메뉴 건너뛰기




Volumn 72, Issue 4, 2010, Pages 417-473

Stability selection

Author keywords

High dimensional data; Resampling; Stability selection; Structure estimation

Indexed keywords


EID: 77958487535     PISSN: 13697412     EISSN: 14679868     Source Type: Journal    
DOI: 10.1111/j.1467-9868.2010.00740.x     Document Type: Article
Times cited : (1942)

References (99)
  • 1
    • 56449120785 scopus 로고    scopus 로고
    • Bolasso: model consistent lasso estimation through the bootstrap. In Proc. 25th Int. Conf. Machine Learning - New York: Association for Computing Machinery.
    • Bach, F. (2008) Bolasso: model consistent lasso estimation through the bootstrap. In Proc. 25th Int. Conf. Machine Learning, pp. 33-40. New York: Association for Computing Machinery.
    • (2008) , pp. 33-40
    • Bach, F.1
  • 2
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data
    • Banerjee, O. and El Ghaoui, L. (2008) Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data. J. Mach. Learn. Res., 9, 485-516.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 485-516
    • Banerjee, O.1    El Ghaoui, L.2
  • 3
    • 4043135554 scopus 로고    scopus 로고
    • Optimal predictive model selection
    • Barbieri, M. and Berger, J. (2004) Optimal predictive model selection. Ann. Statist., 32, 870-897.
    • (2004) Ann. Statist. , vol.32 , pp. 870-897
    • Barbieri, M.1    Berger, J.2
  • 5
    • 41549106844 scopus 로고    scopus 로고
    • Regularized estimation of large covariance matrices
    • Bickel, P. and Levina, E. (2008) Regularized estimation of large covariance matrices. Ann. Statist., 36, 199-227.
    • (2008) Ann. Statist. , vol.36 , pp. 199-227
    • Bickel, P.1    Levina, E.2
  • 6
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of Lasso and Dantzig selector
    • Bickel, P., Ritov, Y. and Tsybakov, A. (2009) Simultaneous analysis of Lasso and Dantzig selector. Ann. Statist., 37, 1705-1732.
    • (2009) Ann. Statist. , vol.37 , pp. 1705-1732
    • Bickel, P.1    Ritov, Y.2    Tsybakov, A.3
  • 7
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, L. (2001) Random Forests. Mach. Learn., 45, 5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 8
    • 0043289776 scopus 로고    scopus 로고
    • Analyzing bagging
    • Bühlmann, P. and Yu, B. (2002) Analyzing bagging. Ann. Statist., 30, 927-961.
    • (2002) Ann. Statist. , vol.30 , pp. 927-961
    • Bühlmann, P.1    Yu, B.2
  • 9
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: statistical estimation when p is much larger than n
    • Candes, E. and Tao, T. (2007) The Dantzig selector: statistical estimation when p is much larger than n. Ann. Statist., 35, 2312-2351.
    • (2007) Ann. Statist. , vol.35 , pp. 2312-2351
    • Candes, E.1    Tao, T.2
  • 10
    • 0035273106 scopus 로고    scopus 로고
    • Atomic decomposition by basis pursuit
    • Chen, S., Donoho, S. and Saunders, M. (2001) Atomic decomposition by basis pursuit. SIAM Rev., 43, 129-159.
    • (2001) SIAM Rev. , vol.43 , pp. 129-159
    • Chen, S.1    Donoho, S.2    Saunders, M.3
  • 11
    • 0037453009 scopus 로고    scopus 로고
    • Integrating regulatory motif discovery and genome-wide expression analysis
    • Conlon, E., Liu, X., Lieb, J. and Liu, J. (2003) Integrating regulatory motif discovery and genome-wide expression analysis. Proc. Natn. Acad. Sci. USA, 100, 3339-3344.
    • (2003) Proc. Natn. Acad. Sci. USA , vol.100 , pp. 3339-3344
    • Conlon, E.1    Liu, X.2    Lieb, J.3    Liu, J.4
  • 12
    • 33750009273 scopus 로고    scopus 로고
    • Reliable gene signatures for microarray classification: assessment of stability and performance
    • Davis, C., Gerick, F., Hintermair, V., Friedel, C., Fundel, K., Kuffner, R. and Zimmer, R. (2006) Reliable gene signatures for microarray classification: assessment of stability and performance. Bioinformatics, 22, 2356-2363.
