메뉴 건너뛰기




Volumn 19, Issue 11, 2007, Pages 1479-1493

Semisupervised regression with cotraining-style algorithms

Author keywords

Cotraining; Data mining; Learning with unlabeled data; Machine learning; Semisupervised learning; Semisupervised regression

Indexed keywords

LEARNING WITH UNLABELED DATA; SEMISUPERVISED LEARNING; SEMISUPERVISED REGRESSION;

EID: 35348881683     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2007.190644     Document Type: Article
Times cited : (200)

References (55)
  • 3
    • 84898930761 scopus 로고    scopus 로고
    • Co-Training and Expansion: Towards Bridging Theory and Practice
    • L.K. Saul, Y. Weiss, and L. Bottou, eds, pp, MIT Press
    • M.-F. Balcan, A. Blum, and K. Yang, "Co-Training and Expansion: Towards Bridging Theory and Practice," Advances in Neural Information Processing Systems 17, L.K. Saul, Y. Weiss, and L. Bottou, eds., pp. 89-96, MIT Press, 2005.
    • (2005) Advances in Neural Information Processing Systems 17 , pp. 89-96
    • Balcan, M.-F.1    Blum, A.2    Yang, K.3
  • 4
    • 3142725535 scopus 로고    scopus 로고
    • Semi-Supervised Learning on Riemannian Manifolds
    • M. Belkin and P. Niyogi, "Semi-Supervised Learning on Riemannian Manifolds," Machine Learning, vol. 56, nos. 1-3, pp. 209-239, 2004.
    • (2004) Machine Learning , vol.56 , Issue.1-3 , pp. 209-239
    • Belkin, M.1    Niyogi, P.2
  • 6
    • 0003408496 scopus 로고    scopus 로고
    • Dept. of Information and Computer Science, Univ. of Calif, Irvine
    • C. Blake, E. Keogh, and G.J. Merz, UCI Repository of Machine Learning Databases, Dept. of Information and Computer Science, Univ. of Calif., Irvine, http://www.ics.uci.edu/~mlearn/MLRepository.html, 1998.
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.1    Keogh, E.2    Merz, G.J.3
  • 7
    • 0010805362 scopus 로고    scopus 로고
    • Learning from Labeled and Unlabeled Data Using Graph Mincuts
    • A. Blum and S. Chawla, "Learning from Labeled and Unlabeled Data Using Graph Mincuts," Proc. 18th Int'l Conf. Machine Learning, pp. 19-26, 2001.
    • (2001) Proc. 18th Int'l Conf. Machine Learning , pp. 19-26
    • Blum, A.1    Chawla, S.2
  • 10
    • 0030211964 scopus 로고    scopus 로고
    • Bagging Predictors
    • L. Breiman, "Bagging Predictors," Machine Learning, vol. 24, no. 2, pp. 123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 11
    • 33749252873 scopus 로고    scopus 로고
    • O. Chapelle, B. Schölkopf, and A. Zien, eds, MIT Press
    • Semi-Supervised Learning, O. Chapelle, B. Schölkopf, and A. Zien, eds., MIT Press, 2006.
    • (2006) Semi-Supervised Learning
  • 14
    • 33645967320 scopus 로고
    • Nearest Neighbor Norms: NN Pattern Classification Techniques
    • B.V. Dasarathy, Nearest Neighbor Norms: NN Pattern Classification Techniques. IEEE CS Press, 1991.
    • (1991) IEEE CS Press
    • Dasarathy, B.V.1
  • 15
    • 84899008485 scopus 로고    scopus 로고
    • PAC Generalization Bounds for Co-Training
    • T.G. Dietterich, S. Becker, and Z. Ghahramani, eds, pp, MIT Press
    • S. Dasgupta, M. Littman, and D. McAllester, "PAC Generalization Bounds for Co-Training," Advances in Neural Information Processing Systems 14, T.G. Dietterich, S. Becker, and Z. Ghahramani, eds., pp. 375-382, MIT Press, 2002.
    • (2002) Advances in Neural Information Processing Systems 14 , pp. 375-382
    • Dasgupta, S.1    Littman, M.2    McAllester, D.3
  • 16
  • 17
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble Methods in Machine Learning
    • J. Kittler and F. Roli, eds, pp, Springer
    • T.G. Dietterich, "Ensemble Methods in Machine Learning," LNCS 1867, J. Kittler and F. Roli, eds., pp. 1-15, Springer, 2000.
    • (2000) LNCS , vol.1867 , pp. 1-15
    • Dietterich, T.G.1
  • 18
    • 35048902727 scopus 로고    scopus 로고
