메뉴 건너뛰기




Volumn 24, Issue 3, 2010, Pages 415-439

Semi-supervised learning by disagreement

Author keywords

Data mining; Disagreement based semi supervised learning; Machine learning; Semi supervised learning

Indexed keywords

DATA MINING; LEARNING SYSTEMS;

EID: 77956708689     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-009-0209-z     Document Type: Article
Times cited : (404)

References (94)
  • 1
    • 77956659439 scopus 로고    scopus 로고
    • Abe N, Mamitsuka H (1998) Query learning strategies using boosting and bagging. In: Proceedings of the 15th international conference on machine learning. Madison, WI, pp 1-9.
  • 2
    • 77956672147 scopus 로고    scopus 로고
    • Abney S (2002) Bootstrapping. In: Proceedings of the 40th annual meeting of the association for computational linguistics. Philadelphia, PA, pp 360-367.
  • 3
    • 1942421209 scopus 로고    scopus 로고
    • Altun Y, Tsochantaridis I, Hofmann T (2003) Hidden markov support vector machines. In: Proceedings of the 20th international conference on machine learning. Washington, DC, pp 3-10.
  • 4
    • 28044467723 scopus 로고    scopus 로고
    • Semi-supervised learning with an imperfect supervisor
    • Amini MR, Gallinari P: Semi-supervised learning with an imperfect supervisor. Knowl Inf Syst 8(4), 385-413 (2005).
    • (2005) Knowl Inf Syst , vol.8 , Issue.4 , pp. 385-413
    • Amini, M.R.1    Gallinari, P.2
  • 5
    • 0000492326 scopus 로고
    • Learning from noisy examples
    • Angluin D, Laird P: Learning from noisy examples. Mach Learn 2(4), 343-370 (1988).
    • (1988) Mach Learn , vol.2 , Issue.4 , pp. 343-370
    • Angluin, D.1    Laird, P.2
  • 6
    • 84898930761 scopus 로고    scopus 로고
    • Co-training and expansion: towards bridging theory and practice
    • L. K. Saul, Y. Weiss, and L. Bottou (Eds.), Cambridge: MIT Press
    • Balcan M-F, Blum A, Yang K (2005) Co-training and expansion: towards bridging theory and practice. In: Saul LK, Weiss Y, Bottou L (eds) Advances in neural information processing systems 17. MIT Press, Cambridge, pp 89-96.
    • (2005) Advances in Neural Information Processing Systems 17 , pp. 89-96
    • Balcan, M.-F.1    Blum, A.2    Yang, K.3
  • 7
    • 3142725535 scopus 로고    scopus 로고
    • Semi-supervised learning on Riemannian manifolds
    • Belkin M, Niyogi P: Semi-supervised learning on Riemannian manifolds. Mach Learn 56(1-3), 209-239 (2004).
    • (2004) Mach Learn , vol.56 , Issue.1-3 , pp. 209-239
    • Belkin, M.1    Niyogi, P.2
  • 8
    • 33745465341 scopus 로고    scopus 로고
    • Belkin M, Niyogi P, Sindhwani V (2005) On manifold regularization. In: Proceedings of the 10th international workshop on artificial intelligence and statistics. Savannah, Barbados, pp 17-24.
  • 9
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
    • Belkin M, Niyogi P, Sindhwani V: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7, 2399-2434 (2006).
    • (2006) J Mach Learn Res , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 10
    • 33646436173 scopus 로고    scopus 로고
    • Bickel S, Scheffer T (2005) Estimation of mixture models using co-EM. In: Proceedings of the 16th European conference on machine learning. Porto, Portugal, pp 35-46.
  • 11
    • 77956657042 scopus 로고    scopus 로고
    • Blum A, Chawla S (2001) Learning from labeled and unlabeled data using graph mincuts. In: Proceedings of the 18th international conference on machine learning. Williamston, MA, pp 19-26.
  • 12
    • 77956673462 scopus 로고    scopus 로고
    • Blum A, Lafferty J, Rwebangira M, Reddy R (2004) Semi-supervised learning using randomized mincuts. In: Proceedings of the 21st international conference on machine learning. Banff, Canada, pp 13-20.
