메뉴 건너뛰기




Volumn 37, Issue 6, 2007, Pages 1088-1098

Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples

Author keywords

CAD; Co training; Computer aided diagnosis (CAD); Ensemble learning; Learning (artificial intelligence); Machine learning; Microcalcification cluster detection; Patient diagnosis; Random forest; Semisupervised learning

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTER AIDED DIAGNOSIS; LEARNING ALGORITHMS; LEARNING SYSTEMS; ONCOLOGY; RANDOM PROCESSES;

EID: 36249007597     PISSN: 10834427     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSMCA.2007.904745     Document Type: Article
Times cited : (358)

References (47)
  • 1
    • 0000492326 scopus 로고
    • Learning from noisy examples
    • Apr
    • D. Angluin and P. Laird, "Learning from noisy examples," Mach. Learn., vol. 2, no. 4, pp. 343-370, Apr. 1988.
    • (1988) Mach. Learn , vol.2 , Issue.4 , pp. 343-370
    • Angluin, D.1    Laird, P.2
  • 2
    • 33745834241 scopus 로고    scopus 로고
    • Irvine, CA: Dept. Inf. and Comput. Sci, Univ. California, Online, Available
    • C. Blake, E. Keogh, and C. J. Merz, UCI Repository of Machine Learning Databases. Irvine, CA: Dept. Inf. and Comput. Sci., Univ. California, 1998. [Online]. Available: http://www.ics.uci.edu/~mlearn/ MLRepository.htm
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.1    Keogh, E.2    Merz, C.J.3
  • 3
    • 0010805362 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data using graph mincuts
    • Williamstown, MA
    • A. Blum and S. Chawla, "Learning from labeled and unlabeled data using graph mincuts," in Proc. 18th Int. Conf. Mach. Learn., Williamstown, MA, 2001, pp. 19-26.
    • (2001) Proc. 18th Int. Conf. Mach. Learn , pp. 19-26
    • Blum, A.1    Chawla, S.2
  • 4
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • Madison, WI
    • A. Blum and T. Mitchell, "Combining labeled and unlabeled data with co-training," in Proc. 11th Annu. Conf. Comput. Learn. Theory, Madison, WI, 1998, pp. 92-100.
    • (1998) Proc. 11th Annu. Conf. Comput. Learn. Theory , pp. 92-100
    • Blum, A.1    Mitchell, T.2
  • 5
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Aug
    • L. Breiman, "Bagging predictors," Mach. Learn., vol. 24, no. 2, pp. 123-140, Aug. 1996.
    • (1996) Mach. Learn , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 7
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Oct
    • L. Breiman, "Random forests," Mach. Learn., vol. 45, no. 1, pp. 5-32, Oct. 2001.
    • (2001) Mach. Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 8
    • 33749252873 scopus 로고    scopus 로고
    • O. Chappelle, B. Schölkopf, and A. Zien, Eds, Cambridge, MA: MIT Press
    • O. Chappelle, B. Schölkopf, and A. Zien, Eds., Semi-Supervised Learning. Cambridge, MA: MIT Press, 2006.
    • (2006) Semi-Supervised Learning
  • 10
    • 0034333684 scopus 로고    scopus 로고
    • Stability problems with artificial neural networks and the ensemble solution
    • Nov
    • P. Cunningham, J. Carney, and S. Jacob, "Stability problems with artificial neural networks and the ensemble solution," Artif. Intell. Med., vol. 20, no. 3, pp. 217-225, Nov. 2000.
    • (2000) Artif. Intell. Med , vol.20 , Issue.3 , pp. 217-225
    • Cunningham, P.1    Carney, J.2    Jacob, S.3
  • 11
    • 84899008485 scopus 로고    scopus 로고
    • PAC generalization bounds for co-training
    • T. G. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cambridge, MA: MIT Press
    • S. Dasgupta, M. Littman, and D. McAllester, "PAC generalization bounds for co-training," in Advances in Neural Information Processing Systems 14, T. G. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cambridge, MA: MIT Press, 2002, pp. 375-382.
    • (2002) Advances in Neural Information Processing Systems 14 , pp. 375-382
    • Dasgupta, S.1    Littman, M.2    McAllester, D.3
  • 12
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm," J. Roy. Stat. Soc. B, vol. 39, no. 1, pp. 1-38, 1977.
    • (1977) J. Roy. Stat. Soc. B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 15
    • 84983110889 scopus 로고
    • A decision-theoretic generalization of online learning and an application to boosting
    • Barcelona, Spain
    • Y. Freund and R. E. Schapire, "A decision-theoretic generalization of online learning and an application to boosting," in Proc. 2nd Eur Conf. Comput. Learn. Theory, Barcelona, Spain, 1995, pp. 23-37.
    • (1995) Proc. 2nd Eur Conf. Comput. Learn. Theory , pp. 23-37
