-
1
-
-
0000492326
-
Learning from noisy examples
-
Apr
-
D. Angluin and P. Laird, "Learning from noisy examples," Mach. Learn., vol. 2, no. 4, pp. 343-370, Apr. 1988.
-
(1988)
Mach. Learn
, vol.2
, Issue.4
, pp. 343-370
-
-
Angluin, D.1
Laird, P.2
-
2
-
-
33745834241
-
-
Irvine, CA: Dept. Inf. and Comput. Sci, Univ. California, Online, Available
-
C. Blake, E. Keogh, and C. J. Merz, UCI Repository of Machine Learning Databases. Irvine, CA: Dept. Inf. and Comput. Sci., Univ. California, 1998. [Online]. Available: http://www.ics.uci.edu/~mlearn/ MLRepository.htm
-
(1998)
UCI Repository of Machine Learning Databases
-
-
Blake, C.1
Keogh, E.2
Merz, C.J.3
-
3
-
-
0010805362
-
Learning from labeled and unlabeled data using graph mincuts
-
Williamstown, MA
-
A. Blum and S. Chawla, "Learning from labeled and unlabeled data using graph mincuts," in Proc. 18th Int. Conf. Mach. Learn., Williamstown, MA, 2001, pp. 19-26.
-
(2001)
Proc. 18th Int. Conf. Mach. Learn
, pp. 19-26
-
-
Blum, A.1
Chawla, S.2
-
4
-
-
0031620208
-
Combining labeled and unlabeled data with co-training
-
Madison, WI
-
A. Blum and T. Mitchell, "Combining labeled and unlabeled data with co-training," in Proc. 11th Annu. Conf. Comput. Learn. Theory, Madison, WI, 1998, pp. 92-100.
-
(1998)
Proc. 11th Annu. Conf. Comput. Learn. Theory
, pp. 92-100
-
-
Blum, A.1
Mitchell, T.2
-
5
-
-
0030211964
-
Bagging predictors
-
Aug
-
L. Breiman, "Bagging predictors," Mach. Learn., vol. 24, no. 2, pp. 123-140, Aug. 1996.
-
(1996)
Mach. Learn
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
6
-
-
0003619255
-
-
Univ. California, Berkeley, Tech. Rep
-
L. Brennan, "Bias, variance, and arcing classifiers," Univ. California, Berkeley, 1996. Tech. Rep.
-
(1996)
Bias, variance, and arcing classifiers
-
-
Brennan, L.1
-
7
-
-
0035478854
-
Random forests
-
Oct
-
L. Breiman, "Random forests," Mach. Learn., vol. 45, no. 1, pp. 5-32, Oct. 2001.
-
(2001)
Mach. Learn
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
8
-
-
33749252873
-
-
O. Chappelle, B. Schölkopf, and A. Zien, Eds, Cambridge, MA: MIT Press
-
O. Chappelle, B. Schölkopf, and A. Zien, Eds., Semi-Supervised Learning. Cambridge, MA: MIT Press, 2006.
-
(2006)
Semi-Supervised Learning
-
-
-
9
-
-
0029679131
-
Active learning with statistical models
-
D. A. Cohn, Z. Ghahramani, and M. I. Jordan, "Active learning with statistical models," J. Artif. Intell. Res., vol. 4, pp. 129-145, 1996.
-
(1996)
J. Artif. Intell. Res
, vol.4
, pp. 129-145
-
-
Cohn, D.A.1
Ghahramani, Z.2
Jordan, M.I.3
-
10
-
-
0034333684
-
Stability problems with artificial neural networks and the ensemble solution
-
Nov
-
P. Cunningham, J. Carney, and S. Jacob, "Stability problems with artificial neural networks and the ensemble solution," Artif. Intell. Med., vol. 20, no. 3, pp. 217-225, Nov. 2000.
-
(2000)
Artif. Intell. Med
, vol.20
, Issue.3
, pp. 217-225
-
-
Cunningham, P.1
Carney, J.2
Jacob, S.3
-
11
-
-
84899008485
-
PAC generalization bounds for co-training
-
T. G. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cambridge, MA: MIT Press
-
S. Dasgupta, M. Littman, and D. McAllester, "PAC generalization bounds for co-training," in Advances in Neural Information Processing Systems 14, T. G. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cambridge, MA: MIT Press, 2002, pp. 375-382.
