-
1
-
-
77956659439
-
-
Abe N, Mamitsuka H (1998) Query learning strategies using boosting and bagging. In: Proceedings of the 15th international conference on machine learning. Madison, WI, pp 1-9.
-
-
-
-
2
-
-
77956672147
-
-
Abney S (2002) Bootstrapping. In: Proceedings of the 40th annual meeting of the association for computational linguistics. Philadelphia, PA, pp 360-367.
-
-
-
-
3
-
-
1942421209
-
-
Altun Y, Tsochantaridis I, Hofmann T (2003) Hidden markov support vector machines. In: Proceedings of the 20th international conference on machine learning. Washington, DC, pp 3-10.
-
-
-
-
4
-
-
28044467723
-
Semi-supervised learning with an imperfect supervisor
-
Amini MR, Gallinari P: Semi-supervised learning with an imperfect supervisor. Knowl Inf Syst 8(4), 385-413 (2005).
-
(2005)
Knowl Inf Syst
, vol.8
, Issue.4
, pp. 385-413
-
-
Amini, M.R.1
Gallinari, P.2
-
5
-
-
0000492326
-
Learning from noisy examples
-
Angluin D, Laird P: Learning from noisy examples. Mach Learn 2(4), 343-370 (1988).
-
(1988)
Mach Learn
, vol.2
, Issue.4
, pp. 343-370
-
-
Angluin, D.1
Laird, P.2
-
6
-
-
84898930761
-
Co-training and expansion: towards bridging theory and practice
-
L. K. Saul, Y. Weiss, and L. Bottou (Eds.), Cambridge: MIT Press
-
Balcan M-F, Blum A, Yang K (2005) Co-training and expansion: towards bridging theory and practice. In: Saul LK, Weiss Y, Bottou L (eds) Advances in neural information processing systems 17. MIT Press, Cambridge, pp 89-96.
-
(2005)
Advances in Neural Information Processing Systems 17
, pp. 89-96
-
-
Balcan, M.-F.1
Blum, A.2
Yang, K.3
-
7
-
-
3142725535
-
Semi-supervised learning on Riemannian manifolds
-
Belkin M, Niyogi P: Semi-supervised learning on Riemannian manifolds. Mach Learn 56(1-3), 209-239 (2004).
-
(2004)
Mach Learn
, vol.56
, Issue.1-3
, pp. 209-239
-
-
Belkin, M.1
Niyogi, P.2
-
8
-
-
33745465341
-
-
Belkin M, Niyogi P, Sindhwani V (2005) On manifold regularization. In: Proceedings of the 10th international workshop on artificial intelligence and statistics. Savannah, Barbados, pp 17-24.
-
-
-
-
9
-
-
33750729556
-
Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
-
Belkin M, Niyogi P, Sindhwani V: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7, 2399-2434 (2006).
-
(2006)
J Mach Learn Res
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
10
-
-
33646436173
-
-
Bickel S, Scheffer T (2005) Estimation of mixture models using co-EM. In: Proceedings of the 16th European conference on machine learning. Porto, Portugal, pp 35-46.
-
-
-
-
11
-
-
77956657042
-
-
Blum A, Chawla S (2001) Learning from labeled and unlabeled data using graph mincuts. In: Proceedings of the 18th international conference on machine learning. Williamston, MA, pp 19-26.
-
-
-
-
12
-
-
77956673462
-
-
Blum A, Lafferty J, Rwebangira M, Reddy R (2004) Semi-supervised learning using randomized mincuts. In: Proceedings of the 21st international conference on machine learning. Banff, Canada, pp 13-20.
-
-
-
-
13
-
-
0031620208
-
-
Blum A, Mitchell T (1998) Combining labeled and unlabeled data with co-training. In: Proceedings of the 11th annual conference on computational learning theory. Madison, WI, pp 92-100.
-
-
-
-
14
-
-
77956659438
-
-
Brefeld U, Büscher C, Scheffer T (2005) Multi-view hidden markov perceptrons. In: Proceedings of the GI workshops. Saarbrücken, Germany, pp 134-138.
-
-
-
-
15
-
-
14344251008
-
-
Brefeld U, Scheffer T (2004) Co-EM support vector learning. In: Proceedings of the 21st international conference on machine learning. Banff, Canada.