  • 13
    • 0031620208 scopus 로고    scopus 로고
    • Blum A, Mitchell T (1998) Combining labeled and unlabeled data with co-training. In: Proceedings of the 11th annual conference on computational learning theory. Madison, WI, pp 92-100.
  • 14
    • 77956659438 scopus 로고    scopus 로고
    • Brefeld U, Büscher C, Scheffer T (2005) Multi-view hidden markov perceptrons. In: Proceedings of the GI workshops. Saarbrücken, Germany, pp 134-138.
  • 15
    • 14344251008 scopus 로고    scopus 로고
    • Brefeld U, Scheffer T (2004) Co-EM support vector learning. In: Proceedings of the 21st international conference on machine learning. Banff, Canada.
  • 16
    • 34250753883 scopus 로고    scopus 로고
    • Brefeld U, Scheffer T (2006) Semi-supervised learning for structured output variables. In: Proceedings of the 23rd international conference on machine learning. Pittsburgh, PA, pp 145-152.
  • 17
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L: Bagging predictors. Mach Learn 24(2), 123-140 (1996).
    • (1996) Mach Learn , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 18
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L: Random forests. Mach Learn 45(1), 5-32 (2001).
    • (2001) Mach Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 19
  • 20
    • 34250735083 scopus 로고    scopus 로고
    • Chapelle O, Chi M, Zien A (2006) A continuation method for semi-supervised SVMs. In: Proceedings of the 23rd international conference on machine learning. Pittsburgh, PA, pp 185-192.
  • 21
    • 33749252873 scopus 로고    scopus 로고
    • O. Chapelle, B. Schölkopf, and A. Zien (Eds.), Cambridge: MIT Press
    • Chapelle, O, Schölkopf, B, Zien, A (eds): Semi-supervised learning. MIT Press, Cambridge (2006).
    • (2006) Semi-Supervised Learning
  • 22
    • 51949086172 scopus 로고    scopus 로고
    • Chapelle O, Zien A (2005) Semi-supervised learning by low density separation. In: Proceedings of the 10th international workshop on artificial intelligence and statistics. Savannah Hotel, Barbados, pp 57-64.
  • 23
    • 9244243116 scopus 로고    scopus 로고
    • Semisupervised learning of classifiers: theory, algorithm, and their application to human-computer interaction
    • Cohen I, Cozman FG, Sebe N, Cirelo MC, Huang TS: Semisupervised learning of classifiers: theory, algorithm, and their application to human-computer interaction. IEEE Trans Pattern Anal Mach Intell 26(12), 1553-1567 (2004).
    • (2004) IEEE Trans Pattern Anal Mach Intell , vol.26 , Issue.12 , pp. 1553-1567
    • Cohen, I.1    Cozman, F.G.2    Sebe, N.3    Cirelo, M.C.4    Huang, T.S.5
  • 24
    • 77956689929 scopus 로고    scopus 로고
    • Collins M, Singer Y (1999) Unsupervised models for named entity classifications. In: Proceedings of the joint SIGDAT conference on empirical methods in natural language processing and very large corpora. College Park, MD, pp 100-110.
  • 25
    • 34250704272 scopus 로고    scopus 로고
    • Collobert R, Sinz F, Weston J, Bottou L (2006) Trading convexity for scalability. In: Proceedings of the 23rd international conference on machine learning. Pittsburgh, PA, pp 201-208.
  • 26
    • 77956696733 scopus 로고    scopus 로고
    • Cozman FG, Cohen I (2002) Unlabeled data can degrade classification performance of generative classifiers. In: Proceedings of the 15th international conference of the Florida Artificial Intelligence Research Society. Pensacola, FL, pp 327-331.
  • 28
    • 84899008485 scopus 로고    scopus 로고
    • PAC generalization bounds for co-training
    • T. G. Dietterich, S. Becker, and Z. Ghahramani (Eds.), Cambridge: MIT Press
    • Dasgupta S, Littman M, McAllester D (2002) PAC generalization bounds for co-training. In: Dietterich TG, Becker S, Ghahramani Z (eds) Advances in neural information processing systems 14. MIT Press, Cambridge, pp 375-382.