    • SemiSupervised Kernel Regression Using Whitened Function Classes
    • C.E. Rasmussen, H.H. Bülthoff, B.Schölkopf, and M.A. Giese, eds, pp, Springer
    • M.O. Franz, Y. Kwon, C.E. Rasmussen, and B. Schökopf, "SemiSupervised Kernel Regression Using Whitened Function Classes," LNCS 3275, C.E. Rasmussen, H.H. Bülthoff, B.Schölkopf, and M.A. Giese, eds., pp. 18-26, Springer, 2004.
    • (2004) LNCS , vol.3275 , pp. 18-26
    • Franz, M.O.1    Kwon, Y.2    Rasmussen, C.E.3    Schökopf, B.4
  • 19
    • 29344468051 scopus 로고    scopus 로고
    • A Hybrid Generative/ Discriminative Approach to Semi-Supervised Classifier Design
    • A. Fujino, N. Ueda, and K. Saito, "A Hybrid Generative/ Discriminative Approach to Semi-Supervised Classifier Design," Proc. 20th Natl Conf. Artificial Intelligence, pp. 764-769, 2005.
    • (2005) Proc. 20th Natl Conf. Artificial Intelligence , pp. 764-769
    • Fujino, A.1    Ueda, N.2    Saito, K.3
  • 21
    • 0006261165 scopus 로고    scopus 로고
    • Combining Predictors: Meta Machine Learning Methods and Bias/Variance and Ambiguity Decompositions,
    • PhD dissertation, Dept. of Computer Science, Univ. of Aarhus
    • J.V. Hansen, "Combining Predictors: Meta Machine Learning Methods and Bias/Variance and Ambiguity Decompositions," PhD dissertation, Dept. of Computer Science, Univ. of Aarhus, 2000.
    • (2000)
    • Hansen, J.V.1
  • 23
    • 0001938951 scopus 로고    scopus 로고
    • Transductive Inference for Text Classification Using Support Vector Machines
    • T. Joachims, "Transductive Inference for Text Classification Using Support Vector Machines," Proc. 16th Int'l Conf. Machine Learning, pp. 200-209, 1999.
    • (1999) Proc. 16th Int'l Conf. Machine Learning , pp. 200-209
    • Joachims, T.1
  • 24
    • 35348837961 scopus 로고    scopus 로고
    • Improve Computer-Aided Diagnosis with Machine Learning Techniques Using Undiagnosed Samples
    • to be published in
    • M. Li and Z.-H. Zhou, "Improve Computer-Aided Diagnosis with Machine Learning Techniques Using Undiagnosed Samples," to be published in IEEE Trans. Systems, Man, and Cybernetics - Part A, vol. 38, 2008.
    • (2008) IEEE Trans. Systems, Man, and Cybernetics - Part A , vol.38
    • Li, M.1    Zhou, Z.-H.2
  • 25
    • 0024771475 scopus 로고
    • Pattern Classification Using Neural Networks
    • R.P. Lippmann, "Pattern Classification Using Neural Networks," IEEE Comm., vol. 27, no. 11, pp. 47-64, 1989.
    • (1989) IEEE Comm , vol.27 , Issue.11 , pp. 47-64
    • Lippmann, R.P.1
  • 26
    • 84898980291 scopus 로고    scopus 로고
    • A Mixture of Experts Classifier with Learning Based on Both Labelled and Unlabelled Data
    • M. Mozer, M. I. Jordan, and T. Petsche, eds, pp, MIT Press
    • D.J. Miller and H.S. Uyar, "A Mixture of Experts Classifier with Learning Based on Both Labelled and Unlabelled Data," Advances in Neural Information Processing Systems 9, M. Mozer, M. I. Jordan, and T. Petsche, eds., pp. 571-577, MIT Press, 1997.
    • (1997) Advances in Neural Information Processing Systems 9 , pp. 571-577
    • Miller, D.J.1    Uyar, H.S.2
  • 28
    • 0033886806 scopus 로고    scopus 로고
    • Text Classification from Labeled and Unlabeled Documents Using EM
    • K. Nigam, A.K. McCallum, S. Thrun, and T. Mitchell, "Text Classification from Labeled and Unlabeled Documents Using EM," Machine Learning, vol. 39, nos. 2-3, pp. 103-134, 2000.
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 103-134
    • Nigam, K.1    McCallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 32
    • 0032596539 scopus 로고    scopus 로고
    • Learning Dictionaries for Information Extraction by Multi-Level Bootstrapping
    • E. Riloff and R. Jones, "Learning Dictionaries for Information Extraction by Multi-Level Bootstrapping," Proc. 16th Nat'l Conf. Artificial Intelligence, pp. 474-479, 1999.