-
-
-
-
16
-
-
34250753883
-
-
Brefeld U, Scheffer T (2006) Semi-supervised learning for structured output variables. In: Proceedings of the 23rd international conference on machine learning. Pittsburgh, PA, pp 145-152.
-
-
-
-
17
-
-
0030211964
-
Bagging predictors
-
Breiman L: Bagging predictors. Mach Learn 24(2), 123-140 (1996).
-
(1996)
Mach Learn
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
18
-
-
0035478854
-
Random forests
-
Breiman L: Random forests. Mach Learn 45(1), 5-32 (2001).
-
(2001)
Mach Learn
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
20
-
-
34250735083
-
-
Chapelle O, Chi M, Zien A (2006) A continuation method for semi-supervised SVMs. In: Proceedings of the 23rd international conference on machine learning. Pittsburgh, PA, pp 185-192.
-
-
-
-
21
-
-
33749252873
-
-
O. Chapelle, B. Schölkopf, and A. Zien (Eds.), Cambridge: MIT Press
-
Chapelle, O, Schölkopf, B, Zien, A (eds): Semi-supervised learning. MIT Press, Cambridge (2006).
-
(2006)
Semi-Supervised Learning
-
-
-
22
-
-
51949086172
-
-
Chapelle O, Zien A (2005) Semi-supervised learning by low density separation. In: Proceedings of the 10th international workshop on artificial intelligence and statistics. Savannah Hotel, Barbados, pp 57-64.
-
-
-
-
23
-
-
9244243116
-
Semisupervised learning of classifiers: theory, algorithm, and their application to human-computer interaction
-
Cohen I, Cozman FG, Sebe N, Cirelo MC, Huang TS: Semisupervised learning of classifiers: theory, algorithm, and their application to human-computer interaction. IEEE Trans Pattern Anal Mach Intell 26(12), 1553-1567 (2004).
-
(2004)
IEEE Trans Pattern Anal Mach Intell
, vol.26
, Issue.12
, pp. 1553-1567
-
-
Cohen, I.1
Cozman, F.G.2
Sebe, N.3
Cirelo, M.C.4
Huang, T.S.5
-
24
-
-
77956689929
-
-
Collins M, Singer Y (1999) Unsupervised models for named entity classifications. In: Proceedings of the joint SIGDAT conference on empirical methods in natural language processing and very large corpora. College Park, MD, pp 100-110.
-
-
-
-
25
-
-
34250704272
-
-
Collobert R, Sinz F, Weston J, Bottou L (2006) Trading convexity for scalability. In: Proceedings of the 23rd international conference on machine learning. Pittsburgh, PA, pp 201-208.
-
-
-
-
26
-
-
77956696733
-
-
Cozman FG, Cohen I (2002) Unlabeled data can degrade classification performance of generative classifiers. In: Proceedings of the 15th international conference of the Florida Artificial Intelligence Research Society. Pensacola, FL, pp 327-331.
-
-
-
-
28
-
-
84899008485
-
PAC generalization bounds for co-training
-
T. G. Dietterich, S. Becker, and Z. Ghahramani (Eds.), Cambridge: MIT Press
-
Dasgupta S, Littman M, McAllester D (2002) PAC generalization bounds for co-training. In: Dietterich TG, Becker S, Ghahramani Z (eds) Advances in neural information processing systems 14. MIT Press, Cambridge, pp 375-382.
-
(2002)
Advances in Neural Information Processing Systems 14
, pp. 375-382
-
-
Dasgupta, S.1
Littman, M.2
McAllester, D.3
-
29
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
Dempster AP, Laird NM, Rubin DB: Maximum likelihood from incomplete data via the EM algorithm. J Royal Stat Soc Ser B 39(1), 1-38 (1977).
-
(1977)
J Royal Stat Soc Ser B
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
30
-
-
0042440878
-
-
Dong A, Bhanu B (2003) A new semi-supervised EM algorithm for image retrieval. In: Proceedings of the IEEE international conference on computer vision and pattern recognition. Madison, WI, pp 662-667.
-
-
-
-
32
-
-
33749404380
-
Two view learning: SVM-2K, theory and practice
-
Y. Weiss, B. Schölkopf, and J. Platt (Eds.), Cambridge, MA: MIT Press
-
Farquhar JDR, Hardoon D, Meng H, Shawe-Taylor J, Szedmak S (2006) Two view learning: SVM-2K, theory and practice. In: Weiss Y, Schölkopf B, Platt J (eds). Advances in neural information processing systems 18. MIT Press, Cambridge MA, pp. 355-362.