-
(2002)
Advances in Neural Information Processing Systems 14
, pp. 375-382
-
-
Dasgupta, S.1
Littman, M.2
McAllester, D.3
-
12
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm," J. Roy. Stat. Soc. B, vol. 39, no. 1, pp. 1-38, 1977.
-
(1977)
J. Roy. Stat. Soc. B
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
13
-
-
0042434885
-
Ensemble learning
-
2nd ed, M. A. Arbib, Ed. Cambridge, MA: MIT Press
-
T. G. Dietterich, "Ensemble learning," in The Handbook of Brain Theory and Neural Networks, 2nd ed., M. A. Arbib, Ed. Cambridge, MA: MIT Press, 2002.
-
(2002)
The Handbook of Brain Theory and Neural Networks
-
-
Dietterich, T.G.1
-
15
-
-
84983110889
-
A decision-theoretic generalization of online learning and an application to boosting
-
Barcelona, Spain
-
Y. Freund and R. E. Schapire, "A decision-theoretic generalization of online learning and an application to boosting," in Proc. 2nd Eur Conf. Comput. Learn. Theory, Barcelona, Spain, 1995, pp. 23-37.
-
(1995)
Proc. 2nd Eur Conf. Comput. Learn. Theory
, pp. 23-37
-
-
Freund, Y.1
Schapire, R.E.2
-
16
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
J. Friedman, T. Hastie, and R. Tibshirani, "Additive logistic regression: A statistical view of boosting," Ann. Stat., vol. 28, no. 2, pp. 337-407, 2000.
-
(2000)
Ann. Stat
, vol.28
, Issue.2
, pp. 337-407
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
17
-
-
0007950880
-
Enhancing supervised learning with unlabeled data
-
San Francisco, CA
-
S. Goldman and Y. Zhou, "Enhancing supervised learning with unlabeled data," in Proc. 17th Int. Conf. Mach. Learn., San Francisco, CA, 2000, pp. 327-334.
-
(2000)
Proc. 17th Int. Conf. Mach. Learn
, pp. 327-334
-
-
Goldman, S.1
Zhou, Y.2
-
18
-
-
0025507176
-
Neural network ensemble
-
Oct
-
L. Hansen and P. Salamon, "Neural network ensemble," IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 10, pp. 993-1001, Oct. 1990.
-
(1990)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.12
, Issue.10
, pp. 993-1001
-
-
Hansen, L.1
Salamon, P.2
-
19
-
-
0032139235
-
The random subspace method for constructing decision forests
-
Aug
-
T. K. Ho, "The random subspace method for constructing decision forests," IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8, pp. 832-844, Aug. 1998.
-
(1998)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.20
, Issue.8
, pp. 832-844
-
-
Ho, T.K.1
-
20
-
-
0037211316
-
Bagging tree classifiers for laser scanning images: A data- and simulation-based strategy
-
Jan
-
T. Hothorn and B. Lausen, "Bagging tree classifiers for laser scanning images: A data- and simulation-based strategy," Artif. Intell. Med. vol. 27, no. 1, pp. 65-79, Jan. 2003.
-
(2003)
Artif. Intell. Med
, vol.27
, Issue.1
, pp. 65-79
-
-
Hothorn, T.1
Lausen, B.2
-
21
-
-
26844464912
-
Corrected co-training for statistical parsers
-
Washington, DC
-
R. Hwa, M. Osborne, A. Sarkar, and M. Steedman, "Corrected co-training for statistical parsers," in Proc. Work. Notes ICML Workshop Continuum Labeled Unlabeled Data Mach. Learn. Data Mining, Washington, DC, 2003, pp. 95-102.
-
(2003)
Proc. Work. Notes ICML Workshop Continuum Labeled Unlabeled Data Mach. Learn. Data Mining
, pp. 95-102
-
-
Hwa, R.1
Osborne, M.2
Sarkar, A.3
Steedman, M.4
-
22
-
-
36248989467
-
-
Nanjing Univ. Aeronaut. Astronaut, Nanjing, China, Tech. Rep
-
X. Jia, Z. Wang, S. Chen, N. Li, and Z.-H. Zhou, "Fast screen out true negative regions for microcalcification detection in digital mammograms," Nanjing Univ. Aeronaut. Astronaut., Nanjing, China, 2005. Tech. Rep.
