메뉴 건너뛰기




Volumn 172, Issue 15, 2008, Pages 1731-1751

The combination of multiple classifiers using an evidential reasoning approach

Author keywords

Combination functions; Dempster's rule of combination; Ensemble methods; Evidential reasoning; Evidential structures

Indexed keywords

LEARNING SYSTEMS;

EID: 50649109430     PISSN: 00043702     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.artint.2008.06.002     Document Type: Article
Times cited : (107)

References (56)
  • 1
    • 4344710606 scopus 로고    scopus 로고
    • A new technique for combining multiple classifiers using the Dempster-Shafer theory of evidence
    • Al-Ani A., and Deriche M. A new technique for combining multiple classifiers using the Dempster-Shafer theory of evidence. J. Artif. Intell. Res. 17 (2002) 333-361
    • (2002) J. Artif. Intell. Res. , vol.17 , pp. 333-361
    • Al-Ani, A.1    Deriche, M.2
  • 2
    • 0019648059 scopus 로고    scopus 로고
    • J.A. Barnett, Computational methods for a mathematical theory of evidence, in: Proc. of 17th Joint Conference of Artificial Intelligence, 1981, pp. 868-875
    • J.A. Barnett, Computational methods for a mathematical theory of evidence, in: Proc. of 17th Joint Conference of Artificial Intelligence, 1981, pp. 868-875
  • 3
    • 50649097605 scopus 로고    scopus 로고
    • C.L. Blake, C.J.E. Keogh, UCI repository of machine learning databases, http://www.ics.uci.edu/mlearn/MLRepository.html
    • C.L. Blake, C.J.E. Keogh, UCI repository of machine learning databases, http://www.ics.uci.edu/mlearn/MLRepository.html
  • 4
    • 84975461176 scopus 로고    scopus 로고
    • Y. Bi, D. Bell, J.W. Guan, Combining evidence from classifiers in text categorization, in: Proc. of KES04, 2004, pp. 521-528
    • Y. Bi, D. Bell, J.W. Guan, Combining evidence from classifiers in text categorization, in: Proc. of KES04, 2004, pp. 521-528
  • 5
    • 50649102714 scopus 로고    scopus 로고
    • Y. Bi, Combining multiple classifiers for text categorization using the Dempster-Shafer theory of evidence, PhD thesis, University of Ulster, UK, 2004
    • Y. Bi, Combining multiple classifiers for text categorization using the Dempster-Shafer theory of evidence, PhD thesis, University of Ulster, UK, 2004
  • 6
    • 27644562157 scopus 로고    scopus 로고
    • On combining classifiers mass functions for text categorization
    • Bell D., Guan J.W., and Bi Y. On combining classifiers mass functions for text categorization. IEEE Trans. Knowledge Data Engrg. 17 10 (2005) 1307-1319
    • (2005) IEEE Trans. Knowledge Data Engrg. , vol.17 , Issue.10 , pp. 1307-1319
    • Bell, D.1    Guan, J.W.2    Bi, Y.3
  • 7
    • 42049089465 scopus 로고    scopus 로고
    • Y. Bi, J.W. Guan, An efficient triplet-based algorithm for evidential reasoning, in: Proc. of the 22nd Conference on Uncertainty in Artificial Intelligence, 2006, pp. 31-38
    • Y. Bi, J.W. Guan, An efficient triplet-based algorithm for evidential reasoning, in: Proc. of the 22nd Conference on Uncertainty in Artificial Intelligence, 2006, pp. 31-38
  • 8
    • 33750731980 scopus 로고    scopus 로고
    • Y. Bi, S.I. McClean, T. Anderson, On combining multiple classifiers using an evidential approach, in: Proc. of the Twenty-First National Conference on Artificial Intelligence (AAAI'06), 2006, pp. 324-329
    • Y. Bi, S.I. McClean, T. Anderson, On combining multiple classifiers using an evidential approach, in: Proc. of the Twenty-First National Conference on Artificial Intelligence (AAAI'06), 2006, pp. 324-329
  • 9
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 24 2 (1996) 123-140
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 10
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Machine Learning 45 1 (2001) 5-32
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 11
    • 0031361611 scopus 로고    scopus 로고
    • Machine learning research: Four current directions
    • Dietterich T. Machine learning research: Four current directions. AI Magazine 18 4 (1997) 97-136
    • (1997) AI Magazine , vol.18 , Issue.4 , pp. 97-136
    • Dietterich, T.1
  • 12
