메뉴 건너뛰기




Volumn 13, Issue 5, 2001, Pages 1065-1102

Stochastic organization of output codes in multiclass learning problems

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL NEURAL NETWORK; BIOLOGICAL MODEL; LEARNING; NERVE CELL NETWORK; PHYSIOLOGY; PROBABILITY; STATISTICAL MODEL; STATISTICS;

EID: 0035350036     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/08997660151134334     Document Type: Article
Times cited : (39)

References (37)
  • 1
    • 0029183827 scopus 로고
    • Efficient classification for multiclass problems using modular neural networks
    • Anand, R., Mehrotra, K., Mohan, C. K., & Ranka, S. (1995). Efficient classification for multiclass problems using modular neural networks. IEEE Transactions on Neural Networks, 6, 117-124.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , pp. 117-124
    • Anand, R.1    Mehrotra, K.2    Mohan, C.K.3    Ranka, S.4
  • 3
    • 0003408496 scopus 로고    scopus 로고
    • University of California, Irvine, Department of Information and Computer Sciences
    • Blake, C., Keogh, E., & Merz, C. J. (1998). UCI repository of machine learning databases. University of California, Irvine, Department of Information and Computer Sciences. Available online at: http://www.ics.uci.edu/~mlearn/ mlrepository.html.
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.1    Keogh, E.2    Merz, C.J.3
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 5
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., & Vapnik, V. N. (1995). Support-vector networks. Machine Learning, 20, 273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.N.2
  • 7
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • Dietterich, T. G., & Bakiri, G. (1995). Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence Research, 2, 263-286.
    • (1995) Journal of Artificial Intelligence Research , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 14
    • 84893574327 scopus 로고
    • Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming
    • Goemans, M. X., & Williamson, D. P. (1995). Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the Association for Computing Machinery, 42, 1115-1145.
    • (1995) Journal of the Association for Computing Machinery , vol.42 , pp. 1115-1145
    • Goemans, M.X.1    Williamson, D.P.2
  • 17
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. V. (1983). Optimization by simulated annealing. Science, 220, 671-680.
    • (1983) Science , vol.220 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.V.3
  • 18
    • 0002044263 scopus 로고    scopus 로고
    • Pattern classification techniques based on function approximation
    • H. Bunke & P. S. P. Wang (Eds.), Singapore: World Scientific
    • Kressel, U., & Schürmann, J. (1997). Pattern classification techniques based on function approximation. In H. Bunke & P. S. P. Wang (Eds.), Handbook on optical character recognition and document analysis (Vol. 2, pp. 49-78). Singapore: World Scientific.
    • (1997) Handbook on Optical Character Recognition and Document Analysis , vol.2 , pp. 49-78
    • Kressel, U.1    Schürmann, J.2
  • 19
    • 0003012349 scopus 로고    scopus 로고
    • On the decomposition of polychotomies into dichotomies
    • Dalle Molle Institute for Perceptive Artificial Intelligence (IDIAP)
    • Mayoraz, E., & Moreira, M. (1996). On the decomposition of polychotomies into dichotomies (Tech. Rep. No. IDIAP-RR 96-08). Dalle Molle Institute for Perceptive Artificial Intelligence (IDIAP).
    • (1996) Tech. Rep. No. IDIAP-RR 96-08
    • Mayoraz, E.1    Moreira, M.2
  • 22
    • 0030287048 scopus 로고    scopus 로고
    • The expectation-maximization algorithm
    • Moon, T. K. (1996). The expectation-maximization algorithm. IEEE Signal Processing Magazine, 47-60.
    • (1996) IEEE Signal Processing Magazine , pp. 47-60
    • Moon, T.K.1
  • 24
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the EM algorithm
    • Redner, R. A., & Walker, H. F. (1984). Mixture densities, maximum likelihood and the EM algorithm. SIAM Review, 26, 195-239.
    • (1984) SIAM Review , vol.26 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 25
    • 0001595997 scopus 로고
    • Neural network classifiers estimate Bayesian a posteriori probabilities
    • Richard, M. D., & Lippmann, R. P. (1991). Neural network classifiers estimate Bayesian a posteriori probabilities. Neural Computation, 3, 461-483.
    • (1991) Neural Computation , vol.3 , pp. 461-483
    • Richard, M.D.1    Lippmann, R.P.2
  • 27
    • 0007309779 scopus 로고    scopus 로고
    • A short proof of the posterior probability property of classifier neural networks
    • Rojas, R. (1996). A short proof of the posterior probability property of classifier neural networks. Neural Computation, 8, 41-43.
    • (1996) Neural Computation , vol.8 , pp. 41-43
    • Rojas, R.1
  • 28
    • 84899025015 scopus 로고
    • Vector quantization by deterministic annealing
    • Rose, K. (1992). Vector quantization by deterministic annealing. IEEE Transactions on Information Theory, 38, 1249-1257.
    • (1992) IEEE Transactions on Information Theory , vol.38 , pp. 1249-1257
    • Rose, K.1
  • 29
    • 0032202775 scopus 로고    scopus 로고
    • Deterministic annealing for clustering, compression, classification, regression, and related optimization problems
    • Rose, K. (1998). Deterministic annealing for clustering, compression, classification, regression, and related optimization problems. Proceedings of the IEEE, 86, 2210-2239.
    • (1998) Proceedings of the IEEE , vol.86 , pp. 2210-2239
    • Rose, K.1
  • 31
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • D. E. Rumelhart, J. L. McClelland, & the PDP Group (Eds.), Cambridge, MA: MIT Press
    • Rumelhart, D. E., & McClelland, J. L. (1986). Learning internal representations by error propagation. In D. E. Rumelhart, J. L. McClelland, & the PDP Group (Eds.), Parallel distributed processing (Vol. 1, pp. 318-362). Cambridge, MA: MIT Press.
    • (1986) Parallel Distributed Processing , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    McClelland, J.L.2
  • 32
    • 24844431587 scopus 로고
    • Unconstrained global optimization using stochastic integration
    • Schäffler, S. (1995). Unconstrained global optimization using stochastic integration. Optimization, 35.
    • (1995) Optimization , vol.35
    • Schäffler, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.