-
1
-
-
0030235637
-
Error reduction through learning multiple description
-
AH K. & Pazzani M., Error reduction through learning multiple description, Machine Learning, vo.24, no.3, 1996.
-
(1996)
Machine Learning
, vol.24
, Issue.3
-
-
Ah, K.1
Pazzani, M.2
-
2
-
-
0029230267
-
A method of combining multiple experts for the recognition of unconstrained handwritten numerals
-
Huang Y. S. & Suen C. Y., A method of combining multiple experts for the recognition of unconstrained handwritten numerals, IEEE Trans. on PAMI 17(1), pp. 90-94, 1995.
-
(1995)
IEEE Trans. on PAMI
, vol.17
, Issue.1
, pp. 90-94
-
-
Huang, Y.S.1
Suen, C.Y.2
-
3
-
-
0033893813
-
Optimal linear combination of neural networks for improving classification perform
-
Ueda N., Optimal linear combination of neural networks for improving classification perform., IEEE Trans. on PAMI, 22, 2000.
-
(2000)
IEEE Trans. on PAMI
, pp. 22
-
-
Ueda, N.1
-
4
-
-
0026860706
-
Methods of combining multiple classifiers and their application to handwriting recognition
-
Xu L., Krzyak A. & Suen C., Methods of combining multiple classifiers and their application to handwriting recognition, IEEE Trans. on Sys., Man and Cyber., 22, 1992.
-
(1992)
IEEE Trans. on Sys., Man and Cyber.
, pp. 22
-
-
Xu, L.1
Krzyak, A.2
Suen, C.3
-
5
-
-
0000245470
-
Selecting a classification method by cross-validation
-
Schaffer C., Selecting a classification method by cross-validation, Machine Learning, vol. 13, pp. 135-143, 1993.
-
(1993)
Machine Learning
, vol.13
, pp. 135-143
-
-
Schaffer, C.1
-
6
-
-
0003802343
-
-
Belmont, CA
-
Breiman L., Friedman J. H., Olshen R.A. & Stone C. J., Classification and regression trees, Belmont, CA, 1984.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.A.3
Stone, C.J.4
-
7
-
-
0011047871
-
Dynamical selection of learning algorithms
-
D.Fisher, H.-J.Lenz (eds.), Springer-Verlag, NY
-
Merz C. J., Dynamical selection of learning algorithms, In: D.Fisher, H.-J.Lenz (eds.). Learning from Data, Artificial Intelligence and Statistics, Springer-Verlag, NY(1996).
-
(1996)
Learning from Data, Artificial Intelligence and Statistics
-
-
Merz, C.J.1
-
8
-
-
0032661927
-
Using correspondence analysis to combine classifiers
-
Merz C. J., Using correspondence analysis to combine classifiers, Machine Learning, vo.36 (1-2), pp.33-58, 1999.
-
(1999)
Machine Learning
, vol.36
, Issue.1-2
, pp. 33-58
-
-
Merz, C.J.1
-
9
-
-
0012476755
-
Arbitrating among competing classifiers using learned referees
-
Ortega J., Koppel M. & Argamon S., Arbitrating among competing classifiers using learned referees, Knowledge and Information Systems, vol.3, no.4, 2001.
-
(2001)
Knowledge and Information Systems
, vol.3
, Issue.4
-
-
Ortega, J.1
Koppel, M.2
Argamon, S.3
-
10
-
-
0031121318
-
Combination of multiple classifiers using local accuracy estimation
-
Apr.
-
Woods K., Kegelmeyer W. P. & Bowyer K., Combination of multiple classifiers using local accuracy estimation, IEEE Transactions on PAMI, vol.19, no.4, Apr., 1997.
-
(1997)
IEEE Transactions on PAMI
, vol.19
, Issue.4
-
-
Woods, K.1
Kegelmeyer, W.P.2
Bowyer, K.3
-
11
-
-
77952415079
-
Mining concept-drifting data streams using ensemble classifiers
-
Wang H., Fan W., Yu P. & Han J., Mining concept-drifting data streams using ensemble classifiers, Proc. of KDD 2003.
-
(2003)
Proc. of KDD
-
-
Wang, H.1
Fan, W.2
Yu, P.3
Han, J.4
-
13
-
-
0025448521
-
The strength of weak learnability
-
Schapire R., The strength of weak learnability, Machine Learning, vol.5, no.2, pp.197-227, 1990.
-
(1990)
Machine Learning
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.1
-
16
-
-
0036532571
-
Switching between selection and fusion in combining classifiers: An experiment
-
Kucheva L.I., Switching between selection and fusion in combining classifiers: An experiment, IEEE Trans. SMC, 32(2), 2002.
-
(2002)
IEEE Trans. SMC
, vol.32
, Issue.2
-
-
Kucheva, L.I.1
-
17
-
-
0027580356
-
Very simple classification rules perform well on most commonly used datasets
-
Holte R.C., Very simple classification rules perform well on most commonly used datasets, Machine Learning, 11, 1993.
-
(1993)
Machine Learning
, pp. 11
-
-
Holte, R.C.1
-
19
-
-
19544376096
-
-
IBM Almaden Research, Synthetic data generator, http://www.almaden.ibm.com/software/quest/Resources/datasets/syndata. html#classSynData
-
Synthetic Data Generator
-
-
-
23
-
-
57949115516
-
TECNO-STREAMS: Tracking evolving clusters in noisy data streams with a scalable immune system learning model
-
Nasraoui O., Cardona C., Rojas C. & Gonzalez F., TECNO-STREAMS: Tracking Evolving Clusters in Noisy Data Streams with a Scalable Immune System Learning Model, Proc. of ICDM, 2003.
-
(2003)
Proc. of ICDM
-
-
Nasraoui, O.1
Cardona, C.2
Rojas, C.3
Gonzalez, F.4
-
24
-
-
78149292125
-
Dynamic weighted majority: A new ensemble method for tracking concept drift
-
Kolter J. & Maloof M., Dynamic weighted majority: a new ensemble method for tracking concept drift, Proc. of ICDM, 2003
-
(2003)
Proc. of ICDM
-
-
Kolter, J.1
Maloof, M.2
-
25
-
-
19544372918
-
Class noise vs attribute noise: A quantitative study of their impacts
-
in press
-
Zhu X. & Wu X., Class noise vs attribute noise: A quantitative study of their impacts, Artificial Intelligence Review, in press, 2004.
-
(2004)
Artificial Intelligence Review
-
-
Zhu, X.1
Wu, X.2
|