    • (2006) Bioinformatics , vol.22 , pp. 2356-2363
    • Davis, C.1    Gerick, F.2    Hintermair, V.3    Friedel, C.4    Fundel, K.5    Kuffner, R.6    Zimmer, R.7
  • 14
    • 0043203327 scopus 로고    scopus 로고
    • Multiple hypothesis testing in microarray experiments
    • Dudoit, S., Shaffer, J. and Boldrick, J. (2003) Multiple hypothesis testing in microarray experiments. Statist. Sci., 18, 71-103.
    • (2003) Statist. Sci. , vol.18 , pp. 71-103
    • Dudoit, S.1    Shaffer, J.2    Boldrick, J.3
  • 16
    • 13444282534 scopus 로고    scopus 로고
    • Outcome signature genes in breast cancer: is there a unique set
    • Ein-Dor, L., Kela, I., Getz, G., Givol, D. and Domany, E. (2005) Outcome signature genes in breast cancer: is there a unique set? Bioinformatics, 21, 171-178.
    • (2005) Bioinformatics , vol.21 , pp. 171-178
    • Ein-Dor, L.1    Kela, I.2    Getz, G.3    Givol, D.4    Domany, E.5
  • 17
    • 53849086824 scopus 로고    scopus 로고
    • Sure independence screening for ultrahigh dimensional feature space (with discussion)
    • Fan, J. and Lv, J. (2008) Sure independence screening for ultrahigh dimensional feature space (with discussion). J. R. Statist. Soc. B, 70, 849-911.
    • (2008) J. R. Statist. Soc. B , vol.70 , pp. 849-911
    • Fan, J.1    Lv, J.2
  • 18
    • 70449440300 scopus 로고    scopus 로고
    • Ultrahigh dimensional variable selection: beyond the linear model
    • Fan, J., Samworth, R. and Wu, Y. (2009) Ultrahigh dimensional variable selection: beyond the linear model. J. Mach. Learn. Res., 10, 1989-2014.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 1989-2014
    • Fan, J.1    Samworth, R.2    Wu, Y.3
  • 19
    • 0041079362 scopus 로고
    • A remark on the difference between sampling with and without replacement
    • Freedman, D. (1977) A remark on the difference between sampling with and without replacement. J. Am. Statist. Ass., 72, 681.
    • (1977) J. Am. Statist. Ass. , vol.72 , pp. 681
    • Freedman, D.1
  • 22
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Friedman, J., Hastie, T. and Tibshirani, R. (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9, 432-441.
    • (2008) Biostatistics , vol.9 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 23
    • 51049121146 scopus 로고    scopus 로고
    • High-dimensional generalized linear models and the lasso
    • Van De Geer, S. (2008) High-dimensional generalized linear models and the lasso. Ann. Statist., 36, 614-645.
    • (2008) Ann. Statist. , vol.36 , pp. 614-645
    • Van De Geer, S.1
  • 24
    • 33747357771 scopus 로고    scopus 로고
    • High-dimensional data: p»n in mathematical statistics and bio-medical applications
    • Van De Geer, S. and Van Houwelingen, H. (2004) High-dimensional data: p»n in mathematical statistics and bio-medical applications. Bernoulli, 10, 939-943.
    • (2004) Bernoulli , vol.10 , pp. 939-943
    • Van De Geer, S.1    Van Houwelingen, H.2
  • 25
    • 51049096710 scopus 로고    scopus 로고
    • Adaptive lasso for sparse high-dimensional regression models
    • Huang, J., Ma, S. and Zhang, C.-H. (2008) Adaptive lasso for sparse high-dimensional regression models. Statist. Sin., 18, 1603-1618.
    • (2008) Statist. Sin. , vol.18 , pp. 1603-1618
    • Huang, J.1    Ma, S.2    Zhang, C.3
  • 26
    • 0004047518 scopus 로고    scopus 로고
    • Graphical Models
    • Oxford: Oxford University Press.
    • Lauritzen, S. (1996) Graphical Models. Oxford: Oxford University Press.
    • (1996)
    • Lauritzen, S.1
  • 28
    • 33846193774 scopus 로고    scopus 로고
    • A note on the lasso and related procedures in model selection
    • Leng, C., Lin, Y. and Wahba, G. (2006) A note on the lasso and related procedures in model selection. Statist. Sin., 16, 1273-1284.