-
(2005)
Fast screen out true negative regions for microcalcification detection in digital mammograms
-
-
Jia, X.1
Wang, Z.2
Chen, S.3
Li, N.4
Zhou, Z.-H.5
-
23
-
-
0001938951
-
Transductive inference for text classification using support vector machines
-
Bled, Slovenia
-
T. Joachims, "Transductive inference for text classification using support vector machines," in Proc. 16th Int. Conf. Mach. Learn., Bled, Slovenia, 1999, pp. 200-209.
-
(1999)
Proc. 16th Int. Conf. Mach. Learn
, pp. 200-209
-
-
Joachims, T.1
-
24
-
-
85054435084
-
Neural network ensembles, cross validation, and active learning
-
G. Tesauro, D. S. Touretzky, and T. K. Leen, Eds. Cambridge, MA: MIT Press
-
A. Krogh and J. Vedelsby, "Neural network ensembles, cross validation, and active learning," in Advances in Neural Information Processing Systems 7, G. Tesauro, D. S. Touretzky, and T. K. Leen, Eds. Cambridge, MA: MIT Press, 1995, pp. 231-238.
-
(1995)
Advances in Neural Information Processing Systems 7
, pp. 231-238
-
-
Krogh, A.1
Vedelsby, J.2
-
25
-
-
0344982834
-
Unsupervised improvement of visual detectors using co-training
-
Nice, France
-
A. Levin, P. Viola, and Y. Freund, "Unsupervised improvement of visual detectors using co-training," in Proc. 9th IEEE Int. Conf. Comput. Vis., Nice, France, 2003, pp. 626-633.
-
(2003)
Proc. 9th IEEE Int. Conf. Comput. Vis
, pp. 626-633
-
-
Levin, A.1
Viola, P.2
Freund, Y.3
-
26
-
-
84898980291
-
A mixture of experts classifier with learning based on both labelled and unlabelled data
-
M. Mozer, M. I. Jordan, and T. Petsche, Eds. Cambridge, MA: MIT Press
-
D. J. Miller and H. S. Uyar, "A mixture of experts classifier with learning based on both labelled and unlabelled data," in Advances in Neural Information Processing Systems 9, M. Mozer, M. I. Jordan, and T. Petsche, Eds. Cambridge, MA: MIT Press, 1997, pp. 571-577.
-
(1997)
Advances in Neural Information Processing Systems 9
, pp. 571-577
-
-
Miller, D.J.1
Uyar, H.S.2
-
27
-
-
85136905861
-
Analyzing the effectiveness and applicability of co-training
-
McLean, VA
-
K. Nigam and R. Ghani, "Analyzing the effectiveness and applicability of co-training," in Proc. 9th ACM Int. Conf. Inf. Knowl. Manage., McLean, VA, 2000, pp. 86-93.
-
(2000)
Proc. 9th ACM Int. Conf. Inf. Knowl. Manage
, pp. 86-93
-
-
Nigam, K.1
Ghani, R.2
-
28
-
-
0033886806
-
Text classification from labeled and unlabeled documents using EM
-
May/Jun
-
K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell, "Text classification from labeled and unlabeled documents using EM," Mach. Learn., vol. 39, no. 2/3, pp. 103-134, May/Jun. 2000.
-
(2000)
Mach. Learn
, vol.39
, Issue.2-3
, pp. 103-134
-
-
Nigam, K.1
McCallum, A.K.2
Thrun, S.3
Mitchell, T.4
-
29
-
-
2142727946
-
Limitations of co-training for natural language learning from large data sets
-
Pittsburgh, PA
-
D. Pierce and C. Cardie, "Limitations of co-training for natural language learning from large data sets," in Proc. 6th Conf. Empirical Methods Natural Language Process., Pittsburgh, PA, 2001, pp. 1-9.
-
(2001)
Proc. 6th Conf. Empirical Methods Natural Language Process
, pp. 1-9
-
-
Pierce, D.1
Cardie, C.2
-
31
-
-
0037211848
-
A multiple classifier system for early melanoma diagnosis
-
Jan
-
A. Sboner, C. Eccher, E. Blanzieri, P. Bauer, M. Cristofolini, G. Zuniani, and S. Forti, "A multiple classifier system for early melanoma diagnosis," Artif. Intell. Med., vol. 27, no. 1, pp. 29-44, Jan. 2003.
