Bagging predictors. Machine Learning 24 (1996) 123–140.
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
5
-
-
0346786584
-
Arcing classifiers
-
Breiman L.: Arcing classifiers. Annals of Statistics 26 (1998) 801–849.
-
(1998)
Annals of Statistics
, vol.26
, pp. 801-849
-
-
Breiman, L.1
-
7
-
-
0034333684
-
Stability problems with artificial neural networks and the ensemble solution
-
Cunningham P., Carney J., Jacob S.: Stability problems with artificial neural networks and the ensemble solution. Artificial Intelligence in Medicine 20 (2000) 217–225.
-
(2000)
Artificial Intelligence in Medicine
, vol.20
, pp. 217-225
-
-
Cunningham, P.1
Carney, J.2
Jacob, S.3
-
8
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
Dietterich T. G.: An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Machine Learning 40 (2000) 139–157.
-
(2000)
Machine Learning
, vol.40
, pp. 139-157
-
-
Dietterich, T.G.1
-
9
-
-
0002552358
-
Improving performance in neural networks using a boosting algorithm
-
In: Hanson S. J., Cowan J. D., Giles C. L. (eds.), Morgan Kaufmann, San Mateo, CA
-
Drucker H., Schapire R., Simard P.: Improving performance in neural networks using a boosting algorithm. In: Hanson S. J., Cowan J. D., Giles C. L. (eds.): Advances in Neural Information Processing Systems 5, Morgan Kaufmann, San Mateo, CA (1993) 42–49.
-
(1993)
Advances in Neural Information Processing Systems
, vol.5
, pp. 42-49
-
-
Drucker, H.1
Schapire, R.2
Simard, P.3
-
15
-
-
4544223395
-
Using rough sets theory and database operations to construct a good ensemble of classifiers for data mining applications
-
Hu X.: Using rough sets theory and database operations to construct a good ensemble of classifiers for data mining applications. In: Proceedings of the IEEE International Conference on Data Mining (2001) 233–240.
-
(2001)
Proceedings of the IEEE International Conference on Data Mining
, pp. 233-240
-
-
Hu, X.1
-
24
-
-
0034247206
-
MultiBoosting: A technique for combining boosting and wagging
-
Webb G. I.: MultiBoosting: a technique for combining boosting and wagging. Machine Learning 40 (2000) 159–196.
-
(2000)
Machine Learning
, vol.40
, pp. 159-196
-
-
Webb, G.I.1
-
25
-
-
0026692226
-
Stacked generalization
-
Wolpert D.: Stacked generalization. Neural Networks 5 (1992) 241–259.
-
(1992)
Neural Networks
, vol.5
, pp. 241-259
-
-
Wolpert, D.1
-
27
-
-
0036567392
-
Ensembling neural networks: Many could be better than all
-
Zhou Z.-H., Wu J., Tang W.: Ensembling neural networks: many could be better than all. Artificial Intelligence 137 (2002) 239–263.
-
(2002)
Artificial Intelligence
, vol.137
, pp. 239-263
-
-
Zhou, Z.-H.1
Wu, J.2
Tang, W.3
|