    • (2006) Statist. Sin. , vol.16 , pp. 1273-1284
    • Leng, C.1    Lin, Y.2    Wahba, G.3
  • 29
    • 0027842081 scopus 로고
    • Matching pursuits with time-frequency dictionaries
    • Mallat, S. and Zhang, Z. (1993) Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process., 41, 3397-3415.
    • (1993) IEEE Trans. Signal Process. , vol.41 , pp. 3397-3415
    • Mallat, S.1    Zhang, Z.2
  • 31
    • 33747163541 scopus 로고    scopus 로고
    • High dimensional graphs and variable selection with the lasso
    • Meinshausen, N. and Bühlmann, P. (2006) High dimensional graphs and variable selection with the lasso. Ann. Statist., 34, 1436-1462.
    • (2006) Ann. Statist. , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 32
    • 65349193793 scopus 로고    scopus 로고
    • Lasso-type recovery of sparse representations from high-dimensional data
    • Meinshausen, N. and Yu, B. (2009) Lasso-type recovery of sparse representations from high-dimensional data. Ann. Statist., 37, 246-270.
    • (2009) Ann. Statist. , vol.37 , pp. 246-270
    • Meinshausen, N.1    Yu, B.2
  • 33
    • 13444249852 scopus 로고    scopus 로고
    • Prediction of cancer outcome with microarrays: a multiple random validation strategy
    • Michiels, S., Koscielny, S. and Hill, C. (2005) Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet, 365, 488-492.
    • (2005) Lancet , vol.365 , pp. 488-492
    • Michiels, S.1    Koscielny, S.2    Hill, C.3
  • 34
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data
    • Monti, S., Tamayo, P., Mesirov, J. and Golub, T. (2003) Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Mach. Learn., 52, 91-118.
    • (2003) Mach. Learn. , vol.52 , pp. 91-118
    • Monti, S.1    Tamayo, P.2    Mesirov, J.3    Golub, T.4
  • 35
  • 37
    • 22844454658 scopus 로고    scopus 로고
    • Weak greedy algorithms
    • Temlyakov, V. (2000) Weak greedy algorithms. Adv. Computnl Math., 12, 213-227.
    • (2000) Adv. Computnl Math. , vol.12 , pp. 213-227
    • Temlyakov, V.1
  • 38
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B, 58, 267-288.
    • (1996) J. R. Statist. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 39
    • 5444237123 scopus 로고    scopus 로고
    • Greed is good: algorithmic results for sparse approximation
    • Tropp, J. (2004) Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inform. Theory, 50, 2231-2242.
    • (2004) IEEE Trans. Inform. Theory , vol.50 , pp. 2231-2242
    • Tropp, J.1
  • 40
    • 68249130288 scopus 로고    scopus 로고
    • Mapping in structured populations by resample model averaging
    • Valdar, W., Holmes, C., Mott, R. and Flint, J. (2009) Mapping in structured populations by resample model averaging. Genetics, 182, 1263-1277.
    • (2009) Genetics , vol.182 , pp. 1263-1277
    • Valdar, W.1    Holmes, C.2    Mott, R.3    Flint, J.4
  • 41
    • 65749083666 scopus 로고    scopus 로고
    • Sharp thresholds for high-dimensional and noisy recovery of sparsity
    • Wainwright, M. (2009) Sharp thresholds for high-dimensional and noisy recovery of sparsity. IEEE Trans. Inform. Theor., 55, 2183-2202.
    • (2009) IEEE Trans. Inform. Theor. , vol.55 , pp. 2183-2202
    • Wainwright, M.1
  • 42
    • 33947115409 scopus 로고    scopus 로고
    • Model selection and estimation in the gaussian graphical model
    • Yuan, M. and Lin, Y. (2007) Model selection and estimation in the gaussian graphical model. Biometrika, 94, 19-35.
    • (2007) Biometrika , vol.94 , pp. 19-35
    • Yuan, M.1    Lin, Y.2
  • 43
    • 78650319074 scopus 로고    scopus 로고
    • Penalized linear unbiased selection., Technical Report 2007-003, Department of Statistics, Rutgers University, Piscataway.