-
(2003)
Artif. Intell. Med
, vol.27
, Issue.1
, pp. 29-44
-
-
Sboner, A.1
Eccher, C.2
Blanzieri, E.3
Bauer, P.4
Cristofolini, M.5
Zuniani, G.6
Forti, S.7
-
32
-
-
36248985451
-
-
M. Seeger, Learning with labeled and unlabeled data, Univ. Edinburgh, Edinburgh, U.K., 2001. Tech. Rep.
-
M. Seeger, "Learning with labeled and unlabeled data," Univ. Edinburgh, Edinburgh, U.K., 2001. Tech. Rep.
-
-
-
-
33
-
-
0026981853
-
Query by committee
-
Pittsburgh, PA
-
H. Seung, M. Opper, and H. Sompolinsky, "Query by committee," in Proc. 5th ACM Workshop Comput. Learn. Theory, Pittsburgh, PA, 1992, pp. 287-294.
-
(1992)
Proc. 5th ACM Workshop Comput. Learn. Theory
, pp. 287-294
-
-
Seung, H.1
Opper, M.2
Sompolinsky, H.3
-
34
-
-
0028499630
-
The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon
-
Sep
-
B. Shahshahani and D. Landgrebe, "The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon," IEEE Trans. Geosci. Remote Sens., vol. 32, no. 5, pp. 1087-1095, Sep. 1994.
-
(1994)
IEEE Trans. Geosci. Remote Sens
, vol.32
, Issue.5
, pp. 1087-1095
-
-
Shahshahani, B.1
Landgrebe, D.2
-
35
-
-
0003100849
-
Adapting an ensemble approach for the diagnosis of breast cancer
-
Skövd, Sweden
-
A. Sharkey, N. Sharkey, and S. Cross, "Adapting an ensemble approach for the diagnosis of breast cancer," in Proc. 6th Int. Conf. Artif. Neural Netw., Skövd, Sweden, 1998, pp. 281-286.
-
(1998)
Proc. 6th Int. Conf. Artif. Neural Netw
, pp. 281-286
-
-
Sharkey, A.1
Sharkey, N.2
Cross, S.3
-
36
-
-
85118305024
-
Bootstrapping statistical parsers from small data sets
-
Budapest, Hungary
-
M. Steedman, M. Osborne, A. Sarkar, S. Clark, R. Hwa, J. Hockenmaier, P. Ruhlen, S. Baker, and J. Crim, "Bootstrapping statistical parsers from small data sets," in Proc. 10th Conf. Eur. Chapter Assoc. Comput. Linguistics, Budapest, Hungary, 2003, pp. 331-338.
-
(2003)
Proc. 10th Conf. Eur. Chapter Assoc. Comput. Linguistics
, pp. 331-338
-
-
Steedman, M.1
Osborne, M.2
Sarkar, A.3
Clark, S.4
Hwa, R.5
Hockenmaier, J.6
Ruhlen, P.7
Baker, S.8
Crim, J.9
-
38
-
-
84899006908
-
Learning with local and global consistency
-
S. Thrun, L. K. Saul, and B. Schölkopf, Eds. Cambridge, MA: MIT Press
-
D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, "Learning with local and global consistency," in Advances in Neural Information Processing Systems 16, S. Thrun, L. K. Saul, and B. Schölkopf, Eds. Cambridge, MA: MIT Press, 2003, pp. 1633-1640.
-
(2003)
Advances in Neural Information Processing Systems 16
, pp. 1633-1640
-
-
Zhou, D.1
Bousquet, O.2
Lal, T.N.3
Weston, J.4
Schölkopf, B.5
-
39
-
-
16244378563
-
Democratic co-learning
-
Boca Raton, FL
-
Y. Zhou and S. Goldman, "Democratic co-learning," in Proc. 16th IEEE Int. Conf. Tools Artif. Intell., Boca Raton, FL, 2004, pp. 594-602.