    • Freund, Y.1    Schapire, R.E.2
  • 16
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • J. Friedman, T. Hastie, and R. Tibshirani, "Additive logistic regression: A statistical view of boosting," Ann. Stat., vol. 28, no. 2, pp. 337-407, 2000.
    • (2000) Ann. Stat , vol.28 , Issue.2 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 17
    • 0007950880 scopus 로고    scopus 로고
    • Enhancing supervised learning with unlabeled data
    • San Francisco, CA
    • S. Goldman and Y. Zhou, "Enhancing supervised learning with unlabeled data," in Proc. 17th Int. Conf. Mach. Learn., San Francisco, CA, 2000, pp. 327-334.
    • (2000) Proc. 17th Int. Conf. Mach. Learn , pp. 327-334
    • Goldman, S.1    Zhou, Y.2
  • 19
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Aug
    • T. K. Ho, "The random subspace method for constructing decision forests," IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8, pp. 832-844, Aug. 1998.
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 20
    • 0037211316 scopus 로고    scopus 로고
    • Bagging tree classifiers for laser scanning images: A data- and simulation-based strategy
    • Jan
    • T. Hothorn and B. Lausen, "Bagging tree classifiers for laser scanning images: A data- and simulation-based strategy," Artif. Intell. Med. vol. 27, no. 1, pp. 65-79, Jan. 2003.
    • (2003) Artif. Intell. Med , vol.27 , Issue.1 , pp. 65-79
    • Hothorn, T.1    Lausen, B.2
  • 23
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • Bled, Slovenia
    • T. Joachims, "Transductive inference for text classification using support vector machines," in Proc. 16th Int. Conf. Mach. Learn., Bled, Slovenia, 1999, pp. 200-209.
    • (1999) Proc. 16th Int. Conf. Mach. Learn , pp. 200-209
    • Joachims, T.1
  • 24
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • G. Tesauro, D. S. Touretzky, and T. K. Leen, Eds. Cambridge, MA: MIT Press
    • A. Krogh and J. Vedelsby, "Neural network ensembles, cross validation, and active learning," in Advances in Neural Information Processing Systems 7, G. Tesauro, D. S. Touretzky, and T. K. Leen, Eds. Cambridge, MA: MIT Press, 1995, pp. 231-238.
    • (1995) Advances in Neural Information Processing Systems 7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 25
    • 0344982834 scopus 로고    scopus 로고
    • Unsupervised improvement of visual detectors using co-training
    • Nice, France
    • A. Levin, P. Viola, and Y. Freund, "Unsupervised improvement of visual detectors using co-training," in Proc. 9th IEEE Int. Conf. Comput. Vis., Nice, France, 2003, pp. 626-633.
    • (2003) Proc. 9th IEEE Int. Conf. Comput. Vis , pp. 626-633
    • Levin, A.1    Viola, P.2    Freund, Y.3
  • 26
    • 84898980291 scopus 로고    scopus 로고
    • A mixture of experts classifier with learning based on both labelled and unlabelled data
    • M. Mozer, M. I. Jordan, and T. Petsche, Eds. Cambridge, MA: MIT Press
    • D. J. Miller and H. S. Uyar, "A mixture of experts classifier with learning based on both labelled and unlabelled data," in Advances in Neural Information Processing Systems 9, M. Mozer, M. I. Jordan, and T. Petsche, Eds. Cambridge, MA: MIT Press, 1997, pp. 571-577.
    • (1997) Advances in Neural Information Processing Systems 9 , pp. 571-577
    • Miller, D.J.1    Uyar, H.S.2
  • 27
    • 85136905861 scopus 로고    scopus 로고
    • Analyzing the effectiveness and applicability of co-training
    • McLean, VA
    • K. Nigam and R. Ghani, "Analyzing the effectiveness and applicability of co-training," in Proc. 9th ACM Int. Conf. Inf. Knowl. Manage., McLean, VA, 2000, pp. 86-93.
    • (2000) Proc. 9th ACM Int. Conf. Inf. Knowl. Manage , pp. 86-93
    • Nigam, K.1    Ghani, R.2
  • 28
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • May/Jun
    • K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell, "Text classification from labeled and unlabeled documents using EM," Mach. Learn., vol. 39, no. 2/3, pp. 103-134, May/Jun. 2000.
    • (2000) Mach. Learn , vol.39 , Issue.2-3 , pp. 103-134
    • Nigam, K.1    McCallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 29
    • 2142727946 scopus 로고    scopus 로고
    • Limitations of co-training for natural language learning from large data sets
    • Pittsburgh, PA
    • D. Pierce and C. Cardie, "Limitations of co-training for natural language learning from large data sets," in Proc. 6th Conf. Empirical Methods Natural Language Process., Pittsburgh, PA, 2001, pp. 1-9.