    • (2002) Advances in Neural Information Processing Systems 14 , pp. 375-382
    • Dasgupta, S.1    Littman, M.2    McAllester, D.3
  • 29
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster AP, Laird NM, Rubin DB: Maximum likelihood from incomplete data via the EM algorithm. J Royal Stat Soc Ser B 39(1), 1-38 (1977).
    • (1977) J Royal Stat Soc Ser B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 30
    • 0042440878 scopus 로고    scopus 로고
    • Dong A, Bhanu B (2003) A new semi-supervised EM algorithm for image retrieval. In: Proceedings of the IEEE international conference on computer vision and pattern recognition. Madison, WI, pp 662-667.
  • 33
    • 29344468051 scopus 로고    scopus 로고
    • Fujino A, Ueda N, Saito K (2005) A hybrid generative/discriminative approach to semi-supervised classifier design. In: Proceedings of the 20th national conference on artificial intelligence. Pittsburgh, PA, pp 764-769.
  • 34
    • 77956705584 scopus 로고    scopus 로고
    • Garcke J, Griebel M (2005) Semi-supervised learning with sparse grids. In: Working Notes of the ICML'05 Workshop on learning with partially classified training data. Bonn, Germany.
  • 35
    • 56049127186 scopus 로고    scopus 로고
    • Goldberg AB, Li M, Zhu X (2008) Online manifold regularization: a new learning setting and empirical study. In: Proceedings of the 19th European conference on machine learning. Antwerp, Belgium, pp 393-407.
  • 36
    • 77956656398 scopus 로고    scopus 로고
    • Goldman S, Zhou Y (2000) Enhancing supervised learning with unlabeled data. In: Proceedings of the 17th international conference on machine learning. San Francisco, CA, pp 327-334.
  • 37
    • 84898928156 scopus 로고    scopus 로고
    • Semi-supervised learning by entropy minimization
    • L. K. Saul, Y. Weiss, and L. Bottou (Eds.), Cambridge: MIT Press
    • Grandvalet Y, Bengio Y (2005) Semi-supervised learning by entropy minimization. In: Saul LK, Weiss Y, Bottou L (eds) Advances in neural information processing systems 17. MIT Press, Cambridge, MA, pp 529-536.
    • (2005) Advances in Neural Information Processing Systems 17 , pp. 529-536
    • Grandvalet, Y.1    Bengio, Y.2
  • 38
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: An overview with application to learning methods
    • Hardoon DR, Szedmak S, Shawe-Taylor J: Canonical correlation analysis: An overview with application to learning methods. Neural Comput 16(12), 2639-2664 (2004).
    • (2004) Neural Comput , vol.16 , Issue.12 , pp. 2639-2664
    • Hardoon, D.R.1    Szedmak, S.2    Shawe-Taylor, J.3
  • 39
    • 84864031835 scopus 로고    scopus 로고
    • Manifold denoising
    • B. Schölkopf, J. C. Platt, and T. Hoffman (Eds.), Cambridge: MIT Press
    • Hein M, Maier M (2007) Manifold denoising. In: Schölkopf B, Platt JC, Hoffman T (eds) Advances in neural information processing systems 19. MIT Press, Cambridge, pp 561-568.
    • (2007) Advances in Neural Information Processing Systems 19 , pp. 561-568
    • Hein, M.1    Maier, M.2
  • 40
    • 0001230939 scopus 로고
    • A comparison of iterative maximum likelihood estimates of the parameters of a mixture of two normal distributions under three different types of sample
    • Hosmer W: A comparison of iterative maximum likelihood estimates of the parameters of a mixture of two normal distributions under three different types of sample. Biometrics 29(4), 761-770 (1973).
    • (1973) Biometrics , vol.29 , Issue.4 , pp. 761-770
    • Hosmer, W.1
  • 41
    • 77956688463 scopus 로고    scopus 로고
    • Hwa R, Osborne M, Sarkar A, Steedman M (2003) Corrected co-training for statistical parsers. In: Working notes of the ICML'03 Workshop on the continuum from labeled to unlabeled data in machine learning and data mining. Washington, DC.