-
(2004)
Proc. 16th IEEE Int. Conf. Tools Artif. Intell
, pp. 594-602
-
-
Zhou, Y.1
Goldman, S.2
-
40
-
-
33746834100
-
Enhancing relevance feedback in image retrieval using unlabeled data
-
Apr
-
Z.-H. Zhou, K.-J. Chen, and H.-B. Dai, "Enhancing relevance feedback in image retrieval using unlabeled data," ACM Trans. Inf. Syst., vol. 24, no. 2, pp. 219-244, Apr. 2006.
-
(2006)
ACM Trans. Inf. Syst
, vol.24
, Issue.2
, pp. 219-244
-
-
Zhou, Z.-H.1
Chen, K.-J.2
Dai, H.-B.3
-
41
-
-
0037332504
-
Medical diagnosis with C4.5 rule preceded by artificial neural network ensemble
-
Mar
-
Z.-H. Zhou and Y. Jiang, "Medical diagnosis with C4.5 rule preceded by artificial neural network ensemble," IEEE Trans. Inf. Technol. Biomed., vol. 7, no. 1, pp. 37-42, Mar. 2003.
-
(2003)
IEEE Trans. Inf. Technol. Biomed
, vol.7
, Issue.1
, pp. 37-42
-
-
Zhou, Z.-H.1
Jiang, Y.2
-
42
-
-
0036146402
-
Lung cancer cell identification based on artificial neural network ensembles
-
Jan
-
Z.-H. Zhou, Y. Jiang, Y.-B. Yang, and S.-F. Chen, "Lung cancer cell identification based on artificial neural network ensembles," Artif. Intell. Med., vol. 24, no. 1, pp. 25-36, Jan. 2002.
-
(2002)
Artif. Intell. Med
, vol.24
, Issue.1
, pp. 25-36
-
-
Zhou, Z.-H.1
Jiang, Y.2
Yang, Y.-B.3
Chen, S.-F.4
-
43
-
-
28244448186
-
Tri-training: Exploiting unlabeled data using three classifiers
-
Nov
-
Z.-H. Zhou and M. Li, "Tri-training: Exploiting unlabeled data using three classifiers," IEEE Trans. Knowl. Data Eng., vol. 17, no. 11, pp. 1529-1541, Nov. 2005.
-
(2005)
IEEE Trans. Knowl. Data Eng
, vol.17
, Issue.11
, pp. 1529-1541
-
-
Zhou, Z.-H.1
Li, M.2
-
44
-
-
84880742718
-
Semi-supervised regression with cotraining
-
Edinburgh, U.K
-
Z.-H. Zhou and M. Li, "Semi-supervised regression with cotraining," in Proc. 19th Int. Joint Conf. Artif. Intell., Edinburgh, U.K., 2005, pp. 908-913.
-
(2005)
Proc. 19th Int. Joint Conf. Artif. Intell
, pp. 908-913
-
-
Zhou, Z.-H.1
Li, M.2
-
45
-
-
0036567392
-
Ensembling neural networks: Many could be better than all
-
May
-
Z.-H. Zhou, J. Wu, and W. Tang, "Ensembling neural networks: Many could be better than all," Artif. Intell., vol. 137, no. 1/2, pp. 239-263, May 2002.
-
(2002)
Artif. Intell
, vol.137
, Issue.1-2
, pp. 239-263
-
-
Zhou, Z.-H.1
Wu, J.2
Tang, W.3
-
46
-
-
33745456231
-
-
Comput. Sci. Dept, Univ. Wisconsin-Madison, Madison, WI, Tech. Rep. 1530
-
X. Zhu, "Semi-supervised learning literature survey," Comput. Sci. Dept., Univ. Wisconsin-Madison, Madison, WI, Tech. Rep. 1530, 2005.
-
(2005)
Semi-supervised learning literature survey
-
-
Zhu, X.1
-
47
-
-
1942484430
-
Semi-supervised learning using Gaussian fields and harmonic functions
-
Washington, DC
-
X. Zhu, Z. Ghahramani, and J. Lafferty, "Semi-supervised learning using Gaussian fields and harmonic functions," in Proc. 20th Int. Conf. Mach. Learn., Washington, DC, 2003, pp. 912-919.
-
(2003)
Proc. 20th Int. Conf. Mach. Learn
, pp. 912-919
-
-
Zhu, X.1
Ghahramani, Z.2
Lafferty, J.3
|