    • Zhang, C.-H. (2007) Penalized linear unbiased selection. Technical Report 2007-003 Department of Statistics, Rutgers University, Piscataway.
    • (2007)
    • Zhang, C.1
  • 45
    • 64149088421 scopus 로고    scopus 로고
    • On the consistency of feature selection using greedy least squares regression
    • Zhang, T. (2009) On the consistency of feature selection using greedy least squares regression. J. Mach. Learn. Res., 10, 555-568.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 555-568
    • Zhang, T.1
  • 46
    • 50949096321 scopus 로고    scopus 로고
    • The sparsity and bias of the lasso selection in high-dimensional linear regression
    • Zhang, C. and Huang, J. (2008) The sparsity and bias of the lasso selection in high-dimensional linear regression. Ann. Statist., 36, 1567-1594.
    • (2008) Ann. Statist. , vol.36 , pp. 1567-1594
    • Zhang, C.1    Huang, J.2
  • 47
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of lasso
    • Zhao, P. and Yu, B. (2006) On model selection consistency of lasso. J. Mach. Learn. Res., 7, 2541-2563.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2
  • 48
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • Zou, H. (2006) The adaptive lasso and its oracle properties. J. Am. Statist. Ass., 101, 1418-1429.
    • (2006) J. Am. Statist. Ass. , vol.101 , pp. 1418-1429
    • Zou, H.1
  • 49
    • 41649108521 scopus 로고    scopus 로고
    • Comparing the characteristics of gene expression profiles derived by univariate and multivariate classification methods
    • article 7.
    • Zucknick, M., Richardson, S. and Stronach, E. A. (2008) Comparing the characteristics of gene expression profiles derived by univariate and multivariate classification methods. Statist. Appl. Genet. Molec. Biol., 7, article 7.
    • (2008) Statist. Appl. Genet. Molec. Biol. , vol.7
    • Zucknick, M.1    Richardson, S.2    Stronach, E.A.3
  • 50
    • 84986734428 scopus 로고
    • Seasonal adjustment by a Bayesian modeling
    • Akaike, H. (1980) Seasonal adjustment by a Bayesian modeling. J. Time Ser. Anal., 1, 1-13.
    • (1980) J. Time Ser. Anal. , vol.1 , pp. 1-13
    • Akaike, H.1
  • 51
    • 56449120785 scopus 로고    scopus 로고
    • Proc. 25th Int. Conf. Machine Learning
    • New York: Association for Computing Machinery.
    • Bach, F. (2008) Bolasso: model consistent Lasso estimation through the bootstrap. In Proc. 25th Int. Conf. Machine Learning, pp. 33-40. New York: Association for Computing Machinery.
    • (2008) Bolasso: model consistent Lasso estimation through the bootstrap , pp. 33-40
    • Bach, F.1
  • 52
    • 4043135554 scopus 로고    scopus 로고
    • Optimal predictive model section
    • Barbieri, M. and Berger, J. (2004) Optimal predictive model section. Ann. Statist., 32, 870-897.
    • (2004) Ann. Statist. , vol.32 , pp. 870-897
    • Barbieri, M.1    Berger, J.2
  • 53
    • 0004267093 scopus 로고
    • Regression Diagnostics
    • ch. 2. New York: Wiley.
    • Belsley, D. A., Kuh, E. and Welsch, R. E. (1980) Regression Diagnostics, ch. 2. New York: Wiley.
    • (1980)
    • Belsley, D.A.1    Kuh, E.2    Welsch, R.E.3
  • 54
    • 33746099301 scopus 로고    scopus 로고
    • A sober look at clustering stability
    • no. 4005,
    • Ben-David, S., Von Luxburg, U. and Pall, D. (2006) A sober look at clustering stability. Learn. Theor., no. 4005, 5-19.
    • (2006) Learn. Theor. , pp. 5-19
    • Ben-David, S.1    Von Luxburg, U.2    Pall, D.3
  • 55
  • 56
    • 0003757758 scopus 로고
    • Statistical Decision Theory and Bayesian Analysis
    • Berlin: Springer.
    • Berger, J. O. (1985) Statistical Decision Theory and Bayesian Analysis. Berlin: Springer.
    • (1985)
    • Berger, J.O.1
  • 57
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of Lasso and Dantzig selector
    • 2009)
    • Bickel, P., Ritov, Y. and Tsybakov, A. (2009) Simultaneous analysis of Lasso and Dantzig selector. Ann. Statist., 37, 1705-1732.
