메뉴 건너뛰기




Volumn 32, Issue 10, 2005, Pages 2543-2559

Neural network ensemble strategies for financial decision applications

Author keywords

Bagging; Bankruptcy prediction; Boosting; Credit scoring; Ensembles

Indexed keywords

DECISION SUPPORT SYSTEMS; ERROR ANALYSIS; FINANCIAL DATA PROCESSING; PATTERN RECOGNITION; PROBABILITY; RESEARCH AND DEVELOPMENT MANAGEMENT; STRATEGIC PLANNING;

EID: 13544268431     PISSN: 03050548     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cor.2004.03.017     Document Type: Article
Times cited : (286)

References (44)
  • 1
    • 0012579787 scopus 로고    scopus 로고
    • The importance of credit scoring models in improving cash flow and collections
    • Brill J. The importance of credit scoring models in improving cash flow and collections. Business Credit. 100:1998;16-17
    • (1998) Business Credit , vol.100 , pp. 16-17
    • Brill, J.1
  • 5
    • 0001384863 scopus 로고
    • Quantitative methods in credit management: A survey
    • Rosenberg E., Gleit A. Quantitative methods in credit management. a survey Operations Research. 42:1994;589-613
    • (1994) Operations Research , vol.42 , pp. 589-613
    • Rosenberg, E.1    Gleit, A.2
  • 6
    • 43949151078 scopus 로고
    • Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience)
    • Altman E.I., Marco G., Varetto F. Corporate distress diagnosis. comparisons using linear discriminant analysis and neural networks (the Italian experience) Journal of Banking and Finance. 18:1994;505-529
    • (1994) Journal of Banking and Finance , vol.18 , pp. 505-529
    • Altman, E.I.1    Marco, G.2    Varetto, F.3
  • 10
    • 0030291564 scopus 로고    scopus 로고
    • A comparison of neural networks and linear scoring models in the credit union environment
    • Desai V.S., Crook J.N., Overstreet G.A. A comparison of neural networks and linear scoring models in the credit union environment. European Journal of Operational Research. 95:1996;24-37
    • (1996) European Journal of Operational Research , vol.95 , pp. 24-37
    • Desai, V.S.1    Crook, J.N.2    Overstreet, G.A.3
  • 12
    • 1542603058 scopus 로고    scopus 로고
    • A k-nearest neighbor classifier for assessing consumer credit risk
    • Henley W.E., Hand D.J. A k-nearest neighbor classifier for assessing consumer credit risk. Statistician. 44:1996;77-95
    • (1996) Statistician , vol.44 , pp. 77-95
    • Henley, W.E.1    Hand, D.J.2
  • 13
    • 0003081097 scopus 로고
    • Using neural networks for credit scoring
    • Jensen H.L. Using neural networks for credit scoring. Managerial Finance. 18:1992;15-26
    • (1992) Managerial Finance , vol.18 , pp. 15-26
    • Jensen, H.L.1
  • 15
    • 0032749972 scopus 로고    scopus 로고
    • Financial credit-risk evaluation with neural and neurofuzzy systems
    • Piramuthu S. Financial credit-risk evaluation with neural and neurofuzzy systems. European Journal of Operational Research. 112:1999;310-321
    • (1999) European Journal of Operational Research , vol.112 , pp. 310-321
    • Piramuthu, S.1
  • 16
    • 84988828223 scopus 로고
    • Neural networks: A new tool for predicting thrift failures
    • Salchenberger L.M., Cianr E.M., Lash N.A. Neural networks. a new tool for predicting thrift failures Decision Sciences. 23:1992;899-916
    • (1992) Decision Sciences , vol.23 , pp. 899-916
    • Salchenberger, L.M.1    Cianr, E.M.2    Lash, N.A.3
  • 17
    • 84997479670 scopus 로고
    • Managerial applications of neural networks: The case of bank failure predictions
    • Tam F.Y., Kiang M.Y. Managerial applications of neural networks. the case of bank failure predictions Management Science. 38:1992;926-947
    • (1992) Management Science , vol.38 , pp. 926-947
    • Tam, F.Y.1    Kiang, M.Y.2
  • 18
    • 0034118581 scopus 로고    scopus 로고
    • Neural network credit scoring models
    • West D. Neural network credit scoring models. Computers & Operations Research. 27:2000;1131-1152
    • (2000) Computers & Operations Research , vol.27 , pp. 1131-1152
    • West, D.1
  • 19
    • 13544262208 scopus 로고    scopus 로고
    • Credit scoring using supervised and unsupervised neural networks
    • K. Smith, & J. Gupta. Hershey, Pa.: Idea Publishing Group
    • West D., Munchineuta C. Credit scoring using supervised and unsupervised neural networks. Smith K., Gupta J. Neural networks in business: techniques and applications. 2002;154-156 Idea Publishing Group, Hershey, Pa.
    • (2002) Neural Networks in Business: Techniques and Applications , pp. 154-156
    • West, D.1    Munchineuta, C.2
  • 20
    • 0034123868 scopus 로고    scopus 로고
    • Neural networks in business: Techniques and applications for the operations researcher
    • Smith K.A., Gupta J.N.D. Neural networks in business. techniques and applications for the operations researcher Computers & Operations Research. 27:2000;1023-1044
    • (2000) Computers & Operations Research , vol.27 , pp. 1023-1044
    • Smith, K.A.1    Gupta, J.N.D.2
  • 21
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning. 24:1996;123-140
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 22
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing algorithms
    • Breiman L. Prediction games and arcing algorithms. Neural Computation. 11:1999;1493-1517
    • (1999) Neural Computation , vol.11 , pp. 1493-1517
    • Breiman, L.1
  • 23
    • 84944837333 scopus 로고
    • Introducing recursive partitioning for financial classification learning algorithms