  • 42
    • 77956661345 scopus 로고    scopus 로고
    • Joachims T (1999) Transductive inference for text classification using support vector machines. In: Proceedings of the 16th international conference on machine learning. Bled, Slovenia, pp 200-209.
  • 43
    • 9444281494 scopus 로고    scopus 로고
    • Kockelkorn M, Lüneburg A, Scheffer T (2003) Using transduction and multi-view learning to answer emails. In: Proceedings of the 7th European conference on principles and practice of knowledge discovery in databases. Cavtat-Dubrovnik, Croatia, pp 266-277.
  • 44
    • 78049527893 scopus 로고    scopus 로고
    • Semi-supervised learning via Gaussian processes
    • L. K. Saul, Y. Weiss, and L. Bottou (Eds.), Cambridge: MIT Press
    • Lawrence ND, Jordan MI (2005) Semi-supervised learning via Gaussian processes. In: Saul LK, Weiss Y, Bottou L (eds) Advances in neural information processing systems 17. MIT Press, Cambridge, MA, pp 753-760.
    • (2005) Advances in Neural Information Processing Systems 17 , pp. 753-760
    • Lawrence, N.D.1    Jordan, M.I.2
  • 45
    • 85013879626 scopus 로고    scopus 로고
    • Lewis D, Gale W (1994) A sequential algorithm for training text classifiers. In: Proceedings of the 17th annual international ACM SIGIR conference on research and development in information retrieval. Dublin, Ireland, pp 3-12.
  • 46
    • 64549161526 scopus 로고    scopus 로고
    • Semi-supervised document retrieval
    • Li M, Li H, Zhou Z-H: Semi-supervised document retrieval. Inf. Process. Manage. 45(3), 341-355 (2009).
    • (2009) Inf. Process. Manage. , vol.45 , Issue.3 , pp. 341-355
    • Li, M.1    Li, H.2    Zhou, Z.-H.3
  • 47
    • 26944471649 scopus 로고    scopus 로고
    • Li M, Zhou Z-H (2005) SETRED: Self-training with editing. In: Proceedings of the 9th Pacific-Asia conference on knowledge discovery and data mining. Hanoi, Vietnam, pp 611-621.
  • 48
    • 36249007597 scopus 로고    scopus 로고
    • Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples
    • Li M, Zhou Z-H: Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples. IEEE Trans Syst Man Cybern Part A Syst Humans 37(6), 1088-1098 (2007).
    • (2007) IEEE Trans Syst Man Cybern Part A Syst Humans , vol.37 , Issue.6 , pp. 1088-1098
    • Li, M.1    Zhou, Z.-H.2
  • 49
    • 14844303546 scopus 로고    scopus 로고
    • Semisupervised learning from different information sources
    • Li T, Ogihara M: Semisupervised learning from different information sources. Knowl Inf Syst 7(3), 289-309 (2005).
    • (2005) Knowl Inf Syst , vol.7 , Issue.3 , pp. 289-309
    • Li, T.1    Ogihara, M.2
  • 50
    • 0024771475 scopus 로고
    • Pattern classification using neural networks
    • Lippmann RP: Pattern classification using neural networks. IEEE Commun 27(11), 47-64 (1989).
    • (1989) IEEE Commun , vol.27 , Issue.11 , pp. 47-64
    • Lippmann, R.P.1
  • 51
    • 77956686480 scopus 로고    scopus 로고
    • Mavroeidis D, Chaidos K, Pirillos S, Christopoulos D, Vazirgiannis M (2006) Using tri-training and support vector machines for addressing the ECML-PKDD 2006 discovery challenge. In: Proceedings of ECML-PKDD 2006 discovery challenge workshop. Berlin, Germany, pp 39-47.
  • 52
    • 0040908393 scopus 로고
    • Iterative reclassification procedure for constructing an asymptotically optimal rule of allocation in discriminant analysis
    • McLachlan J: Iterative reclassification procedure for constructing an asymptotically optimal rule of allocation in discriminant analysis. J Am Stat Assoc 70(350), 365-369 (1977).
