메뉴 건너뛰기




Volumn , Issue , 2004, Pages 305-312

Dynamic classifier selection for effective mining from noisy data streams

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; EVALUATION; LEARNING SYSTEMS; RELIABILITY; SET THEORY; SPURIOUS SIGNAL NOISE;

EID: 19544364128     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (77)

References (25)
  • 1
    • 0030235637 scopus 로고    scopus 로고
    • Error reduction through learning multiple description
    • AH K. & Pazzani M., Error reduction through learning multiple description, Machine Learning, vo.24, no.3, 1996.
    • (1996) Machine Learning , vol.24 , Issue.3
    • Ah, K.1    Pazzani, M.2
  • 2
    • 0029230267 scopus 로고
    • A method of combining multiple experts for the recognition of unconstrained handwritten numerals
    • Huang Y. S. & Suen C. Y., A method of combining multiple experts for the recognition of unconstrained handwritten numerals, IEEE Trans. on PAMI 17(1), pp. 90-94, 1995.
    • (1995) IEEE Trans. on PAMI , vol.17 , Issue.1 , pp. 90-94
    • Huang, Y.S.1    Suen, C.Y.2
  • 3
    • 0033893813 scopus 로고    scopus 로고
    • Optimal linear combination of neural networks for improving classification perform
    • Ueda N., Optimal linear combination of neural networks for improving classification perform., IEEE Trans. on PAMI, 22, 2000.
    • (2000) IEEE Trans. on PAMI , pp. 22
    • Ueda, N.1
  • 4
    • 0026860706 scopus 로고
    • Methods of combining multiple classifiers and their application to handwriting recognition
    • Xu L., Krzyak A. & Suen C., Methods of combining multiple classifiers and their application to handwriting recognition, IEEE Trans. on Sys., Man and Cyber., 22, 1992.
    • (1992) IEEE Trans. on Sys., Man and Cyber. , pp. 22
    • Xu, L.1    Krzyak, A.2    Suen, C.3
  • 5
    • 0000245470 scopus 로고
    • Selecting a classification method by cross-validation
    • Schaffer C., Selecting a classification method by cross-validation, Machine Learning, vol. 13, pp. 135-143, 1993.
    • (1993) Machine Learning , vol.13 , pp. 135-143
    • Schaffer, C.1
  • 7
    • 0011047871 scopus 로고    scopus 로고
    • Dynamical selection of learning algorithms
    • D.Fisher, H.-J.Lenz (eds.), Springer-Verlag, NY
    • Merz C. J., Dynamical selection of learning algorithms, In: D.Fisher, H.-J.Lenz (eds.). Learning from Data, Artificial Intelligence and Statistics, Springer-Verlag, NY(1996).
    • (1996) Learning from Data, Artificial Intelligence and Statistics
    • Merz, C.J.1
  • 8
    • 0032661927 scopus 로고    scopus 로고
    • Using correspondence analysis to combine classifiers
    • Merz C. J., Using correspondence analysis to combine classifiers, Machine Learning, vo.36 (1-2), pp.33-58, 1999.
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 33-58
    • Merz, C.J.1
  • 10
    • 0031121318 scopus 로고    scopus 로고
    • Combination of multiple classifiers using local accuracy estimation
    • Apr.
    • Woods K., Kegelmeyer W. P. & Bowyer K., Combination of multiple classifiers using local accuracy estimation, IEEE Transactions on PAMI, vol.19, no.4, Apr., 1997.
    • (1997) IEEE Transactions on PAMI , vol.19 , Issue.4
    • Woods, K.1    Kegelmeyer, W.P.2    Bowyer, K.3
  • 11
    • 77952415079 scopus 로고    scopus 로고
    • Mining concept-drifting data streams using ensemble classifiers
    • Wang H., Fan W., Yu P. & Han J., Mining concept-drifting data streams using ensemble classifiers, Proc. of KDD 2003.
    • (2003) Proc. of KDD
    • Wang, H.1    Fan, W.2    Yu, P.3    Han, J.4
  • 13
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire R., The strength of weak learnability, Machine Learning, vol.5, no.2, pp.197-227, 1990.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.1
  • 16
    • 0036532571 scopus 로고    scopus 로고
    • Switching between selection and fusion in combining classifiers: An experiment
    • Kucheva L.I., Switching between selection and fusion in combining classifiers: An experiment, IEEE Trans. SMC, 32(2), 2002.
    • (2002) IEEE Trans. SMC , vol.32 , Issue.2
    • Kucheva, L.I.1
  • 17
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • Holte R.C., Very simple classification rules perform well on most commonly used datasets, Machine Learning, 11, 1993.
    • (1993) Machine Learning , pp. 11
    • Holte, R.C.1
  • 19
    • 19544376096 scopus 로고    scopus 로고
    • IBM Almaden Research, Synthetic data generator, http://www.almaden.ibm.com/software/quest/Resources/datasets/syndata. html#classSynData
    • Synthetic Data Generator
  • 23
    • 57949115516 scopus 로고    scopus 로고
    • TECNO-STREAMS: Tracking evolving clusters in noisy data streams with a scalable immune system learning model
    • Nasraoui O., Cardona C., Rojas C. & Gonzalez F., TECNO-STREAMS: Tracking Evolving Clusters in Noisy Data Streams with a Scalable Immune System Learning Model, Proc. of ICDM, 2003.
    • (2003) Proc. of ICDM
    • Nasraoui, O.1    Cardona, C.2    Rojas, C.3    Gonzalez, F.4
  • 24
    • 78149292125 scopus 로고    scopus 로고
    • Dynamic weighted majority: A new ensemble method for tracking concept drift
    • Kolter J. & Maloof M., Dynamic weighted majority: a new ensemble method for tracking concept drift, Proc. of ICDM, 2003
    • (2003) Proc. of ICDM
    • Kolter, J.1    Maloof, M.2
  • 25
    • 19544372918 scopus 로고    scopus 로고
    • Class noise vs attribute noise: A quantitative study of their impacts
    • in press
    • Zhu X. & Wu X., Class noise vs attribute noise: A quantitative study of their impacts, Artificial Intelligence Review, in press, 2004.
    • (2004) Artificial Intelligence Review
    • Zhu, X.1    Wu, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.