-
2
-
-
0031191630
-
The use of the area under the ROC curve in the evaluation of machine learning algorithms
-
A. P. Bradley. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Patt. Recogn., 30(7):1145-1159, 1997.
-
(1997)
Patt. Recogn.
, vol.30
, Issue.7
, pp. 1145-1159
-
-
Bradley, A.P.1
-
3
-
-
9444295412
-
Support vector machines with example dependent costs
-
U. Brefeld, P. Geibel, and F. Wysotzki. Support vector machines with example dependent costs. In Proc. ECML, pages 23-34, 2003.
-
(2003)
Proc. ECML
, pp. 23-34
-
-
Brefeld, U.1
Geibel, P.2
Wysotzki, F.3
-
4
-
-
50549101751
-
Automatically countering imbalance and its empirical relationship to cost
-
N. V. Chawla, D. A. Cieslak, L. O. Hall, and A. Joshi. Automatically countering imbalance and its empirical relationship to cost. DMKD, 17(2):225-252, 2008.
-
(2008)
DMKD
, vol.17
, Issue.2
, pp. 225-252
-
-
Chawla, N.V.1
Cieslak, D.A.2
Hall, L.O.3
Joshi, A.4
-
6
-
-
0002106691
-
MetaCost: A general method for making classifiers cost-sensitive
-
P. Domingos. MetaCost: A general method for making classifiers cost-sensitive. In Proc. SIGKDD, pages 155-164, 1999.
-
(1999)
Proc. SIGKDD
, pp. 155-164
-
-
Domingos, P.1
-
7
-
-
33748991193
-
Cost curves: An improved method for visualizing classifier performance
-
C. Drummond and R. C. Holte. Cost curves: An improved method for visualizing classifier performance. Mach. Learn., 65(1):95-130, 2006.
-
(2006)
Mach. Learn.
, vol.65
, Issue.1
, pp. 95-130
-
-
Drummond, C.1
Holte, R.C.2
-
8
-
-
84867577175
-
The foundations of cost-sensitive learning
-
C. Elkan. The foundations of cost-sensitive learning. In Proc. IJCAI, pages 973-978, 2001.
-
(2001)
Proc. IJCAI
, pp. 973-978
-
-
Elkan, C.1
-
9
-
-
0023049334
-
Confidence intervals rather than p values: Estimation rather than hypothesis testing
-
M. J. Gardner and D. G. Altman. Confidence intervals rather than p values: Estimation rather than hypothesis testing. Stat. in Medic., 292:746-750, 1986.
-
(1986)
Stat. in Medic.
, vol.292
, pp. 746-750
-
-
Gardner, M.J.1
Altman, D.G.2
-
10
-
-
84878098426
-
The influence of class imbalance on cost-sensitive learning: An empirical study
-
X.-Y. Liu and Z.-H. Zhou. The influence of class imbalance on cost-sensitive learning: An empirical study. In Proc. IEEE ICDM, pages 970-974, 2006.
-
(2006)
Proc. IEEE ICDM
, pp. 970-974
-
-
Liu, X.-Y.1
Zhou, Z.-H.2
-
11
-
-
65449159444
-
Multi-class cost-sensitive boosting with p-norm loss functions
-
A. C. Lozano and N. Abe. Multi-class cost-sensitive boosting with p-norm loss functions. In Proc. SIGKDD, pages 506-514, 2008.
-
(2008)
Proc. SIGKDD
, pp. 506-514
-
-
Lozano, A.C.1
Abe, N.2
-
13
-
-
70449396191
-
Thresholding for making classifiers cost-sensitive
-
V. S. Sheng and C. X. Ling. Thresholding for making classifiers cost-sensitive. In Proc. AAAI, 2006.
-
(2006)
Proc. AAAI
-
-
Sheng, V.S.1
Ling, C.X.2
-
14
-
-
84962238645
-
Cost-based modeling for fraud and intrusion detection: Results from the JAM project
-
S. J. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. K. Chan. Cost-based modeling for fraud and intrusion detection: Results from the JAM project. DARPA Information Survivability Conference and Exposition, 2:1130-1144, 2000.