    • (1977) J Am Stat Assoc , vol.70 , Issue.350 , pp. 365-369
    • McLachlan, J.1
  • 53
    • 0010808571 scopus 로고
    • Updating a discriminant function on the basis of unclassified data
    • McLachlan J, Ganesalingam S: Updating a discriminant function on the basis of unclassified data. Commun Stat Simul Comput 11(6), 753-767 (1982).
    • (1982) Commun Stat Simul Comput , vol.11 , Issue.6 , pp. 753-767
    • McLachlan, J.1    Ganesalingam, S.2
  • 54
    • 84898980291 scopus 로고    scopus 로고
    • A mixture of experts classifier with learning based on both labelled and unlabelled data
    • M. Mozer, M. I. Jordan, and T. Petsche (Eds.), Cambridge, MA: MIT Press
    • Miller DJ, Uyar HS (1997) A mixture of experts classifier with learning based on both labelled and unlabelled data. In: Mozer M, Jordan MI, Petsche T (eds) Advances in neural information processing systems 9. MIT Press, Cambridge, MA, pp 571-577.
    • (1997) Advances in Neural Information Processing Systems 9 , pp. 571-577
    • Miller, D.J.1    Uyar, H.S.2
  • 55
    • 77956681213 scopus 로고    scopus 로고
    • Nigam K, Ghani R (2000) Analyzing the effectiveness and applicability of co-training. In: Proceedings of the 9th ACM international conference on information and knowledge management. Washington, DC, pp 86-93.
  • 56
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • Nigam K, McCallum AK, Thrun S, Mitchell T: Text classification from labeled and unlabeled documents using EM. Mach Learn 39(2-3), 103-134 (2000).
    • (2000) Mach Learn , vol.39 , Issue.2-3 , pp. 103-134
    • Nigam, K.1    McCallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 57
    • 0000734588 scopus 로고
    • Normal discrimination with unclassified observations
    • O'Neill T: Normal discrimination with unclassified observations. J Am Stat Assoc 73(364), 821-826 (1978).
    • (1978) J Am Stat Assoc , vol.73 , Issue.364 , pp. 821-826
    • O'Neill, T.1
  • 58
    • 77956702898 scopus 로고    scopus 로고
    • Pierce D, Cardie C (2001) Limitations of co-training for natural language learning from large data sets. In: Proceedings of the 2001 conference on empirical methods in natural language processing. Pittsburgh, PA, pp 1-9.
  • 59
    • 0032596539 scopus 로고    scopus 로고
    • Riloff E, Jones R (1999) Learning dictionaries for information extraction by multi-level bootstrapping. In: Proceedings of the 16th national conference on artificial intelligence. Orlando, FL, pp 474-479.
  • 60
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis ST, Saul LK: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323-2326 (2000).
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 61
  • 62
    • 77956661035 scopus 로고    scopus 로고
    • Sarkar A (2001) Applying co-training methods to statistical parsing. In: Proceedings of the 2nd annual meeting of the North American chapter of the association for computational linguistics. Pittsburgh, PA, pp 95-102.
  • 63
    • 0026981853 scopus 로고    scopus 로고
    • Seung H, Opper M, Sompolinsky H (1992) Query by committee. In: Proceedings of the 5th ACM workshop on computational learning theory. Pittsburgh, PA, pp 287-294.
  • 64
    • 0028499630 scopus 로고
    • The effect of unlabeled samples in reducing the small sample size problem and mitigating the hughes phenomenon
    • Shahshahani B, Landgrebe D: The effect of unlabeled samples in reducing the small sample size problem and mitigating the hughes phenomenon. IEEE Trans Geosci Remote Sens 32(5), 1087-1095 (1994).
    • (1994) IEEE Trans Geosci Remote Sens , vol.32 , Issue.5 , pp. 1087-1095
    • Shahshahani, B.1    Landgrebe, D.2
  • 65
    • 33750373672 scopus 로고    scopus 로고
    • Sindhwani V, Keerthi SS (2006) Large scale semi-supervised linear SVMs. In: Proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval. Seattle, WA, pp 477-484.
  • 66
    • 33749242620 scopus 로고    scopus 로고
    • Sindhwani V, Keerthi SS, Chapelle O (2006) Deterministic annealing for semi-supervised kernel machines. In: Proceedings of the 23rd international conference on machine learning. Pittsburgh, PA, pp 123-130.
