메뉴 건너뛰기




Volumn 74, Issue 12-13, 2011, Pages 2250-2264

Empirical analysis and evaluation of approximate techniques for pruning regression bagging ensembles

Author keywords

Bagging; Boosting; Ensemble learning; Ensemble pruning; Regression; Semidefinite programming

Indexed keywords

BAGGING; BOOSTING; ENSEMBLE LEARNING; ENSEMBLE PRUNING; REGRESSION; SEMI-DEFINITE PROGRAMMING;

EID: 79956208533     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.03.001     Document Type: Article
Times cited : (39)

References (57)
  • 1
    • 0033556775 scopus 로고    scopus 로고
    • Boosting regression estimators
    • Avnimelech R., Intrator N. Boosting regression estimators. Neural Computation 1999, 11(2):499-520.
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 499-520
    • Avnimelech, R.1    Intrator, N.2
  • 3
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: bagging, boosting, and variants
    • Bauer E., Kohavi R. An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Machine Learning 1999, 36(1-2):105-139.
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 4
    • 79956201286 scopus 로고    scopus 로고
    • UCI repository of machine learning databases 〈〉
    • C.L. Blake, C.J. Merz, UCI repository of machine learning databases 〈〉, 1998. http://www.ics.uci.edu/~mlearn/MLRepository.html.
    • (1998)
    • Blake, C.L.1    Merz, C.J.2
  • 5
    • 0033295981 scopus 로고    scopus 로고
    • CSDP: a C library for semidefinite programming
    • Borchers B. CSDP: a C library for semidefinite programming. Optimization Methods and Software 1999, 11:613-1623.
    • (1999) Optimization Methods and Software , vol.11 , pp. 613-1623
    • Borchers, B.1
  • 6
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 1996, 24(2):123-140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 7
    • 79956195755 scopus 로고    scopus 로고
    • Bias, variance, and arcing classifiers, Technical Report 460, Statistics Department, University of California.
    • L. Breiman, Bias, variance, and arcing classifiers, Technical Report 460, Statistics Department, University of California, 1996.
    • (1996)
    • Breiman, L.1
  • 8
    • 0030344230 scopus 로고    scopus 로고
    • Heuristics of instability and stabilization in model selection
    • Breiman L. Heuristics of instability and stabilization in model selection. The Annals of Statistics 1996, 24(6):2350-2383.
    • (1996) The Annals of Statistics , vol.24 , Issue.6 , pp. 2350-2383
    • Breiman, L.1
  • 9
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • Breiman L. Arcing classifiers. The Annals of Statistics 1998, 26(3):801-849.
    • (1998) The Annals of Statistics , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 10
    • 79956207789 scopus 로고    scopus 로고
    • Using adaptive bagging to debias regressions, Technical Report, Statistics Department, University of California.
    • L. Breiman, Using adaptive bagging to debias regressions, Technical Report, Statistics Department, University of California 1999.
    • (1999)
    • Breiman, L.1
  • 11
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Machine Learning 2001, 45(1):5-32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 16
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 2006, 7:1-30.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 17
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization
    • Dietterich T.G. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Machine Learning 2000, 40(2):139-157.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 20
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman J.H. Multivariate adaptive regression splines. The Annals of Statistics 1991, 19(1):1-67.
    • (1991) The Annals of Statistics , vol.19 , Issue.1 , pp. 1-67
    • Friedman, J.H.1
  • 21
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: a gradient boosting machine
    • Friedman J.H. Greedy function approximation: a gradient boosting machine. The Annals of Statistics 2001, 29(5):1189-1232.
    • (2001) The Annals of Statistics , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 23
    • 84893574327 scopus 로고
    • Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming
    • Goemans M.X., Williamson D.P. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the Association for Computing Machinery 1995, 42(6):1115-1145.
    • (1995) Journal of the Association for Computing Machinery , vol.42 , Issue.6 , pp. 1115-1145
    • Goemans, M.X.1    Williamson, D.P.2
  • 24
    • 79956191746 scopus 로고    scopus 로고
    • An improved rounding method and semidefinite programming relaxation for graph partition, Technical Report, Iowa City, Iowa 52242.
    • Q. Han, Y. Ye, J. Zhang, An improved rounding method and semidefinite programming relaxation for graph partition, Technical Report, Iowa City, Iowa 52242, 2000.
    • (2000)
    • Han, Q.1    Ye, Y.2    Zhang, J.3
  • 27
    • 0000029122 scopus 로고
    • A simple weight decay can improve generalization
    • Morgan Kaufmann Publishers, Inc.
    • Krogh A., Hertz J.A. A simple weight decay can improve generalization. Advances in Neural Information Processing Systems 1992, vol. 4:950-957. Morgan Kaufmann Publishers, Inc.
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 950-957
    • Krogh, A.1    Hertz, J.A.2
  • 29
    • 0033485370 scopus 로고    scopus 로고
    • Ensemble learning via negative correlation
    • Liu Y., Yao X. Ensemble learning via negative correlation. Neural Networks 1999, 12(10):1399-1404.
    • (1999) Neural Networks , vol.12 , Issue.10 , pp. 1399-1404
    • Liu, Y.1    Yao, X.2
  • 37
    • 56349148238 scopus 로고    scopus 로고
    • Ensemble generation and feature selection for the identification of students with learning disabilities
    • Nanni L., Lumini A. Ensemble generation and feature selection for the identification of students with learning disabilities. Expert Systems with Applications 2009, 36(2, Part2):3896-3900.
    • (2009) Expert Systems with Applications , vol.36 , Issue.2 PART2 , pp. 3896-3900
    • Nanni, L.1    Lumini, A.2
  • 39
  • 42
    • 79956191117 scopus 로고    scopus 로고
    • R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0.
    • R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, 2005.
    • (2005)
  • 45
    • 10444224737 scopus 로고    scopus 로고
    • Classifier selection for majority voting
    • Ruta D., Gabrys B. Classifier selection for majority voting. Information Fusion 2005, 6(1):63-81.
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 63-81
    • Ruta, D.1    Gabrys, B.2
  • 46
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire R.E. The strength of weak learnability. Machine Learning 1990, 5:197-227.
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 51
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • Wilcoxon F. Individual comparisons by ranking methods. Biometrics Bulletin 1968, 1(6):80-83.
    • (1968) Biometrics Bulletin , vol.1 , Issue.6 , pp. 80-83
    • Wilcoxon, F.1
  • 53
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert D.H. Stacked generalization. Neural Networks 1992, 5(2):241-259.
    • (1992) Neural Networks , vol.5 , Issue.2 , pp. 241-259
    • Wolpert, D.H.1
  • 54
    • 44449124996 scopus 로고    scopus 로고
    • Rotboost: a technique for combining rotation forest and Adaboost
    • Zhang C.-X., Zhang J.-S. Rotboost: a technique for combining rotation forest and Adaboost. Pattern Recognition Letters 2008, 29(10):1524-1536.
    • (2008) Pattern Recognition Letters , vol.29 , Issue.10 , pp. 1524-1536
    • Zhang, C.-X.1    Zhang, J.-S.2
  • 56
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: many could be better than all
    • Zhou Z.-H., Wu J., Tang W. Ensembling neural networks: many could be better than all. Artificial Intelligence 2002, 137(1-2):239-263.
    • (2002) Artificial Intelligence , vol.137 , Issue.1-2 , pp. 239-263
    • Zhou, Z.-H.1    Wu, J.2    Tang, W.3
  • 57


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.