    • Ann. Statist. , vol.37 , pp. 1705-1732
    • Bickel, P.1    Ritov, Y.2    Tsybakov, A.3
  • 59
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996) Bagging predictors. Mach. Learn., 24, 123-140.
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 60
    • 33749324315 scopus 로고    scopus 로고
    • The choice of variables in multivariate regression: a non-conjugate Bayesian decision theory approach
    • Brown, P. J., Fearn, T. and Vannucci, M. (1999) The choice of variables in multivariate regression: a non-conjugate Bayesian decision theory approach. Biometrika, 60, 627-641.
    • (1999) Biometrika , vol.60 , pp. 627-641
    • Brown, P.J.1    Fearn, T.2    Vannucci, M.3
  • 61
  • 62
    • 15844417905 scopus 로고    scopus 로고
    • A simple procedure for estimating the false discovery rate
    • Dalmasso, C., Broët, P. and Moreau, T. (2005) A simple procedure for estimating the false discovery rate. Bioinformatics, 21, 660-668.
    • (2005) Bioinformatics , vol.21 , pp. 660-668
    • Dalmasso, C.1    Broët, P.2    Moreau, T.3
  • 63
    • 0037290186 scopus 로고    scopus 로고
    • Variable selection in qualitative models via an entropic explanatory power
    • Dupuis, J. A. and Robert, C. P. (2003) Variable selection in qualitative models via an entropic explanatory power. J. Statist. Planng Inf., 111, 77-94.
    • (2003) J. Statist. Planng Inf. , vol.111 , pp. 77-94
    • Dupuis, J.A.1    Robert, C.P.2
  • 65
    • 53849086824 scopus 로고    scopus 로고
    • Sure independence screening for ultrahigh diemensional feature space (with discussion)
    • Fan, J. and Lv, J. (2008) Sure independence screening for ultrahigh diemensional feature space (with discussion). J. R. Statist. Soc. B, 70, 849-911.
    • (2008) J. R. Statist. Soc. B , vol.70 , pp. 849-911
    • Fan, J.1    Lv, J.2
  • 66
    • 70449440300 scopus 로고    scopus 로고
    • Ultrahigh dimensional feature selection: beyond the linear model
    • Fan, J., Samworth, R. and Wu, Y. (2009) Ultrahigh dimensional feature selection: beyond the linear model. J. Mach. Learn. Res., 10, 2013-2038.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 2013-2038
    • Fan, J.1    Samworth, R.2    Wu, Y.3
  • 67
    • 70450280391 scopus 로고    scopus 로고
    • Sequential implementation of Monte Carlo tests with uniformly bounded resampling risk
    • Gandy, A. (2009) Sequential implementation of Monte Carlo tests with uniformly bounded resampling risk. J. Am. Statist. Ass., 104, 1504-1511.
    • (2009) J. Am. Statist. Ass. , vol.104 , pp. 1504-1511
    • Gandy, A.1
  • 69
    • 0031526204 scopus 로고    scopus 로고
    • Approaches for Bayesian variable selection
    • George, E. I. and McCullogh, R. E. (1997) Approaches for Bayesian variable selection. Statist. Sin., 7, 339-373.
    • (1997) Statist. Sin. , vol.7 , pp. 339-373
    • George, E.I.1    McCullogh, R.E.2
  • 70
    • 78650354052 scopus 로고    scopus 로고
    • Bayesian adaptive lassos with non-convex penalisation. Institute of Mathematics and Statistics, University of Kent, Canterbury. (Available from .)
    • Griffin, J. E. and Brown, P. J. (2007) Bayesian adaptive lassos with non-convex penalisation. Institute of Mathematics and Statistics, University of Kent, Canterbury. (Available from .)
    • (2007)
    • Griffin, J.E.1    Brown, P.J.2
  • 71
    • 78650337471 scopus 로고    scopus 로고
    • Inference with normal-gamma prior distributions in regression problems
    • Griffin, J. E. and Brown, P. J. (2010) Inference with normal-gamma prior distributions in regression problems. Bayesn Anal., 5, 171-181.