  • 67
    • 31844440904 scopus 로고    scopus 로고
    • Sindhwani V, Niyogi P, Belkin M (2005) Beyond the point cloud: From transductive to semi-supervised learning. In: Proceedings of the 22nd international conference on machine learning. Bonn, Germany, pp 824-831.
  • 68
    • 77956665794 scopus 로고    scopus 로고
    • Steedman M, Osborne M, Sarkar A, Clark S, Hwa R, Hockenmaier J, Ruhlen P, Baker S, Crim J (2003) Bootstrapping statistical parsers from small data sets. In: Proceedings of the 11th conference on the European chapter of the association for computational linguistics. Budapest, Hungary, pp 331-338.
  • 70
    • 34250753340 scopus 로고    scopus 로고
    • Wang F, Zhang C (2006) Label propagation through linear neighborhoods. In: Proceedings of the 23rd international conference on machine learning. Pittsburgh, PA, pp 985-992.
  • 71
    • 38049125937 scopus 로고    scopus 로고
    • Wang W, Zhou Z-H (2007) Analyzing co-training style algorithms. In: Proceedings of the 18th European conference on machine learning. Warsaw, Poland, pp 454-465.
  • 72
    • 56449102315 scopus 로고    scopus 로고
    • Wang W, Zhou Z-H (2008) On multi-view active learning and the combination with semi-supervised learning. In: Proceedings of the 25th international conference on machine learning. Helsinki, Finland, pp 1152-1159.
  • 74
    • 0033682177 scopus 로고    scopus 로고
    • Wu Y, Tian Q, Huang TS (2000) Discriminant-EM algorithm with application to image retrieval. In: Proceedings of the IEEE international conference on computer vision and pattern recognition. Hilton Head, SC, pp 222-227.
  • 75
    • 77956710693 scopus 로고    scopus 로고
    • Yarowsky D (1995) Unsupervised word sense disambiguation rivaling supervised methods. In: Proceedings of the 33rd annual meeting of the association for computational linguistics. Cambridge, MA, pp 189-196.
  • 76
    • 77956665430 scopus 로고    scopus 로고
    • Yu K, Yu S, Tresp V (2005) Blockwise supervised inference on large graphs. In: Working notes of the ICML'05 workshop on learning with partially classified training data. Bonn, Germany.
  • 77
    • 77951160349 scopus 로고    scopus 로고
    • The concave-convex procedure (CCCP)
    • T. G. Dietterich, S. Becker, and Z. Ghahramani (Eds.), Cambridge: MIT Press
    • Yuille AL, Rangarajan A (2002) The concave-convex procedure (CCCP). In: Dietterich TG, Becker S, Ghahramani Z (eds) Advances in neural information processing systems 14. MIT Press, Cambridge, pp 1033-1040.
    • (2002) Advances in Neural Information Processing Systems 14 , pp. 1033-1040
    • Yuille, A.L.1    Rangarajan, A.2
  • 78
    • 77956695946 scopus 로고    scopus 로고
    • Zhang T, Oles FJ (2000) A probability analysis on the value of unlabeled data for classification problems. In: Proceedings of 17th international conference on machine learning. Stanford, CA, pp 1191-1198.
  • 79
    • 84864033982 scopus 로고    scopus 로고
    • Hyperparameter learning for graph based semi-supervised learning algorithms
    • B. Schölkopf, J. Platt, and T. Hofmann (Eds.), Cambridge: MIT Press
    • Zhang X, Lee WS (2007) Hyperparameter learning for graph based semi-supervised learning algorithms. In: Schölkopf B, Platt J, Hofmann T (eds) Advances in neural information processing systems 19. MIT Press, Cambridge, pp 1585-1592.
    • (2007) Advances in Neural Information Processing Systems 19 , pp. 1585-1592
    • Zhang, X.1    Lee, W.S.2
  • 81
    • 16244378563 scopus 로고    scopus 로고
    • Zhou Y, Goldman S (2004) Democratic co-learning. In: Proceedings of the 16th IEEE international conference on tools with artificial intelligence. Boca Raton, FL, pp 594-602.
