-
2
-
-
0030370417
-
Bagging, boosting, and C4.5
-
Cambridge, MA
-
J. Quinlan, Bagging, boosting, and C4.5, Proc. 13th National Conference on Artificial Intelligence, Cambridge, MA, 1996, 725-730
-
(1996)
Proc. 13th National Conference on Artificial Intelligence
, pp. 725-730
-
-
Quinlan, J.1
-
3
-
-
0030211964
-
Bagging predictors
-
L. Breiman, Bagging predictors, Machine Learning, 24(2), 1996, 123-140
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
4
-
-
0346786584
-
Arcing classifiers
-
L. Breiman, Arcing classifiers, The Annals of Statistics, 26(3), 1998, 801-849
-
(1998)
The Annals of Statistics
, vol.26
, Issue.3
, pp. 801-849
-
-
Breiman, L.1
-
5
-
-
0032280519
-
Boosting the margin: A new explanation for the effective ness of voting methods
-
R. Schapire, Y. Freund, P. Bartlett and W. Lee, Boosting the margin: A new explanation for the effective ness of voting methods, The Annals of Statistics, 12(5), 1998, 1651-1686
-
(1998)
The Annals of Statistics
, vol.12
, Issue.5
, pp. 1651-1686
-
-
Schapire, R.1
Freund, Y.2
Bartlett, P.3
Lee, W.4
-
6
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
E. Bauer and R. Kohavi, An empirical comparison of voting classification algorithms: Bagging, boosting, and variants, Machine Learning, 36(1-2), 1999, 105-139
-
(1999)
Machine Learning
, vol.36
, Issue.1-2
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
8
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
T.G. Dietterich, An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization, Machine Learning, 40(2), 2000, 139-157
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 139-157
-
-
Dietterich, T.G.1
-
9
-
-
0342502195
-
Soft margins for AdaBoost
-
G. Rätsch, T. Onoda and K.R. Müller, Soft margins for AdaBoost, Machine Learning, 42(3), 2001, 287-320
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 287-320
-
-
Rätsch, G.1
Onoda, T.2
Müller, K.R.3
-
13
-
-
0036567392
-
Ensembling neural networks: Many could be better than all
-
Z.H. Zhou, J. Wu and W. Tang, Ensembling neural networks: Many could be better than all, Artificial Intelligence, 137(1-2), 2002, 239-263
-
(2002)
Artificial Intelligence
, vol.137
, Issue.1-2
, pp. 239-263
-
-
Zhou, Z.H.1
Wu, J.2
Tang, W.3
-
14
-
-
8344279588
-
Selective ensemble of decision trees
-
Berlin: Springer
-
Z.H. Zhou and W. Tang, Selective ensemble of decision trees, Lecture Notes in Artificial Intelligence 2639, 2003, pp.476-483, Berlin: Springer, 2003
-
(2003)
Lecture Notes in Artificial Intelligence 2639, 2003
, pp. 476-483
-
-
Zhou, Z.H.1
Tang, W.2
-
15
-
-
0012467735
-
Cost complexity-based pruning of ensemble classifiers
-
A.L. Prodromidis and S.J. Stolfo, Cost complexity-based pruning of ensemble classifiers, Knowledge and Information Systems, 3(4), 2001, 449-469
-
(2001)
Knowledge and Information Systems
, vol.3
, Issue.4
, pp. 449-469
-
-
Prodromidis, A.L.1
Stolfo, S.J.2
-
16
-
-
0003802343
-
-
New York, Chapman & Hall
-
L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone, Classification and Regression Trees, (New York, Chapman & Hall, 1984)
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.A.3
Stone, C.J.4
-
17
-
-
0003619255
-
Bias, variance, and arcing classifiers
-
Statistics Department, University of California
-
L. Breiman, Bias, variance, and arcing classifiers, Technical Report 460, Statistics Department, University of California, 1996
-
(1996)
Technical Report
, vol.460
-
-
Breiman, L.1
-
18
-
-
0035478854
-
Random forests
-
L. Breiman, Random forests, Machine Learning, 45(1), 2001, 5-32
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
|