-
(2006)
Advances in Neural Information Processing Systems 18
, pp. 355-362
-
-
Farquhar, J.D.R.1
Hardoon, D.2
Meng, H.3
Shawe-Taylor, J.4
Szedmak, S.5
-
33
-
-
29344468051
-
-
Fujino A, Ueda N, Saito K (2005) A hybrid generative/discriminative approach to semi-supervised classifier design. In: Proceedings of the 20th national conference on artificial intelligence. Pittsburgh, PA, pp 764-769.
-
-
-
-
34
-
-
77956705584
-
-
Garcke J, Griebel M (2005) Semi-supervised learning with sparse grids. In: Working Notes of the ICML'05 Workshop on learning with partially classified training data. Bonn, Germany.
-
-
-
-
35
-
-
56049127186
-
-
Goldberg AB, Li M, Zhu X (2008) Online manifold regularization: a new learning setting and empirical study. In: Proceedings of the 19th European conference on machine learning. Antwerp, Belgium, pp 393-407.
-
-
-
-
36
-
-
77956656398
-
-
Goldman S, Zhou Y (2000) Enhancing supervised learning with unlabeled data. In: Proceedings of the 17th international conference on machine learning. San Francisco, CA, pp 327-334.
-
-
-
-
37
-
-
84898928156
-
Semi-supervised learning by entropy minimization
-
L. K. Saul, Y. Weiss, and L. Bottou (Eds.), Cambridge: MIT Press
-
Grandvalet Y, Bengio Y (2005) Semi-supervised learning by entropy minimization. In: Saul LK, Weiss Y, Bottou L (eds) Advances in neural information processing systems 17. MIT Press, Cambridge, MA, pp 529-536.
-
(2005)
Advances in Neural Information Processing Systems 17
, pp. 529-536
-
-
Grandvalet, Y.1
Bengio, Y.2
-
38
-
-
10044285992
-
Canonical correlation analysis: An overview with application to learning methods
-
Hardoon DR, Szedmak S, Shawe-Taylor J: Canonical correlation analysis: An overview with application to learning methods. Neural Comput 16(12), 2639-2664 (2004).
-
(2004)
Neural Comput
, vol.16
, Issue.12
, pp. 2639-2664
-
-
Hardoon, D.R.1
Szedmak, S.2
Shawe-Taylor, J.3
-
39
-
-
84864031835
-
Manifold denoising
-
B. Schölkopf, J. C. Platt, and T. Hoffman (Eds.), Cambridge: MIT Press
-
Hein M, Maier M (2007) Manifold denoising. In: Schölkopf B, Platt JC, Hoffman T (eds) Advances in neural information processing systems 19. MIT Press, Cambridge, pp 561-568.
-
(2007)
Advances in Neural Information Processing Systems 19
, pp. 561-568
-
-
Hein, M.1
Maier, M.2
-
40
-
-
0001230939
-
A comparison of iterative maximum likelihood estimates of the parameters of a mixture of two normal distributions under three different types of sample
-
Hosmer W: A comparison of iterative maximum likelihood estimates of the parameters of a mixture of two normal distributions under three different types of sample. Biometrics 29(4), 761-770 (1973).
-
(1973)
Biometrics
, vol.29
, Issue.4
, pp. 761-770
-
-
Hosmer, W.1
-
41
-
-
77956688463
-
-
Hwa R, Osborne M, Sarkar A, Steedman M (2003) Corrected co-training for statistical parsers. In: Working notes of the ICML'03 Workshop on the continuum from labeled to unlabeled data in machine learning and data mining. Washington, DC.
-
-
-
-
42
-
-
77956661345
-
-
Joachims T (1999) Transductive inference for text classification using support vector machines. In: Proceedings of the 16th international conference on machine learning. Bled, Slovenia, pp 200-209.
-
-
-
-
43
-
-
9444281494
-
-
Kockelkorn M, Lüneburg A, Scheffer T (2003) Using transduction and multi-view learning to answer emails. In: Proceedings of the 7th European conference on principles and practice of knowledge discovery in databases. Cavtat-Dubrovnik, Croatia, pp 266-277.
