메뉴 건너뛰기




Volumn , Issue , 2010, Pages

Multi-view active learning in the non-realizable case

Author keywords

[No Author keywords available]

Indexed keywords

ACTIVE LEARNING; MULTI-VIEWS; POLYNOMIAL BOUNDS; REALIZABILITY; SAMPLE COMPLEXITY;

EID: 85161974295     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (29)

References (23)
  • 3
    • 84898930761 scopus 로고    scopus 로고
    • Co-training and expansion: Towards bridging theory and practice
    • M.-F. Balcan, A. Blum, and K. Yang. Co-training and expansion: Towards bridging theory and practice. In NIPS 17, pages 89-96. 2005.
    • (2005) NIPS , vol.17 , pp. 89-96
    • Balcan, M.-F.1    Blum, A.2    Yang, K.3
  • 4
    • 38049078541 scopus 로고    scopus 로고
    • Margin based active learning
    • M.-F. Balcan, A. Z. Broder, and T. Zhang. Margin based active learning. In COLT, pages 35-50, 2007.
    • (2007) COLT , pp. 35-50
    • Balcan, M.-F.1    Broder, A.Z.2    Zhang, T.3
  • 5
    • 84860640656 scopus 로고    scopus 로고
    • The true sample complexity of active learning
    • M.-F. Balcan, S. Hanneke, and J. Wortman. The true sample complexity of active learning. In COLT, pages 45-56, 2008.
    • (2008) COLT , pp. 45-56
    • Balcan, M.-F.1    Hanneke, S.2    Wortman, J.3
  • 6
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In COLT, pages 92-100, 1998.
    • (1998) COLT , pp. 92-100
    • Blum, A.1    Mitchell, T.2
  • 7
    • 84860631341 scopus 로고    scopus 로고
    • Upper and lower error bounds for active learning
    • R. M. Castro and R. D. Nowak. Upper and lower error bounds for active learning. In Allerton Conference, pages 225-234, 2006.
    • (2006) Allerton Conference , pp. 225-234
    • Castro, R.M.1    Nowak, R.D.2
  • 9
    • 70049109273 scopus 로고    scopus 로고
    • Linear classification and selective sampling under low noise conditions
    • G. Cavallanti, N. Cesa-Bianchi, and C. Gentile. Linear classification and selective sampling under low noise conditions. In NIPS 21, pages 249-256. 2009.
    • (2009) NIPS , vol.21 , pp. 249-256
    • Cavallanti, G.1    Cesa-Bianchi, N.2    Gentile, C.3
  • 10
    • 0028424239 scopus 로고
    • Improving generalization with active learning
    • D. A. Cohn, L. E. Atlas, and R. E. Ladner. Improving generalization with active learning. Machine Learning, 15(2):201-221, 1994.
    • (1994) Machine Learning , vol.15 , Issue.2 , pp. 201-221
    • Cohn, D.A.1    Atlas, L.E.2    Ladner, R.E.3
  • 11
    • 84898947320 scopus 로고    scopus 로고
    • Analysis of a greedy active learning strategy
    • S. Dasgupta. Analysis of a greedy active learning strategy. In NIPS 17, pages 337-344. 2005.
    • (2005) NIPS , vol.17 , pp. 337-344
    • Dasgupta, S.1
  • 12
    • 71049162986 scopus 로고    scopus 로고
    • Coarse sample complexity bounds for active learning
    • S. Dasgupta. Coarse sample complexity bounds for active learning. In NIPS 18, pages 235-242. 2006.
    • (2006) NIPS , vol.18 , pp. 235-242
    • Dasgupta, S.1
  • 13
    • 85161987046 scopus 로고    scopus 로고
    • A general agnostic active learning algorithm
    • S. Dasgupta, D. Hsu, and C. Monteleoni. A general agnostic active learning algorithm. In NIPS 20, pages 353-360. 2008.
    • (2008) NIPS , vol.20 , pp. 353-360
    • Dasgupta, S.1    Hsu, D.2    Monteleoni, C.3
  • 14
    • 26944439047 scopus 로고    scopus 로고
    • Analysis of perceptron-based active learning
    • S. Dasgupta, A. T. Kalai, and C. Monteleoni. Analysis of perceptron-based active learning. In COLT, pages 249-263, 2005.
    • (2005) COLT , pp. 249-263
    • Dasgupta, S.1    Kalai, A.T.2    Monteleoni, C.3
  • 16
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • Y. Freund, H. S. Seung, E. Shamir, and N. Tishby. Selective sampling using the query by committee algorithm. Machine Learning, 28(2-3):133-168, 1997.
    • (1997) Machine Learning , vol.28 , Issue.2-3 , pp. 133-168
    • Freund, Y.1    Seung, H.S.2    Shamir, E.3    Tishby, N.4
  • 17
    • 34547983474 scopus 로고    scopus 로고
    • A bound on the label complexity of agnostic active learning
    • S. Hanneke. A bound on the label complexity of agnostic active learning. In ICML, pages 353-360, 2007.
    • (2007) ICML , pp. 353-360
    • Hanneke, S.1
  • 18
    • 84898062667 scopus 로고    scopus 로고
    • Adaptive rates of convergence in active learning
    • S. Hanneke. Adaptive rates of convergence in active learning. In COLT, 2009.
    • (2009) COLT
    • Hanneke, S.1
  • 19
    • 33750727664 scopus 로고    scopus 로고
    • Active learning in the non-realizable case
    • M. Kääriäinen. Active learning in the non-realizable case. In ACL, pages 63-77, 2006.
    • (2006) ACL , pp. 63-77
    • Kääriäinen, M.1
  • 20
    • 3242788638 scopus 로고    scopus 로고
    • Active + semi-supervised learning = robust multiview learning
    • I. Muslea, S. Minton, and C. A. Knoblock. Active + semi-supervised learning = robust multiview learning. In ICML, pages 435-442, 2002.
    • (2002) ICML , pp. 435-442
    • Muslea, I.1    Minton, S.2    Knoblock, C.A.3
  • 21
    • 3142725508 scopus 로고    scopus 로고
    • Optimal aggregation of classifiers in statistical learning
    • A. Tsybakov. Optimal aggregation of classifiers in statistical learning. The Annals of Statistics, 32(1):135-166, 2004.
    • (2004) The Annals of Statistics , vol.32 , Issue.1 , pp. 135-166
    • Tsybakov, A.1
  • 22
    • 79551595391 scopus 로고    scopus 로고
    • Sufficient conditions for agnostic active learnable
    • L. Wang. Sufficient conditions for agnostic active learnable. In NIPS 22, pages 1999-2007. 2009.
    • (2009) NIPS , vol.22 , pp. 1999-2007
    • Wang, L.1
  • 23
    • 56449102315 scopus 로고    scopus 로고
    • On multi-view active learning and the combination with semisupervised learning
    • W. Wang and Z.-H. Zhou. On multi-view active learning and the combination with semisupervised learning. In ICML, pages 1152-1159, 2008.
    • (2008) ICML , pp. 1152-1159
    • Wang, W.1    Zhou, Z.-H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.