    • 0001823341 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich T. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning 1 22 (1998)
    • (1998) Machine Learning , vol.1 , Issue.22
    • Dietterich, T.1
  • 13
    • 80053403826 scopus 로고    scopus 로고
    • T. Dietterich, Ensemble methods in machine learning, in: Proc. 2nd Int. Workshop on Multiple Classifier Systems MCS2000, LNCS, vol. 1857, 2000, pp. 1-15
    • T. Dietterich, Ensemble methods in machine learning, in: Proc. 2nd Int. Workshop on Multiple Classifier Systems MCS2000, LNCS, vol. 1857, 2000, pp. 1-15
  • 14
    • 0000516376 scopus 로고
    • Upper and lower probabilities induced by a multivalued mapping
    • Dempster A.P. Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38 (1967) 325-339
    • (1967) Ann. Math. Stat. , vol.38 , pp. 325-339
    • Dempster, A.P.1
  • 15
    • 37149055072 scopus 로고    scopus 로고
    • Conjunctive and disjunctive combination of belief functions induced by nondistinct bodies of evidence
    • Denoeux T. Conjunctive and disjunctive combination of belief functions induced by nondistinct bodies of evidence. Artif. Intell. 172 2-3 (2008) 234-264
    • (2008) Artif. Intell. , vol.172 , Issue.2-3 , pp. 234-264
    • Denoeux, T.1
  • 16
    • 0036786963 scopus 로고    scopus 로고
    • Approximating the combination of belief functions using the fast Moebius transform in a coarsened frame
    • Denoeux T., and Ben Yaghlane A. Approximating the combination of belief functions using the fast Moebius transform in a coarsened frame. Internat. J. Approx. Reason. 31 1-2 (2002) 77-101
    • (2002) Internat. J. Approx. Reason. , vol.31 , Issue.1-2 , pp. 77-101
    • Denoeux, T.1    Ben Yaghlane, A.2
  • 17
    • 0033902309 scopus 로고    scopus 로고
    • A neural network classifier based on Dempster-Shafer theory
    • Denoeux T. A neural network classifier based on Dempster-Shafer theory. IEEE Trans. Systems Man Cybernet. A 30 2 (2000) 131-150
    • (2000) IEEE Trans. Systems Man Cybernet. A , vol.30 , Issue.2 , pp. 131-150
    • Denoeux, T.1
  • 18
    • 0029307876 scopus 로고
    • A k-nearest neighbor classification rule based on Dempster-Shafer theory
    • Denoeux T. A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Trans. Systems Man Cybern. 25 5 (1995) 804-813
    • (1995) IEEE Trans. Systems Man Cybern. , vol.25 , Issue.5 , pp. 804-813
    • Denoeux, T.1
  • 19
    • 84867038939 scopus 로고    scopus 로고
    • R.P.W. Duin, D.M.J. Tax, Experiments with classifier combining rules, in: J. Kittler, F. Roli (Eds.), Multiple Classifier Systems, 2000, pp. 16-29
    • R.P.W. Duin, D.M.J. Tax, Experiments with classifier combining rules, in: J. Kittler, F. Roli (Eds.), Multiple Classifier Systems, 2000, pp. 16-29
  • 20
    • 12144288329 scopus 로고    scopus 로고
    • Is combining classifiers with stacking better than selecting the best one?
    • Dzeroski S., and Zenko B. Is combining classifiers with stacking better than selecting the best one?. Machine Learning 54 3 (2004) 255-273
    • (2004) Machine Learning , vol.54 , Issue.3 , pp. 255-273
    • Dzeroski, S.1    Zenko, B.2
  • 21
    • 84970216868 scopus 로고
    • The reliability of dichotomous judgments: unequal numbers of judgments per subject
    • Fleiss J.L., and Cuzick J. The reliability of dichotomous judgments: unequal numbers of judgments per subject. Appl. Psycholog. Meas. 3 (1979) 537-542
    • (1979) Appl. Psycholog. Meas. , vol.3 , pp. 537-542
    • Fleiss, J.L.1    Cuzick, J.2
  • 22
    • 50649123895 scopus 로고    scopus 로고
    • Y. Freund, R. Schapire, Experiments with a new boosting algorithm, in: Machine Learning: Proceedings of the Thirteenth International Conference, 1996, pp. 148-156
    • Y. Freund, R. Schapire, Experiments with a new boosting algorithm, in: Machine Learning: Proceedings of the Thirteenth International Conference, 1996, pp. 148-156
  • 24
    • 50649117980 scopus 로고    scopus 로고
    • J.W. Guan, D.A. Bell, Efficient algorithms for automated reasoning in expert systems, in: The 3rd IASTED International Conference on Robotics and Manufacturing, 1995, pp. 336-339