    • (2010) Bayesn Anal. , vol.5 , pp. 171-181
    • Griffin, J.E.1    Brown, P.J.2
  • 72
    • 34250747348 scopus 로고    scopus 로고
    • Shotgun Stochastic Search for large p regression
    • Hans, C., Dobra, A. and West, M. (2007) Shotgun Stochastic Search for large p regression. J. Am. Statist. Ass., 102, 507-517.
    • (2007) J. Am. Statist. Ass. , vol.102 , pp. 507-517
    • Hans, C.1    Dobra, A.2    West, M.3
  • 73
    • 0003684449 scopus 로고    scopus 로고
    • The Elements of Statistical Learning
    • 2nd edn. New York: Springer.
    • Hastie, T., Tibshirani, R. and Friedman, J. (2008) The Elements of Statistical Learning, 2nd edn. New York: Springer.
    • (2008)
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 74
    • 77954648556 scopus 로고    scopus 로고
    • Sparse casual discovery in multivariate time series
    • Causality: Objectives and Assessment - (Availabe from .)
    • Haufe, S., Müller, K.-R., Nolte, G. and Krämer, N. (2010) Sparse casual discovery in multivariate time series. In Journal of Machine Learning Research Wrkshp Conf. Proc., vol. 6, Causality: Objectives and Assessment, pp. 97-106. (Availabe from .)
    • (2010) Journal of Machine Learning Research Wrkshp Conf. Proc. , vol.6 , pp. 97-106
    • Haufe, S.1    Müller, K.2    Nolte, G.3    Krämer, N.4
  • 76
    • 18444410406 scopus 로고    scopus 로고
    • Empirical Bayes selection of wavelet thresholds
    • Johnstone, I. M. and Silverman, B. W. (2005) Empirical Bayes selection of wavelet thresholds. Ann. Statist., 33, 1700-1752.
    • (2005) Ann. Statist. , vol.33 , pp. 1700-1752
    • Johnstone, I.M.1    Silverman, B.W.2
  • 77
    • 0000181737 scopus 로고
    • The jackknife and the bootstrap for general stationary observations
    • Künsch, H.-R. (1989) The jackknife and the bootstrap for general stationary observations. Ann. Statist., 17, 1217-1241.
    • (1989) Ann. Statist. , vol.17 , pp. 1217-1241
    • Künsch, H.1
  • 78
    • 2442611856 scopus 로고    scopus 로고
    • Stability-based validation of clustering solutions
    • Lange, T., Roth, V., Braun, M. and Buhmann, J. (2004) Stability-based validation of clustering solutions. Neur. Computn, 16, 1299-1323.
    • (2004) Neur. Computn , vol.16 , pp. 1299-1323
    • Lange, T.1    Roth, V.2    Braun, M.3    Buhmann, J.4
  • 79
    • 33746330273 scopus 로고    scopus 로고
    • Bayesian Nonparametrics via Neural Networks
    • Philadelphia: Society for Industrial and Applied Mathematics.
    • Lee, H. K. H. (2004) Bayesian Nonparametrics via Neural Networks. Philadelphia: Society for Industrial and Applied Mathematics.
    • (2004)
    • Lee, H.K.H.1
  • 80
    • 0002438052 scopus 로고
    • The choice of variables in multiple regression (with discussion)
    • Lindley, D. V. (1968) The choice of variables in multiple regression (with discussion). J. R. Statist. Soc. B, 30, 31-66.
    • (1968) J. R. Statist. Soc. B , vol.30 , pp. 31-66
    • Lindley, D.V.1
  • 81
    • 42649092921 scopus 로고    scopus 로고
    • A note on the Lasso for graphical Gaussian model selection
    • Meinshausen, N. (2008) A note on the Lasso for graphical Gaussian model selection. Statist. Probab. Lett., 78, 880-884.
    • (2008) Statist. Probab. Lett. , vol.78 , pp. 880-884
    • Meinshausen, N.1
  • 83
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data
    • 2003)
    • Monti, S., Tamayo, P., Mesirov, J. and Golub, T. (2003) Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Mach. Learn., 52, 91-118.
    • Mach. Learn. , vol.52 , pp. 91-118
    • Monti, S.1    Tamayo, P.2    Mesirov, J.3    Golub, T.4
  • 84
    • 77955390403 scopus 로고    scopus 로고
    • Bayesian projection approaches to variable selection in generalized linear models
    • to be published.