-
-
-
-
44
-
-
78049527893
-
Semi-supervised learning via Gaussian processes
-
L. K. Saul, Y. Weiss, and L. Bottou (Eds.), Cambridge: MIT Press
-
Lawrence ND, Jordan MI (2005) Semi-supervised learning via Gaussian processes. In: Saul LK, Weiss Y, Bottou L (eds) Advances in neural information processing systems 17. MIT Press, Cambridge, MA, pp 753-760.
-
(2005)
Advances in Neural Information Processing Systems 17
, pp. 753-760
-
-
Lawrence, N.D.1
Jordan, M.I.2
-
45
-
-
85013879626
-
-
Lewis D, Gale W (1994) A sequential algorithm for training text classifiers. In: Proceedings of the 17th annual international ACM SIGIR conference on research and development in information retrieval. Dublin, Ireland, pp 3-12.
-
-
-
-
46
-
-
64549161526
-
Semi-supervised document retrieval
-
Li M, Li H, Zhou Z-H: Semi-supervised document retrieval. Inf. Process. Manage. 45(3), 341-355 (2009).
-
(2009)
Inf. Process. Manage.
, vol.45
, Issue.3
, pp. 341-355
-
-
Li, M.1
Li, H.2
Zhou, Z.-H.3
-
47
-
-
26944471649
-
-
Li M, Zhou Z-H (2005) SETRED: Self-training with editing. In: Proceedings of the 9th Pacific-Asia conference on knowledge discovery and data mining. Hanoi, Vietnam, pp 611-621.
-
-
-
-
48
-
-
36249007597
-
Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples
-
Li M, Zhou Z-H: Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples. IEEE Trans Syst Man Cybern Part A Syst Humans 37(6), 1088-1098 (2007).
-
(2007)
IEEE Trans Syst Man Cybern Part A Syst Humans
, vol.37
, Issue.6
, pp. 1088-1098
-
-
Li, M.1
Zhou, Z.-H.2
-
49
-
-
14844303546
-
Semisupervised learning from different information sources
-
Li T, Ogihara M: Semisupervised learning from different information sources. Knowl Inf Syst 7(3), 289-309 (2005).
-
(2005)
Knowl Inf Syst
, vol.7
, Issue.3
, pp. 289-309
-
-
Li, T.1
Ogihara, M.2
-
50
-
-
0024771475
-
Pattern classification using neural networks
-
Lippmann RP: Pattern classification using neural networks. IEEE Commun 27(11), 47-64 (1989).
-
(1989)
IEEE Commun
, vol.27
, Issue.11
, pp. 47-64
-
-
Lippmann, R.P.1
-
51
-
-
77956686480
-
-
Mavroeidis D, Chaidos K, Pirillos S, Christopoulos D, Vazirgiannis M (2006) Using tri-training and support vector machines for addressing the ECML-PKDD 2006 discovery challenge. In: Proceedings of ECML-PKDD 2006 discovery challenge workshop. Berlin, Germany, pp 39-47.
-
-
-
-
52
-
-
0040908393
-
Iterative reclassification procedure for constructing an asymptotically optimal rule of allocation in discriminant analysis
-
McLachlan J: Iterative reclassification procedure for constructing an asymptotically optimal rule of allocation in discriminant analysis. J Am Stat Assoc 70(350), 365-369 (1977).
-
(1977)
J Am Stat Assoc
, vol.70
, Issue.350
, pp. 365-369
-
-
McLachlan, J.1
-
53
-
-
0010808571
-
Updating a discriminant function on the basis of unclassified data
-
McLachlan J, Ganesalingam S: Updating a discriminant function on the basis of unclassified data. Commun Stat Simul Comput 11(6), 753-767 (1982).
-
(1982)
Commun Stat Simul Comput
, vol.11
, Issue.6
, pp. 753-767
-
-
McLachlan, J.1
Ganesalingam, S.2
-
54
-
-
84898980291
-
A mixture of experts classifier with learning based on both labelled and unlabelled data
-
M. Mozer, M. I. Jordan, and T. Petsche (Eds.), Cambridge, MA: MIT Press
-
Miller DJ, Uyar HS (1997) A mixture of experts classifier with learning based on both labelled and unlabelled data. In: Mozer M, Jordan MI, Petsche T (eds) Advances in neural information processing systems 9. MIT Press, Cambridge, MA, pp 571-577.
