메뉴 건너뛰기




Volumn 3518 LNAI, Issue , 2005, Pages 605-610

Maximizing tree diversity by building complete-random decision trees

Author keywords

[No Author keywords available]

Indexed keywords

MATHEMATICAL TECHNIQUES; OPTIMIZATION; RANDOM PROCESSES; SAMPLING; TREES (MATHEMATICS);

EID: 26944434312     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11430919_70     Document Type: Conference Paper
Times cited : (30)

References (10)
  • 1
    • 0001492549 scopus 로고    scopus 로고
    • Shape quantization and recognition with randomized trees
    • Yali Amit and Donald Geman. Shape quantization and recognition with randomized trees. Neural Computation, 9(7):1545-1588, 1997.
    • (1997) Neural Computation , vol.9 , Issue.7 , pp. 1545-1588
    • Amit, Y.1    Geman, D.2
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Leo Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 4
    • 0034276320 scopus 로고    scopus 로고
    • Randomizing outputs to increase prediction accuracy
    • Leo Breiman. Randomizing outputs to increase prediction accuracy. Machine Learning, 40(3):229-242, 2000.
    • (2000) Machine Learning , vol.40 , Issue.3 , pp. 229-242
    • Breiman, L.1
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Leo Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 6
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Thomas G. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40(2): 139-157, 2000.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 7
    • 0013396180 scopus 로고    scopus 로고
    • Bayesian averaging of classifiers and the overfitting problem
    • Morgan Kaufmann, San Francisco, CA
    • Pedro Domingos. Bayesian averaging of classifiers and the overfitting problem. In Proc. 17th International Conf. on Machine Learning, pages 223-230. Morgan Kaufmann, San Francisco, CA, 2000.
    • (2000) Proc. 17th International Conf. on Machine Learning , pp. 223-230
    • Domingos, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.