    • (1999) Proc. 16th Nat'l Conf. Artificial Intelligence , pp. 474-479
    • Riloff, E.1    Jones, R.2
  • 35
    • 0028499630 scopus 로고
    • The Effect of Unlabeled Samples in Reducing the Small Sample Size Problem and Mitigating the Hughes Phenomenon
    • B. Shahshahani and D. Landgrebe, "The Effect of Unlabeled Samples in Reducing the Small Sample Size Problem and Mitigating the Hughes Phenomenon," IEEE Trans. Geoscience and Remote Sensing, vol. 32, no. 5, pp. 1087-1095, 1994.
    • (1994) IEEE Trans. Geoscience and Remote Sensing , vol.32 , Issue.5 , pp. 1087-1095
    • Shahshahani, B.1    Landgrebe, D.2
  • 39
    • 11244302729 scopus 로고    scopus 로고
    • A New Analysis of the Value of Unlabeled Data in Semi-Supervised Learning for Image Retrieval
    • Q. Tian, J. Yu, Q. Xue, and N. Sebe, "A New Analysis of the Value of Unlabeled Data in Semi-Supervised Learning for Image Retrieval," Proc. IEEE Int'l Conf. Multimedia Expo, pp. 1019-1022, 2004.
    • (2004) Proc. IEEE Int'l Conf. Multimedia Expo , pp. 1019-1022
    • Tian, Q.1    Yu, J.2    Xue, Q.3    Sebe, N.4
  • 44
    • 0003425672 scopus 로고    scopus 로고
    • Experiments with Support Vector Machines
    • Technical Report CSD-TR-96-19, Royal Holloway Univ. of London, London
    • J.A.E. Weston, M.O. Stitson, A. Gammerman, V. Vovk, and V. Vapnik, "Experiments with Support Vector Machines," Technical Report CSD-TR-96-19, Royal Holloway Univ. of London, London, 1996.
    • (1996)
    • Weston, J.A.E.1    Stitson, M.O.2    Gammerman, A.3    Vovk, V.4    Vapnik, V.5
  • 46
    • 84898958201 scopus 로고    scopus 로고
    • Semi-Supervised Learning on Directed Graphs
    • L.K. Saul, Y. Weiss, and L. Bottou, eds, pp, MIT Press
    • D. Zhou, B. Schölkopf, and T. Hofmann, "Semi-Supervised Learning on Directed Graphs," Advances in Neural Information Processing Systems 17, L.K. Saul, Y. Weiss, and L. Bottou, eds., pp. 1633-1640, MIT Press, 2005.
    • (2005) Advances in Neural Information Processing Systems 17 , pp. 1633-1640
    • Zhou, D.1    Schölkopf, B.2    Hofmann, T.3
  • 48
    • 33746834100 scopus 로고    scopus 로고
    • Enhancing Relevance Feedback in Image Retrieval Using Unlabeled Data
    • Z.-H. Zhou, K.-J. Chen, and H.-B. Dai, "Enhancing Relevance Feedback in Image Retrieval Using Unlabeled Data," ACM Trans. Information Systems, vol. 24, no. 2, pp. 219-244, 2006.
    • (2006) ACM Trans. Information Systems , vol.24 , Issue.2 , pp. 219-244
    • Zhou, Z.-H.1    Chen, K.-J.2    Dai, H.-B.3
  • 51
    • 28244448186 scopus 로고    scopus 로고
    • Tri-Training: Exploiting Unlabeled Data Using Three Classifiers
    • Nov
    • Z.-H. Zhou and M. Li, "Tri-Training: Exploiting Unlabeled Data Using Three Classifiers," IEEE Trans. Knowledge and Data Eng., vol. 17, no. 11, pp. 1529-1541, Nov. 2005.
    • (2005) IEEE Trans. Knowledge and Data Eng , vol.17 , Issue.11 , pp. 1529-1541
    • Zhou, Z.-H.1    Li, M.2
  • 52
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling Neural Networks: Many Could Be Better than All
    • Z.-H. Zhou, J. Wu, and W. Tang, "Ensembling Neural Networks: Many Could Be Better than All," Artificial Intelligence, vol. 137, nos. 1-2, pp. 239-263, 2002.
    • (2002) Artificial Intelligence , vol.137 , Issue.1-2 , pp. 239-263
    • Zhou, Z.-H.1    Wu, J.2    Tang, W.3
  • 54
    • 33745456231 scopus 로고    scopus 로고
    • Semi-Supervised Learning Literature Survey
    • Technical Report 1530, Dept. of Computer Sciences, Univ. of Wisconsin, Madison
    • X. Zhu, "Semi-Supervised Learning Literature Survey," Technical Report 1530, Dept. of Computer Sciences, Univ. of Wisconsin, Madison, http://www.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf, 2006.
    • (2006)
    • Zhu, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.