-
(1997)
Advances in Neural Information Processing Systems 9
, pp. 571-577
-
-
Miller, D.J.1
Uyar, H.S.2
-
55
-
-
77956681213
-
-
Nigam K, Ghani R (2000) Analyzing the effectiveness and applicability of co-training. In: Proceedings of the 9th ACM international conference on information and knowledge management. Washington, DC, pp 86-93.
-
-
-
-
56
-
-
0033886806
-
Text classification from labeled and unlabeled documents using EM
-
Nigam K, McCallum AK, Thrun S, Mitchell T: Text classification from labeled and unlabeled documents using EM. Mach Learn 39(2-3), 103-134 (2000).
-
(2000)
Mach Learn
, vol.39
, Issue.2-3
, pp. 103-134
-
-
Nigam, K.1
McCallum, A.K.2
Thrun, S.3
Mitchell, T.4
-
57
-
-
0000734588
-
Normal discrimination with unclassified observations
-
O'Neill T: Normal discrimination with unclassified observations. J Am Stat Assoc 73(364), 821-826 (1978).
-
(1978)
J Am Stat Assoc
, vol.73
, Issue.364
, pp. 821-826
-
-
O'Neill, T.1
-
58
-
-
77956702898
-
-
Pierce D, Cardie C (2001) Limitations of co-training for natural language learning from large data sets. In: Proceedings of the 2001 conference on empirical methods in natural language processing. Pittsburgh, PA, pp 1-9.
-
-
-
-
59
-
-
0032596539
-
-
Riloff E, Jones R (1999) Learning dictionaries for information extraction by multi-level bootstrapping. In: Proceedings of the 16th national conference on artificial intelligence. Orlando, FL, pp 474-479.
-
-
-
-
60
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
Roweis ST, Saul LK: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323-2326 (2000).
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
61
-
-
0032166448
-
Relevance feedback: a power tool for interactive content-based image retrieval
-
Rui Y, Huang TS, Ortega M, Mehrotra S: Relevance feedback: a power tool for interactive content-based image retrieval. IEEE Trans Circuits Syst Video Technol 8(5), 644-655 (1998).
-
(1998)
IEEE Trans Circuits Syst Video Technol
, vol.8
, Issue.5
, pp. 644-655
-
-
Rui, Y.1
Huang, T.S.2
Ortega, M.3
Mehrotra, S.4
-
62
-
-
77956661035
-
-
Sarkar A (2001) Applying co-training methods to statistical parsing. In: Proceedings of the 2nd annual meeting of the North American chapter of the association for computational linguistics. Pittsburgh, PA, pp 95-102.
-
-
-
-
63
-
-
0026981853
-
-
Seung H, Opper M, Sompolinsky H (1992) Query by committee. In: Proceedings of the 5th ACM workshop on computational learning theory. Pittsburgh, PA, pp 287-294.
-
-
-
-
64
-
-
0028499630
-
The effect of unlabeled samples in reducing the small sample size problem and mitigating the hughes phenomenon
-
Shahshahani B, Landgrebe D: The effect of unlabeled samples in reducing the small sample size problem and mitigating the hughes phenomenon. IEEE Trans Geosci Remote Sens 32(5), 1087-1095 (1994).
-
(1994)
IEEE Trans Geosci Remote Sens
, vol.32
, Issue.5
, pp. 1087-1095
-
-
Shahshahani, B.1
Landgrebe, D.2
-
65
-
-
33750373672
-
-
Sindhwani V, Keerthi SS (2006) Large scale semi-supervised linear SVMs. In: Proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval. Seattle, WA, pp 477-484.
-
-
-
-
66
-
-
33749242620
-
-
Sindhwani V, Keerthi SS, Chapelle O (2006) Deterministic annealing for semi-supervised kernel machines. In: Proceedings of the 23rd international conference on machine learning. Pittsburgh, PA, pp 123-130.
-
-
-
-
67
-
-
31844440904
-
-
Sindhwani V, Niyogi P, Belkin M (2005) Beyond the point cloud: From transductive to semi-supervised learning. In: Proceedings of the 22nd international conference on machine learning. Bonn, Germany, pp 824-831.
-
-
-
-
68
-
-
77956665794
-
-
Steedman M, Osborne M, Sarkar A, Clark S, Hwa R, Hockenmaier J, Ruhlen P, Baker S, Crim J (2003) Bootstrapping statistical parsers from small data sets. In: Proceedings of the 11th conference on the European chapter of the association for computational linguistics. Budapest, Hungary, pp 331-338.