    • J.W. Guan, D.A. Bell, Efficient algorithms for automated reasoning in expert systems, in: The 3rd IASTED International Conference on Robotics and Manufacturing, 1995, pp. 336-339
  • 25
    • 0036719728 scopus 로고    scopus 로고
    • Are alternatives to Dempster's rule of combination real alternatives?: Comments on "about the belief function combination and the conflict management problem" Lefèvre et al.
    • Haenni R. Are alternatives to Dempster's rule of combination real alternatives?: Comments on "about the belief function combination and the conflict management problem" Lefèvre et al. Information Fusion 3 3 (2002) 237-239
    • (2002) Information Fusion , vol.3 , Issue.3 , pp. 237-239
    • Haenni, R.1
  • 27
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Machine Intell. 20 8 (1998) 832-844
    • (1998) IEEE Trans. Pattern Anal. Machine Intell. , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 29
    • 50649110176 scopus 로고    scopus 로고
    • L. Kuncheva, Combining classifiers: Soft computing solutions, in: S.K. Pal, A. Pal (Eds.), Pattern Recognition: From Classical to Modern Approaches, 2001, pp. 427-451
    • L. Kuncheva, Combining classifiers: Soft computing solutions, in: S.K. Pal, A. Pal (Eds.), Pattern Recognition: From Classical to Modern Approaches, 2001, pp. 427-451
  • 30
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles
    • Kuncheva L., and Whitaker C.J. Measures of diversity in classifier ensembles. Machine Learning 51 (2003) 181-207
    • (2003) Machine Learning , vol.51 , pp. 181-207
    • Kuncheva, L.1    Whitaker, C.J.2
  • 32
    • 0031238275 scopus 로고    scopus 로고
    • Application of majority voting to pattern recognition: An analysis of its behavior and performance
    • Lam L., and Suen C.Y. Application of majority voting to pattern recognition: An analysis of its behavior and performance. IEEE Trans. Systems Man Cybernet. 27 5 (1997) 553-568
    • (1997) IEEE Trans. Systems Man Cybernet. , vol.27 , Issue.5 , pp. 553-568
    • Lam, L.1    Suen, C.Y.2
  • 33
    • 0030392357 scopus 로고    scopus 로고
    • L.S. Larkey, W.B. Croft, Combining classifiers in text categorization, in: Proceedings of SIGIR-96, 19th ACM International Conference on Research and Development in Information Retrieval, 1996, pp. 289-297
    • L.S. Larkey, W.B. Croft, Combining classifiers in text categorization, in: Proceedings of SIGIR-96, 19th ACM International Conference on Research and Development in Information Retrieval, 1996, pp. 289-297
  • 34
    • 1542455009 scopus 로고    scopus 로고
    • Reinvestigating Dempster's idea on evidence combination
    • Liu W., and Hong J. Reinvestigating Dempster's idea on evidence combination. Knowledge Inform. Syst. 2 2 (2000) 223-241
    • (2000) Knowledge Inform. Syst. , vol.2 , Issue.2 , pp. 223-241
    • Liu, W.1    Hong, J.2
  • 35
    • 33745854779 scopus 로고    scopus 로고
    • Analyzing the degree of conflict among belief functions
    • Liu W. Analyzing the degree of conflict among belief functions. Artif. Intell. 170 11 (2006) 909-924
    • (2006) Artif. Intell. , vol.170 , Issue.11 , pp. 909-924
    • Liu, W.1
  • 36
    • 85012722936 scopus 로고
    • Combining the classification results of independent classifiers based on Dempster-Shafer theory of evidence
    • Mandler E.J., and Schurmann J. Combining the classification results of independent classifiers based on Dempster-Shafer theory of evidence. Pattern Recogn. Artif. Intell. X (1988) 381-393
    • (1988) Pattern Recogn. Artif. Intell. , vol.X , pp. 381-393
    • Mandler, E.J.1    Schurmann, J.2
  • 37
    • 84880832861 scopus 로고    scopus 로고
    • P. Melville, R.J. Mooney, Constructing diverse classifier ensembles using artificial training examples, in: Proc. of IJCAI-03, 2003, pp. 505-510
    • P. Melville, R.J. Mooney, Constructing diverse classifier ensembles using artificial training examples, in: Proc. of IJCAI-03, 2003, pp. 505-510
  • 39
    • 0032596573 scopus 로고    scopus 로고
    • Feature selection for ensembles
    • AAAI Press