    • Nott, D. J. and Leng, C. (2010) Bayesian projection approaches to variable selection in generalized linear models. Computnl Statist. Data Anal., to be published.
    • (2010) Computnl Statist. Data Anal.
    • Nott, D.J.1    Leng, C.2
  • 87
    • 77957604813 scopus 로고    scopus 로고
    • Generalized density clustering
    • to be published. (Available from .)
    • Rinaldo, A. and Wasserman, L. (2010) Generalized density clustering. Ann. Statist., to be published. (Available from .)
    • (2010) Ann. Statist.
    • Rinaldo, A.1    Wasserman, L.2
  • 88
    • 0027081755 scopus 로고
    • A bootstrap resampling procedure for model-building-application to the Cox regression-model
    • Sauerbrei, W. and Schumacher, M. (1992) A bootstrap resampling procedure for model-building-application to the Cox regression-model. Statist. Med., 11, 2093-2109.
    • (1992) Statist. Med. , vol.11 , pp. 2093-2109
    • Sauerbrei, W.1    Schumacher, M.2
  • 89
    • 0003984043 scopus 로고
    • The Foundations of Statistics
    • () New York: Wiley.
    • Savage, L. J. (1954) The Foundations of Statistics. New York: Wiley.
    • (1954)
    • Savage, L.J.1
  • 92
    • 78650320102 scopus 로고    scopus 로고
    • Obituary of Hirotugu Akaike
    • Tong, H. (2010) Obituary of Hirotugu Akaike. J. R. Statist. Soc. A, 173, 451-454.
    • (2010) J. R. Statist. Soc. A , vol.173 , pp. 451-454
    • Tong, H.1
  • 93
    • 65749083666 scopus 로고    scopus 로고
    • Sharp thresholds for high-dimensional and noisy recovery of sparsity
    • (2009)
    • Wainwright, M. (2009) Sharp thresholds for high-dimensional and noisy recovery of sparsity. IEEE Trans. Inform. Theor., 55, 2183-2202.
    • IEEE Trans. Inform. Theor. , vol.55 , pp. 2183-2202
    • Wainwright, M.1
  • 94
    • 33846190566 scopus 로고    scopus 로고
    • Regression coefficient and autoregressive order shrinkage and selection via the lasso
    • Wang, H., Li, G. and Tsai, C. L. (2007) Regression coefficient and autoregressive order shrinkage and selection via the lasso. J. R. Statist. Soc. B, 69, 63-78.
    • (2007) J. R. Statist. Soc. B , vol.69 , pp. 63-78
    • Wang, H.1    Li, G.2    Tsai, C.L.3
  • 95
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of lasso
    • 2006)
    • Zhao, P. and Yu, B. (2006) On model selection consistency of lasso. J. Mach. Learn. Res., 7, 2541-2563.
    • J. Mach. Learn. Res. , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2
  • 96
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • (2006)
    • Zou, H. (2006) The adaptive lasso and its oracle properties. J. Am. Statist. Ass., 101, 1418-1429.
    • J. Am. Statist. Ass. , vol.101 , pp. 1418-1429
    • Zou, H.1
  • 97
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou, H. and Hastie, T. (2005) Regularization and variable selection via the elastic net. J. R. Statist. Soc. B, 67, 301-320.
    • (2005) J. R. Statist. Soc. B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 98
    • 34548536008 scopus 로고    scopus 로고
    • On the degrees of freedom of the LASSO
    • Zou, H., Hastie, T. and Tibshirani, R. (2007) On the degrees of freedom of the LASSO. Ann. Statist., 35, 2173-2192.
    • (2007) Ann. Statist. , vol.35 , pp. 2173-2192
    • Zou, H.1    Hastie, T.2    Tibshirani, R.3
  • 99
    • 41649108521 scopus 로고    scopus 로고
    • Comparing the characteristics of gene expression profiles derived by univariate and multivariate classification methods
    • no. 1, article 7.
    • Zucknick, M., Richardson, S. and Stronach, E. A. (2008) Comparing the characteristics of gene expression profiles derived by univariate and multivariate classification methods. Statist. Applic. Genet. Molec. Biol., 7, no. 1, article 7.
    • (2008) Statist. Applic. Genet. Molec. Biol. , vol.7
    • Zucknick, M.1    Richardson, S.2    Stronach, E.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.