메뉴 건너뛰기




Volumn 2709, Issue , 2003, Pages 35-44

An empirical comparison of three boosting algorithms on real data sets with artificial class noise

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE BOOSTING; ERRORS;

EID: 33846991416     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-44938-8_4     Document Type: Review
Times cited : (44)

References (23)
  • 2
  • 3
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting and variants
    • E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms: Bagging, boosting and variants. Machine Learning, 36:105-142, 1999.
    • (1999) Machine Learning , vol.36 , pp. 105-142
    • Bauer, E.1    Kohavi, R.2
  • 5
    • 0031361611 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • T. G. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. AI Magazine, 18:97-136, 1997.
    • (1997) AI Magazine , vol.18 , pp. 97-136
    • Dietterich, T.G.1
  • 7
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Y. Freund. Boosting a weak learning algorithm by majority. Information and Computation, 121, 1995.
    • (1995) Information and Computation , pp. 121
    • Freund, Y.1
  • 8
    • 0035371148 scopus 로고    scopus 로고
    • An adaptive version of the boost by majority algorithm
    • Y. Freund. An adaptive version of the boost by majority algorithm. Machine Learning 43, 3:293-318, 2001.
    • (2001) Machine Learning 43 , vol.3 , pp. 293-318
    • Freund, Y.1
  • 11
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • J. H. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting. The Annals of Statistics, 28:337-374, 2000.
    • (2000) The Annals of Statistics , vol.28 , pp. 337-374
    • Friedman, J.H.1    Hastie, T.2    Tibshirani, R.3
  • 15
    • 0002039637 scopus 로고
    • Cancer diagnosis via linear programming
    • O. L. Mangasarian and W. H. Wolberg. Cancer diagnosis via linear programming. SIAM News, 23(5):1-18, 1990.
    • (1990) SIAM News , vol.23 , Issue.5 , pp. 1-18
    • Mangasarian, O.L.1    Wolberg, W.H.2
  • 17
    • 0001182408 scopus 로고
    • The effect of noise on concept learning
    • R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors, San Mateo, CA, Morgan Kauffmann
    • J. R. Quinlan. The effect of noise on concept learning. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine Learning: An Artificial Intelligence Approach, volume 2, San Mateo, CA, 1986. Morgan Kauffmann.
    • (1986) Machine Learning: An Artificial Intelligence Approach , vol.2
    • Quinlan, J.R.1
  • 19
    • 0030370417 scopus 로고    scopus 로고
    • Bagging, boosting and c4.5
    • J. R. Quinlan. Bagging, boosting and c4.5. AAAI/IAAI, 1:725-730, 1996.
    • (1996) AAAI/IAAI , vol.1 , pp. 725-730
    • Quinlan, J.R.1
  • 20
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R. E. Schapire. The strength of weak learnability. Machine Learning, 5:197-227, 1990.
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 21
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics, 26:1651-1686, 1998.
    • (1998) The Annals of Statistics , vol.26 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 22
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37:297-336, 1999.
    • (1999) Machine Learning , vol.37 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.