  • 82
    • 33749557228 scopus 로고    scopus 로고
    • Zhou Z-H (2006) Learning with unlabeled data and its application to image retrieval. In: Proceedings of the 9th Pacific rim international conference on artificial intelligence. Guilin, China, pp 5-10.
  • 83
    • 57949117175 scopus 로고    scopus 로고
    • Zhou Z-H (2008) Semi-supervised learning by disagreement. In: Proceedings of the 4th IEEE international conference on granular computing. Hangzhou, China.
  • 84
    • 70350346030 scopus 로고    scopus 로고
    • Ensemble learning
    • S. Z. Li (Ed.), Berlin: Springer
    • Zhou Z-H: Ensemble learning. In: Li, SZ (eds) Encyclopedia of biometrics, Springer, Berlin (2009).
    • (2009) Encyclopedia of Biometrics
    • Zhou, Z.-H.1
  • 85
    • 33746834100 scopus 로고    scopus 로고
    • Enhancing relevance feedback in image retrieval using unlabeled data
    • Zhou Z-H, Chen K-J, Dai H-B: Enhancing relevance feedback in image retrieval using unlabeled data. ACM Trans Inf Syst 24(2), 219-244 (2006).
    • (2006) ACM Trans Inf Syst , vol.24 , Issue.2 , pp. 219-244
    • Zhou, Z.-H.1    Chen, K.-J.2    Dai, H.-B.3
  • 86
    • 22944433860 scopus 로고    scopus 로고
    • Zhou Z-H, Chen K-J, Jiang Y (2004) Exploiting unlabeled data in content-based image retrieval. In: Proceedings of the 15th European conference on machine learning. Pisa, Italy, pp 525-536.
  • 87
    • 84880742718 scopus 로고    scopus 로고
    • Zhou Z-H, Li M (2005) Semi-supervised regression with co-training. In: Proceedings of the 19th international joint conference on artificial intelligence. Edinburgh, Scotland, pp 908-913.
  • 88
    • 28244448186 scopus 로고    scopus 로고
    • Tri-training: Exploiting unlabeled data using three classifiers
    • Zhou Z-H, Li M: Tri-training: Exploiting unlabeled data using three classifiers. IEEE Trans Knowl Data Eng 17(11), 1529-1541 (2005).
    • (2005) IEEE Trans Knowl Data Eng , vol.17 , Issue.11 , pp. 1529-1541
    • Zhou, Z.-H.1    Li, M.2
  • 89
    • 35348881683 scopus 로고    scopus 로고
    • Semi-supervised regression with co-training style algorithms
    • Zhou Z-H, Li M: Semi-supervised regression with co-training style algorithms. IEEE Trans Knowl Data Eng 19(11), 1479-1493 (2007).
    • (2007) IEEE Trans Knowl Data Eng , vol.19 , Issue.11 , pp. 1479-1493
    • Zhou, Z.-H.1    Li, M.2
  • 90
    • 77956668086 scopus 로고    scopus 로고
    • Zhou Z-H, Ng M, She Q-Q, Jiang Y (2009) Budget semi-supervised learning. In: Proceedings of the 13th Pacific-Asia conference on knowledge discovery and data mining. Bangkok, Thailand, pp 588-595.
  • 91
    • 36348938695 scopus 로고    scopus 로고
    • Zhou Z-H, Zhan D-C, Yang Q (2007) Semi-supervised learning with very few labeled training examples. In: Proceedings of the 22nd AAAI conference on artificial intelligence. Vancouver, Canada, pp 675-680.
  • 93
    • 1942484430 scopus 로고    scopus 로고
    • Zhu X, Ghahramani Z, Lafferty J (2003) Semi-supervised learning using Gaussian fields and harmonic functions. In: Proceedings of the 20th international conference on machine learning. Washington, DC, pp 912-919.
  • 94
    • 31844438481 scopus 로고    scopus 로고
    • Zhu X, Lafferty J (2005) Harmonic mixtures: Combining mixture models and graph-based methods for inductive and scalable semi-supervised leanring. In: Proceedings of the 22nd international conference on machine learning. Bonn, Germany, pp 1052-1059.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.