    • (2001) Proc. 6th Conf. Empirical Methods Natural Language Process , pp. 1-9
    • Pierce, D.1    Cardie, C.2
  • 32
    • 36248985451 scopus 로고    scopus 로고
    • M. Seeger, Learning with labeled and unlabeled data, Univ. Edinburgh, Edinburgh, U.K., 2001. Tech. Rep.
    • M. Seeger, "Learning with labeled and unlabeled data," Univ. Edinburgh, Edinburgh, U.K., 2001. Tech. Rep.
  • 34
    • 0028499630 scopus 로고
    • The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon
    • Sep
    • B. Shahshahani and D. Landgrebe, "The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon," IEEE Trans. Geosci. Remote Sens., vol. 32, no. 5, pp. 1087-1095, Sep. 1994.
    • (1994) IEEE Trans. Geosci. Remote Sens , vol.32 , Issue.5 , pp. 1087-1095
    • Shahshahani, B.1    Landgrebe, D.2
  • 35
    • 0003100849 scopus 로고    scopus 로고
    • Adapting an ensemble approach for the diagnosis of breast cancer
    • Skövd, Sweden
    • A. Sharkey, N. Sharkey, and S. Cross, "Adapting an ensemble approach for the diagnosis of breast cancer," in Proc. 6th Int. Conf. Artif. Neural Netw., Skövd, Sweden, 1998, pp. 281-286.
    • (1998) Proc. 6th Int. Conf. Artif. Neural Netw , pp. 281-286
    • Sharkey, A.1    Sharkey, N.2    Cross, S.3
  • 40
    • 33746834100 scopus 로고    scopus 로고
    • Enhancing relevance feedback in image retrieval using unlabeled data
    • Apr
    • Z.-H. Zhou, K.-J. Chen, and H.-B. Dai, "Enhancing relevance feedback in image retrieval using unlabeled data," ACM Trans. Inf. Syst., vol. 24, no. 2, pp. 219-244, Apr. 2006.
    • (2006) ACM Trans. Inf. Syst , vol.24 , Issue.2 , pp. 219-244
    • Zhou, Z.-H.1    Chen, K.-J.2    Dai, H.-B.3
  • 41
    • 0037332504 scopus 로고    scopus 로고
    • Medical diagnosis with C4.5 rule preceded by artificial neural network ensemble
    • Mar
    • Z.-H. Zhou and Y. Jiang, "Medical diagnosis with C4.5 rule preceded by artificial neural network ensemble," IEEE Trans. Inf. Technol. Biomed., vol. 7, no. 1, pp. 37-42, Mar. 2003.
    • (2003) IEEE Trans. Inf. Technol. Biomed , vol.7 , Issue.1 , pp. 37-42
    • Zhou, Z.-H.1    Jiang, Y.2
  • 42
    • 0036146402 scopus 로고    scopus 로고
    • Lung cancer cell identification based on artificial neural network ensembles
    • Jan
    • Z.-H. Zhou, Y. Jiang, Y.-B. Yang, and S.-F. Chen, "Lung cancer cell identification based on artificial neural network ensembles," Artif. Intell. Med., vol. 24, no. 1, pp. 25-36, Jan. 2002.
    • (2002) Artif. Intell. Med , vol.24 , Issue.1 , pp. 25-36
    • Zhou, Z.-H.1    Jiang, Y.2    Yang, Y.-B.3    Chen, S.-F.4
  • 43
    • 28244448186 scopus 로고    scopus 로고
    • Tri-training: Exploiting unlabeled data using three classifiers
    • Nov
    • Z.-H. Zhou and M. Li, "Tri-training: Exploiting unlabeled data using three classifiers," IEEE Trans. Knowl. Data Eng., vol. 17, no. 11, pp. 1529-1541, Nov. 2005.
    • (2005) IEEE Trans. Knowl. Data Eng , vol.17 , Issue.11 , pp. 1529-1541
    • Zhou, Z.-H.1    Li, M.2
  • 44
    • 84880742718 scopus 로고    scopus 로고
    • Semi-supervised regression with cotraining
    • Edinburgh, U.K
    • Z.-H. Zhou and M. Li, "Semi-supervised regression with cotraining," in Proc. 19th Int. Joint Conf. Artif. Intell., Edinburgh, U.K., 2005, pp. 908-913.
    • (2005) Proc. 19th Int. Joint Conf. Artif. Intell , pp. 908-913
    • Zhou, Z.-H.1    Li, M.2
  • 45
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • May
    • Z.-H. Zhou, J. Wu, and W. Tang, "Ensembling neural networks: Many could be better than all," Artif. Intell., vol. 137, no. 1/2, pp. 239-263, May 2002.
    • (2002) Artif. Intell , vol.137 , Issue.1-2 , pp. 239-263
    • Zhou, Z.-H.1    Wu, J.2    Tang, W.3
  • 46
    • 33745456231 scopus 로고    scopus 로고
    • Comput. Sci. Dept, Univ. Wisconsin-Madison, Madison, WI, Tech. Rep. 1530
    • X. Zhu, "Semi-supervised learning literature survey," Comput. Sci. Dept., Univ. Wisconsin-Madison, Madison, WI, Tech. Rep. 1530, 2005.
    • (2005) Semi-supervised learning literature survey
    • Zhu, X.1
  • 47
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using Gaussian fields and harmonic functions
    • Washington, DC
    • X. Zhu, Z. Ghahramani, and J. Lafferty, "Semi-supervised learning using Gaussian fields and harmonic functions," in Proc. 20th Int. Conf. Mach. Learn., Washington, DC, 2003, pp. 912-919.
    • (2003) Proc. 20th Int. Conf. Mach. Learn , pp. 912-919
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.