-
(2000)
DARPA Information Survivability Conference and Exposition
, vol.2
, pp. 1130-1144
-
-
Stolfo, S.J.1
Fan, W.2
Lee, W.3
Prodromidis, A.4
Chan, P.K.5
-
15
-
-
0036565589
-
An instance-weighting method to induce cost-sensitive trees
-
K. M. Ting. An instance-weighting method to induce cost-sensitive trees. IEEE TKDE, 14(3):659-665, 2002.
-
(2002)
IEEE TKDE
, vol.14
, Issue.3
, pp. 659-665
-
-
Ting, K.M.1
-
16
-
-
84957062500
-
Boosting trees for cost-sensitive classifications
-
K. M. Ting and Z. Zheng. Boosting trees for cost-sensitive classifications. In Proc. ECML, pages 190-195, 1998.
-
(1998)
Proc. ECML
, pp. 190-195
-
-
Ting, K.M.1
Zheng, Z.2
-
17
-
-
23944511670
-
Mining customer value: From association rules to direct marketing
-
K. W. Wong, S. Zho, Q. Yang, and J. M. S. Yeung. Mining customer value: From association rules to direct marketing. DMKD, 11(1):57-79, 2005.
-
(2005)
DMKD
, vol.11
, Issue.1
, pp. 57-79
-
-
Wong, K.W.1
Zho, S.2
Yang, Q.3
Yeung, J.M.S.4
-
18
-
-
33847134827
-
Breast cancer incidence in a cohort of women with benign breast disease from a multiethnic, primary health care population
-
M. J. Worsham, J. Abram, U. Raju, A. Kapke, M. Lu, J. Cheng, D. Mott, and S. R. Wolman. Breast cancer incidence in a cohort of women with benign breast disease from a multiethnic, primary health care population. The Breast Journal, 13(2):115-121, 2007.
-
(2007)
The Breast Journal
, vol.13
, Issue.2
, pp. 115-121
-
-
Worsham, M.J.1
Abram, J.2
Raju, U.3
Kapke, A.4
Lu, M.5
Cheng, J.6
Mott, D.7
Wolman, S.R.8
-
19
-
-
0035789316
-
Learning and making decisions when costs and probabilities are both unknown
-
B. Zadrozny and C. Elkan. Learning and making decisions when costs and probabilities are both unknown. In Proc. SIGKDD, pages 204-213, 2001.
-
(2001)
Proc. SIGKDD
, pp. 204-213
-
-
Zadrozny, B.1
Elkan, C.2
-
20
-
-
33749245586
-
Cost-sensitive learning by cost-proportionate example weighting
-
B. Zadrozny, J. Langford, and N. Abe. Cost-sensitive learning by cost-proportionate example weighting. In Proc. IEEE ICDM, pages 435-442, 2003.
-
(2003)
Proc. IEEE ICDM
, pp. 435-442
-
-
Zadrozny, B.1
Langford, J.2
Abe, N.3
-
21
-
-
31344442851
-
Training cost-sensitive neural networks with methods addressing the class imbalance problem
-
Z.-H. Zhou and X.-Y. Liu. Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE TKDE, 18(1):63-77, 2006.
-
(2006)
IEEE TKDE
, vol.18
, Issue.1
, pp. 63-77
-
-
Zhou, Z.-H.1
Liu, X.-Y.2
-
22
-
-
24644441048
-
Ensembling local learners through multimodal perturbation
-
Z.-H. Zhou and Y. Yu. Ensembling local learners through multimodal perturbation. IEEE TSMCB, 35(4):725-735, 2005.
-
(2005)
IEEE TSMCB
, vol.35
, Issue.4
, pp. 725-735
-
-
Zhou, Z.-H.1
Yu, Y.2
|