-
-
-
-
70
-
-
34250753340
-
-
Wang F, Zhang C (2006) Label propagation through linear neighborhoods. In: Proceedings of the 23rd international conference on machine learning. Pittsburgh, PA, pp 985-992.
-
-
-
-
71
-
-
38049125937
-
-
Wang W, Zhou Z-H (2007) Analyzing co-training style algorithms. In: Proceedings of the 18th European conference on machine learning. Warsaw, Poland, pp 454-465.
-
-
-
-
72
-
-
56449102315
-
-
Wang W, Zhou Z-H (2008) On multi-view active learning and the combination with semi-supervised learning. In: Proceedings of the 25th international conference on machine learning. Helsinki, Finland, pp 1152-1159.
-
-
-
-
73
-
-
37549018049
-
Top 10 algorithms in data mining
-
Wu X, Kumar V, Quinlan JR, Ghosh J, Yang Q, Motoda H, McLachlan GJ, Ng A, Liu B, Yu PS, Zhou Z-H, Steinbach M, Hand DJ, Steinberg D: Top 10 algorithms in data mining. Knowledge and Information Systems 14(1), 1-37 (2008).
-
(2008)
Knowledge and Information Systems
, vol.14
, Issue.1
, pp. 1-37
-
-
Wu, X.1
Kumar, V.2
Quinlan, J.R.3
Ghosh, J.4
Yang, Q.5
Motoda, H.6
McLachlan, G.J.7
Ng, A.8
Liu, B.9
Yu, P.S.10
Zhou, Z.-H.11
Steinbach, M.12
Hand, D.J.13
Steinberg, D.14
-
74
-
-
0033682177
-
-
Wu Y, Tian Q, Huang TS (2000) Discriminant-EM algorithm with application to image retrieval. In: Proceedings of the IEEE international conference on computer vision and pattern recognition. Hilton Head, SC, pp 222-227.
-
-
-
-
75
-
-
77956710693
-
-
Yarowsky D (1995) Unsupervised word sense disambiguation rivaling supervised methods. In: Proceedings of the 33rd annual meeting of the association for computational linguistics. Cambridge, MA, pp 189-196.
-
-
-
-
76
-
-
77956665430
-
-
Yu K, Yu S, Tresp V (2005) Blockwise supervised inference on large graphs. In: Working notes of the ICML'05 workshop on learning with partially classified training data. Bonn, Germany.
-
-
-
-
77
-
-
77951160349
-
The concave-convex procedure (CCCP)
-
T. G. Dietterich, S. Becker, and Z. Ghahramani (Eds.), Cambridge: MIT Press
-
Yuille AL, Rangarajan A (2002) The concave-convex procedure (CCCP). In: Dietterich TG, Becker S, Ghahramani Z (eds) Advances in neural information processing systems 14. MIT Press, Cambridge, pp 1033-1040.
-
(2002)
Advances in Neural Information Processing Systems 14
, pp. 1033-1040
-
-
Yuille, A.L.1
Rangarajan, A.2
-
78
-
-
77956695946
-
-
Zhang T, Oles FJ (2000) A probability analysis on the value of unlabeled data for classification problems. In: Proceedings of 17th international conference on machine learning. Stanford, CA, pp 1191-1198.
-
-
-
-
79
-
-
84864033982
-
Hyperparameter learning for graph based semi-supervised learning algorithms
-
B. Schölkopf, J. Platt, and T. Hofmann (Eds.), Cambridge: MIT Press
-
Zhang X, Lee WS (2007) Hyperparameter learning for graph based semi-supervised learning algorithms. In: Schölkopf B, Platt J, Hofmann T (eds) Advances in neural information processing systems 19. MIT Press, Cambridge, pp 1585-1592.
-
(2007)
Advances in Neural Information Processing Systems 19
, pp. 1585-1592
-
-
Zhang, X.1
Lee, W.S.2
-
80
-
-
84899006908
-
Learning with local and global consistency
-
S. Thrun, L. K. Saul, B. Schölkopf (Eds.), Cambridge: MIT Press
-
Zhou D, Bousquet O, Lal TN, Weston J, Schölkopf B (2004) Learning with local and global consistency. In: Thrun S, Saul L, Schölkopf B (eds) Advances in neural information processing systems 16. MIT Press, Cambridge.
