메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1603-1608

Diversity regularized machine

Author keywords

[No Author keywords available]

Indexed keywords

DIVERSITY CONTROL; ENSEMBLE METHODS; GENERALIZATION ABILITY; HYPOTHESIS SPACE; LEARNING APPROACH; STATISTICAL LEARNING; SUPPORT VECTOR MACHINE (SVMS); SVM ENSEMBLES;

EID: 84865079075     PISSN: 10450823     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.5591/978-1-57735-516-8/IJCAI11-269     Document Type: Conference Paper
Times cited : (73)

References (25)
  • 2
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
    • P.L. Bartelett. The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network. IEEE Transactions on Information Theory, 44(2):525-536, 1998.
    • (1998) IEEE Transactions on Information Theory , vol.44 , Issue.2 , pp. 525-536
    • Bartelett, P.L.1
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L.E. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.E.1
  • 5
    • 0034276320 scopus 로고    scopus 로고
    • Randomizing outputs to increase prediction accuracy
    • L.E. Breiman. Randomizing outputs to increase prediction accuracy. Machine Learning, 40(3):229-242, 2000.
    • (2000) Machine Learning , vol.40 , Issue.3 , pp. 229-242
    • Breiman, L.E.1
  • 6
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L.E. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.E.1
  • 7
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: A survey and categorisation
    • G. Brown, J.Wyatt, R. Harris, and X. Yao. Diversity creation methods: A survey and categorisation. Information Fusion, 6(1):5-20, 2005.
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 10
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • T.G. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40(2):139-157, 2000.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 12
    • 0031211090 scopus 로고    scopus 로고
    • A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
    • Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119-139, 1997. (Pubitemid 127433398)
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 13
    • 0035420134 scopus 로고    scopus 로고
    • Design of effective neural network ensembles for image classification purposes
    • DOI 10.1016/S0262-8856(01)00045-2, PII S0262885601000452
    • G. Giacinto and F. Roli. Design of effective neural network ensembles for image classification purposes. Image and Vision Computing, 19(9-10):699-707, 2001. (Pubitemid 32746163)
    • (2001) Image and Vision Computing , vol.19 , Issue.9-10 , pp. 699-707
    • Giacinto, G.1    Roli, F.2
  • 14
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • T.K. Ho. The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8):832-844, 1998. (Pubitemid 128741345)
    • (1998) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 15
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • G. Tesauro, D.S. Touretzky, and T.K. Leen, editors, MIT Press
    • A. Krogh and J. Vedelsby. Neural network ensembles, cross validation, and active learning. In G. Tesauro, D.S. Touretzky, and T.K. Leen, editors, Advances in Neural Information Processing Systems 7 (NIPS'94), pages 231-238. MIT Press, 1995.
    • (1995) Advances in Neural Information Processing Systems 7 (NIPS'94) , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 17
    • 0026678659 scopus 로고
    • On the convergence of the coordinate descent method for convex differentiable minimization
    • Z. Luo and P. Tseng. On the convergence of the coordinate descent method for convex differentiable minimization. Journal of Optimization Theory and Applications, 72(1):7-35, 1992.
    • (1992) Journal of Optimization Theory and Applications , vol.72 , Issue.1 , pp. 7-35
    • Luo, Z.1    Tseng, P.2
  • 21
    • 0021518106 scopus 로고
    • A theory of the learnable
    • L. Valiant. A theory of the learnable. Communication of the ACM, 27(11):1134-1142, 1984.
    • (1984) Communication of the ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L.1
  • 23
    • 0347067948 scopus 로고    scopus 로고
    • Covering Number Bounds of Certain Regularized Linear Function Classes
    • DOI 10.1162/153244302760200713
    • T. Zhang. Covering number bounds of certain regularized linear function classes. Journal of Machine Learning Research, 2:527-550, 2002. (Pubitemid 135712571)
    • (2002) Journal of Machine Learning Research , vol.2 , Issue.3 , pp. 527-550
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.