메뉴 건너뛰기




Volumn , Issue , 2005, Pages 377-384

A Support Vector Method for multivariate performance measures

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; NONLINEAR CONTROL SYSTEMS; OPTIMIZATION; POLYNOMIALS;

EID: 31844446804     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1102351.1102399     Document Type: Conference Paper
Times cited : (740)

References (22)
  • 1
    • 12244287068 scopus 로고    scopus 로고
    • An iterative method for multi-class cost-sensitive learning
    • Abe, N., Zadrozny, B., & Langford, J. (2004). An iterative method for multi-class cost-sensitive learning. Proc. KDD.
    • (2004) Proc. KDD
    • Abe, N.1    Zadrozny, B.2    Langford, J.3
  • 2
    • 0003041922 scopus 로고
    • A traininig algorithm for optimal margin classifiers
    • Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A traininig algorithm for optimal margin classifiers. Proc. COLT.
    • (1992) Proc. COLT
    • Boser, B.E.1    Guyon, I.M.2    Vapnik, V.N.3
  • 3
    • 12244279570 scopus 로고    scopus 로고
    • Data mining in metric space: An empirical analysis of supervised learning performance criteria
    • Caruana, R., & Niculescu-Mizil, A. (2004). Data mining in metric space: an empirical analysis of supervised learning performance criteria. Proc. KDD.
    • (2004) Proc. KDD
    • Caruana, R.1    Niculescu-Mizil, A.2
  • 4
    • 10844275086 scopus 로고    scopus 로고
    • Auc optimization vs. error rate minimization
    • Cortes, C., & Mohri, M. (2003). Auc optimization vs. error rate minimization. Proc. NIPS.
    • (2003) Proc. NIPS
    • Cortes, C.1    Mohri, M.2
  • 5
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., & Vapnik, V. N. (1995). Support-vector networks. Machine Learning, 20, 273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.N.2
  • 6
    • 1942514832 scopus 로고    scopus 로고
    • Learning decision trees using the area under the roc curve
    • Ferri, C., Flach, P., & Hernandez-Orallo, J. (2002). Learning decision trees using the area under the roc curve. Proc. ICML
    • (2002) Proc. ICML
    • Ferri, C.1    Flach, P.2    Hernandez-Orallo, J.3
  • 7
    • 0842290958 scopus 로고    scopus 로고
    • An efficient boosting algorithm for combining preferences
    • Freund, Y., Iyer, R., Schapire, R., & Singer, Y. (1998). An efficient boosting algorithm for combining preferences. Proc. ICML.
    • (1998) Proc. ICML
    • Freund, Y.1    Iyer, R.2    Schapire, R.3    Singer, Y.4
  • 9
    • 14344264748 scopus 로고    scopus 로고
    • Optimising area under the roc curve using gradient descent
    • Herschtal, A., & Raskutti, B. (2004). Optimising area under the roc curve using gradient descent. Proc. ICML.
    • (2004) Proc. ICML
    • Herschtal, A.1    Raskutti, B.2
  • 10
    • 84862595317 scopus 로고    scopus 로고
    • Estimating class membership probabilities using classifier learners
    • Langford, J., & Zadrozny, B. (2005). Estimating class membership probabilities using classifier learners. Proc. AISTATS.
    • (2005) Proc. AISTATS
    • Langford, J.1    Zadrozny, B.2
  • 11
    • 0029193061 scopus 로고
    • Evaluating and optimizing autonomous text classification systems
    • Lewis, D. (1995). Evaluating and optimizing autonomous text classification systems. Proc. SIGIR.
    • (1995) Proc. SIGIR
    • Lewis, D.1
  • 12
    • 1542268653 scopus 로고    scopus 로고
    • Applying support vector machines to the trec-2001 batch filtering and routing tasks
    • Lewis, D. (2001). Applying support vector machines to the trec-2001 batch filtering and routing tasks. Proc. TREC.
    • (2001) Proc. TREC
    • Lewis, D.1
  • 13
    • 0036161029 scopus 로고    scopus 로고
    • Support vector machines for classification in nonstandard situations
    • Lin, Y., Lee, Y., & Wahba, G. (2002). Support vector machines for classification in nonstandard situations. Machine Learning, 46 191-202.
    • (2002) Machine Learning , vol.46 , pp. 191-202
    • Lin, Y.1    Lee, Y.2    Wahba, G.3
  • 14
    • 0003260442 scopus 로고    scopus 로고
    • Combining statistical learning with a knowledge-based approach
    • Morik, K., Brockhausen, P., & Joachims, T. (1999). Combining statistical learning with a knowledge-based approach. Proc. ICML.
    • (1999) Proc. ICML
    • Morik, K.1    Brockhausen, P.2    Joachims, T.3
  • 15
    • 40949099766 scopus 로고    scopus 로고
    • Optimizing f-measure with support vector machines
    • Musicant, D., Kumar, V., & Ozgur, A. (2003). Optimizing f-measure with support vector machines. Proc. FLAIRS.
    • (2003) Proc. FLAIRS
    • Musicant, D.1    Kumar, V.2    Ozgur, A.3
  • 16
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • et A. S. al. (Ed.). MIT Press
    • Platt, J. (2000). Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In et A. S. al. (Ed.), Advances in large margin classifiers. MIT Press.
    • (2000) Advances in Large Margin Classifiers
    • Platt, J.1
  • 19
    • 14344250451 scopus 로고    scopus 로고
    • Support vector machine learning for interdependent and structured output spaces
    • Tsochantaridis, I., Hofmann, T., Joachims, T., & Altun, Y. (2004). Support vector machine learning for interdependent and structured output spaces. Proc. ICML.
    • (2004) Proc. ICML
    • Tsochantaridis, I.1    Hofmann, T.2    Joachims, T.3    Altun, Y.4
  • 21
    • 1942451946 scopus 로고    scopus 로고
    • Optimizing classifier performance via approximation to the wilcoxon-mann-witney statistic
    • Yan, L., Dodier, R., Mozer, M., & Wolniewicz, R. (2003). Optimizing classifier performance via approximation to the wilcoxon-mann-witney statistic. Proc. ICML.
    • (2003) Proc. ICML
    • Yan, L.1    Dodier, R.2    Mozer, M.3    Wolniewicz, R.4
  • 22
    • 0034785186 scopus 로고    scopus 로고
    • A study of thresholding strategies for text categorization
    • Yang, Y. (2001). A study of thresholding strategies for text categorization. Proc. SIGIR.
    • (2001) Proc. SIGIR
    • Yang, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.