    • Frydman H.E., Altman E.I., Kao D. Introducing recursive partitioning for financial classification learning algorithms. Journal of Finance. 40:1985;269-291
    • (1985) Journal of Finance , vol.40 , pp. 269-291
    • Frydman, H.E.1    Altman, E.I.2    Kao, D.3
  • 24
    • 0034250160 scopus 로고    scopus 로고
    • Experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich T.G. Experimental comparison of three methods for constructing ensembles of decision trees. bagging, boosting, and randomization Machine Learning. 40:2000;139-157
    • (2000) Machine Learning , vol.40 , pp. 139-157
    • Dietterich, T.G.1
  • 25
    • 84945737762 scopus 로고
    • A leisurely look at the bootstrap, the jackknife, and cross-validation
    • Efron B., Gong G. A leisurely look at the bootstrap, the jackknife, and cross-validation. The American Statistician. 37:1983;36-48
    • (1983) The American Statistician , vol.37 , pp. 36-48
    • Efron, B.1    Gong, G.2
  • 27
    • 0032141735 scopus 로고    scopus 로고
    • Knowledge acquisition from multiple experts: An empirical study
    • O'Leary D.E. Knowledge acquisition from multiple experts. an empirical study Management Science. 44:1998;1049-1058
    • (1998) Management Science , vol.44 , pp. 1049-1058
    • O'Leary, D.E.1
  • 29
    • 0031244962 scopus 로고    scopus 로고
    • Improving classifier performance through repeated sampling
    • Zhou J., Lopresti D. Improving classifier performance through repeated sampling. Pattern Recognition. 30:1997;1637-1650
    • (1997) Pattern Recognition , vol.30 , pp. 1637-1650
    • Zhou, J.1    Lopresti, D.2
  • 30
    • 0032804290 scopus 로고    scopus 로고
    • Inferential estimation of polymer quality using bootstrap aggregated neural networks
    • Zhang J. Inferential estimation of polymer quality using bootstrap aggregated neural networks. Neural Networks. 12:1999;927-938
    • (1999) Neural Networks , vol.12 , pp. 927-938
    • Zhang, J.1
  • 31
    • 0032928495 scopus 로고    scopus 로고
    • Developing robust non-linear models through boostrap aggregated neural networks
    • Zhang J. Developing robust non-linear models through boostrap aggregated neural networks. Neurocomputing. 25:1999;93-113
    • (1999) Neurocomputing , vol.25 , pp. 93-113
    • Zhang, J.1
  • 34
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone M. Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society. 36:1974;111-147
    • (1974) Journal of the Royal Statistical Society , vol.36 , pp. 111-147
    • Stone, M.1
  • 35
    • 0038232428 scopus 로고    scopus 로고
    • An empirical study of design and testing of hybrid evolutionary-neural approach for classification
    • Pendharkar P.C. An empirical study of design and testing of hybrid evolutionary-neural approach for classification. Omega-International Journal of Management Science. 29:2001;361-374
    • (2001) Omega-International Journal of Management Science , vol.29 , pp. 361-374
    • Pendharkar, P.C.1
  • 36
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire R.E. The strength of weak learnability. Machine Learning. 5:1990;197-227
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 38
    • 0037401696 scopus 로고    scopus 로고
    • Explaining consumer choice through neural networks: The stacked generalization approach
    • Hu M.Y., Tsoukalas C. Explaining consumer choice through neural networks. the stacked generalization approach European Journal of Operational Research. 146:2003;650-660
    • (2003) European Journal of Operational Research , vol.146 , pp. 650-660
    • Hu, M.Y.1    Tsoukalas, C.2
  • 39
    • 0037290189 scopus 로고    scopus 로고
    • Data fusion, ensemble and clustering to improve the classification accuracy for the severity of road traffic accidents in Korea
    • Sohn S.Y., Lee S.H. Data fusion, ensemble and clustering to improve the classification accuracy for the severity of road traffic accidents in Korea. Safety Science. 41:2003;1-14
    • (2003) Safety Science , vol.41 , pp. 1-14
    • Sohn, S.Y.1    Lee, S.H.2
  • 40
    • 0036208184 scopus 로고    scopus 로고
    • Combining neural network predictions for medical diagnosis
    • Hayashi Y., Setiono R. Combining neural network predictions for medical diagnosis. Computers in Biology and Medicine. 32:2002;237-246
    • (2002) Computers in Biology and Medicine , vol.32 , pp. 237-246
    • Hayashi, Y.1    Setiono, R.2
  • 41
    • 0034333684 scopus 로고    scopus 로고
    • Stability problems with artificial neural networks and the ensemble solution
    • Cunningham P., Carney J., Jacob S. Stability problems with artificial neural networks and the ensemble solution. Artificial Intelligence in Medicine. 20:2000;217-225
    • (2000) Artificial Intelligence in Medicine , vol.20 , pp. 217-225
    • Cunningham, P.1    Carney, J.2    Jacob, S.3
  • 42
    • 0030372928 scopus 로고    scopus 로고
    • Application of several methods of classification fusion to magnetic resonance spectra
    • Zhilkin P.A., Somorjai R.L. Application of several methods of classification fusion to magnetic resonance spectra. Connection Science. 8:1996;427-442
    • (1996) Connection Science , vol.8 , pp. 427-442
    • Zhilkin, P.A.1    Somorjai, R.L.2
  • 44
    • 0025756235 scopus 로고
    • Signal detectability: The use of ROC curves and their analyses
    • Centor R.M. Signal detectability. the use of ROC curves and their analyses Medical Decision Making. 11:1991;102-106
    • (1991) Medical Decision Making , vol.11 , pp. 102-106
    • Centor, R.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.