    • Opitz D. Feature selection for ensembles. Proc. of AAAI-99 (1999), AAAI Press 379-384
    • (1999) Proc. of AAAI-99 , pp. 379-384
    • Opitz, D.1
  • 40
    • 33846058836 scopus 로고    scopus 로고
    • Pairwise classifier combination using belief functions
    • Quost B., Denoeux T., and Masson M.-H. Pairwise classifier combination using belief functions. Pattern Recogn. Lett. 28 5 (2007) 644-653
    • (2007) Pattern Recogn. Lett. , vol.28 , Issue.5 , pp. 644-653
    • Quost, B.1    Denoeux, T.2    Masson, M.-H.3
  • 41
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • Sebastiani F. Machine learning in automated text categorization. ACM Comput. Surv. 34 1 (2002) 1-47
    • (2002) ACM Comput. Surv. , vol.34 , Issue.1 , pp. 1-47
    • Sebastiani, F.1
  • 42
    • 0027961797 scopus 로고
    • Combining the results of several neural network classifiers
    • Rogova G. Combining the results of several neural network classifiers. Neural Networks 7 5 (1994) 777-781
    • (1994) Neural Networks , vol.7 , Issue.5 , pp. 777-781
    • Rogova, G.1
  • 43
    • 0023446625 scopus 로고
    • Implementing Dempster's rule for hierarchical evidence
    • Shafer G., and Logan R. Implementing Dempster's rule for hierarchical evidence. Artif. Intell. 33 3 (1987) 271-298
    • (1987) Artif. Intell. , vol.33 , Issue.3 , pp. 271-298
    • Shafer, G.1    Logan, R.2
  • 46
    • 0025434991 scopus 로고    scopus 로고
    • Ph. Smets, The combination of evidence in the Transferable Belief Model, IEEE Trans. Pattern Anal. Machine Intell. 12 (5) 447-458
    • Ph. Smets, The combination of evidence in the Transferable Belief Model, IEEE Trans. Pattern Anal. Machine Intell. 12 (5) 447-458
  • 48
  • 49
    • 33750696501 scopus 로고    scopus 로고
    • Combining of disparate classifiers through order statistics
    • Tumer K., and Robust G.J. Combining of disparate classifiers through order statistics. Pattern Anal. Appl. 6 1 (2002) 41-46
    • (2002) Pattern Anal. Appl. , vol.6 , Issue.1 , pp. 41-46
    • Tumer, K.1    Robust, G.J.2
  • 50
    • 0026860706 scopus 로고
    • Several methods for combining multiple classifiers and their applications in handwritten character recognition
    • Xu L., Krzyzak A., and Suen C.Y. Several methods for combining multiple classifiers and their applications in handwritten character recognition. IEEE Trans. System Man Cybernet. 2 3 (1992) 418-435
    • (1992) IEEE Trans. System Man Cybernet. , vol.2 , Issue.3 , pp. 418-435
    • Xu, L.1    Krzyzak, A.2    Suen, C.Y.3
  • 51
    • 0032072012 scopus 로고    scopus 로고
    • An evidence-theoretic k-NN rule with parameter optimization
    • Zouhal L.M., and Denoeux T. An evidence-theoretic k-NN rule with parameter optimization. IEEE Trans. Systems Man Cybernet. C 28 2 (1998) 263-271
    • (1998) IEEE Trans. Systems Man Cybernet. C , vol.28 , Issue.2 , pp. 263-271
    • Zouhal, L.M.1    Denoeux, T.2
  • 52
    • 50649091490 scopus 로고    scopus 로고
    • Y. Yang, T. Ault, T. Pierce, Combining multiple learning strategies for effective cross validation, in: Proc. of ICML'00, 2000, pp. 1167-1182
    • Y. Yang, T. Ault, T. Pierce, Combining multiple learning strategies for effective cross validation, in: Proc. of ICML'00, 2000, pp. 1167-1182
  • 53
    • 0026122354 scopus 로고
    • On the justification of Dempster's rule of combination
    • Voorbraak F. On the justification of Dempster's rule of combination. Artif. Intell. 48 2 (1991) 171-197
    • (1991) Artif. Intell. , vol.48 , Issue.2 , pp. 171-197
    • Voorbraak, F.1
  • 54
    • 0034247206 scopus 로고    scopus 로고
    • MultiBoosting: A technique for combining boosting and wagging
    • Webb G.I. MultiBoosting: A technique for combining boosting and wagging. Machine Learning 40 2 (2000) 159-196
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 159-196
    • Webb, G.I.1
  • 55
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert D. Stacked generalization. Neural Networks 5 2 (1992) 241-259
    • (1992) Neural Networks , vol.5 , Issue.2 , pp. 241-259
    • Wolpert, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.