-
(2004)
Advances in Neural Information Processing Systems 16
-
-
Zhou, D.1
Bousquet, O.2
Lal, T.N.3
Weston, J.4
Schölkopf, B.5
-
81
-
-
16244378563
-
-
Zhou Y, Goldman S (2004) Democratic co-learning. In: Proceedings of the 16th IEEE international conference on tools with artificial intelligence. Boca Raton, FL, pp 594-602.
-
-
-
-
82
-
-
33749557228
-
-
Zhou Z-H (2006) Learning with unlabeled data and its application to image retrieval. In: Proceedings of the 9th Pacific rim international conference on artificial intelligence. Guilin, China, pp 5-10.
-
-
-
-
83
-
-
57949117175
-
-
Zhou Z-H (2008) Semi-supervised learning by disagreement. In: Proceedings of the 4th IEEE international conference on granular computing. Hangzhou, China.
-
-
-
-
84
-
-
70350346030
-
Ensemble learning
-
S. Z. Li (Ed.), Berlin: Springer
-
Zhou Z-H: Ensemble learning. In: Li, SZ (eds) Encyclopedia of biometrics, Springer, Berlin (2009).
-
(2009)
Encyclopedia of Biometrics
-
-
Zhou, Z.-H.1
-
85
-
-
33746834100
-
Enhancing relevance feedback in image retrieval using unlabeled data
-
Zhou Z-H, Chen K-J, Dai H-B: Enhancing relevance feedback in image retrieval using unlabeled data. ACM Trans Inf Syst 24(2), 219-244 (2006).
-
(2006)
ACM Trans Inf Syst
, vol.24
, Issue.2
, pp. 219-244
-
-
Zhou, Z.-H.1
Chen, K.-J.2
Dai, H.-B.3
-
86
-
-
22944433860
-
-
Zhou Z-H, Chen K-J, Jiang Y (2004) Exploiting unlabeled data in content-based image retrieval. In: Proceedings of the 15th European conference on machine learning. Pisa, Italy, pp 525-536.
-
-
-
-
87
-
-
84880742718
-
-
Zhou Z-H, Li M (2005) Semi-supervised regression with co-training. In: Proceedings of the 19th international joint conference on artificial intelligence. Edinburgh, Scotland, pp 908-913.
-
-
-
-
88
-
-
28244448186
-
Tri-training: Exploiting unlabeled data using three classifiers
-
Zhou Z-H, Li M: Tri-training: Exploiting unlabeled data using three classifiers. IEEE Trans Knowl Data Eng 17(11), 1529-1541 (2005).
-
(2005)
IEEE Trans Knowl Data Eng
, vol.17
, Issue.11
, pp. 1529-1541
-
-
Zhou, Z.-H.1
Li, M.2
-
89
-
-
35348881683
-
Semi-supervised regression with co-training style algorithms
-
Zhou Z-H, Li M: Semi-supervised regression with co-training style algorithms. IEEE Trans Knowl Data Eng 19(11), 1479-1493 (2007).
-
(2007)
IEEE Trans Knowl Data Eng
, vol.19
, Issue.11
, pp. 1479-1493
-
-
Zhou, Z.-H.1
Li, M.2
-
90
-
-
77956668086
-
-
Zhou Z-H, Ng M, She Q-Q, Jiang Y (2009) Budget semi-supervised learning. In: Proceedings of the 13th Pacific-Asia conference on knowledge discovery and data mining. Bangkok, Thailand, pp 588-595.
-
-
-
-
91
-
-
36348938695
-
-
Zhou Z-H, Zhan D-C, Yang Q (2007) Semi-supervised learning with very few labeled training examples. In: Proceedings of the 22nd AAAI conference on artificial intelligence. Vancouver, Canada, pp 675-680.
-
-
-
-
93
-
-
1942484430
-
-
Zhu X, Ghahramani Z, Lafferty J (2003) Semi-supervised learning using Gaussian fields and harmonic functions. In: Proceedings of the 20th international conference on machine learning. Washington, DC, pp 912-919.
-
-
-
-
94
-
-
31844438481
-
-
Zhu X, Lafferty J (2005) Harmonic mixtures: Combining mixture models and graph-based methods for inductive and scalable semi-supervised leanring. In: Proceedings of the 22nd international conference on machine learning. Bonn, Germany, pp 1052-1059.
-
-
-
|