메뉴 건너뛰기




Volumn 43, Issue 3, 2018, Pages 180-198

Getting Momentum: From Biocatalysis to Advanced Synthetic Biology

Author keywords

biocatalysis; broad mutational scanning; deep mutational scanning; high throughput screening; metabolic engineering; protein engineering

Indexed keywords

ALGORITHM; AMINO ACID SEQUENCE; BIOCATALYSIS; BIOCATALYST; CHEMICAL MODIFICATION; CRYSTAL STRUCTURE; DNA SYNTHESIS; ENZYME ACTIVITY; ENZYME SYNTHESIS; GENOMICS; HIGH THROUGHPUT SCREENING; MACHINE LEARNING; MATHEMATICAL COMPUTING; METAGENOMICS; METALLOENZYME ENGINEERING; MOLECULAR EVOLUTION; MUTATIONAL ANALYSIS; NONHUMAN; PREDICTION; PRIORITY JOURNAL; PROCESS OPTIMIZATION; PROTEIN ENGINEERING; PROTEIN FUNCTION; REVIEW; SYNTHETIC BIOLOGY; ANIMAL; BIOSYNTHESIS; CHEMISTRY; GENETICS; HUMAN; METABOLISM; MUTATION; PROCEDURES; TRENDS;

EID: 85042458503     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2018.01.003     Document Type: Review
Times cited : (66)

References (157)
  • 2
    • 84860741240 scopus 로고    scopus 로고
    • Engineering the third wave of biocatalysis
    • Bornscheuer, U.T., et al. Engineering the third wave of biocatalysis. Nature 485 (2012), 185–194.
    • (2012) Nature , vol.485 , pp. 185-194
    • Bornscheuer, U.T.1
  • 4
    • 85031724912 scopus 로고    scopus 로고
    • Enzyme engineering: reaching the maximal catalytic efficiency peak
    • Goldsmith, M., Tawfik, D.S., Enzyme engineering: reaching the maximal catalytic efficiency peak. Curr. Opin. Struct. Biol. 47 (2017), 140–150.
    • (2017) Curr. Opin. Struct. Biol. , vol.47 , pp. 140-150
    • Goldsmith, M.1    Tawfik, D.S.2
  • 6
    • 85021420274 scopus 로고    scopus 로고
    • Design and evolution of enzymes for non-natural chemistry
    • Hammer, S.C., et al. Design and evolution of enzymes for non-natural chemistry. Curr. Opin. Green Sustain. Chem. 7 (2017), 23–30.
    • (2017) Curr. Opin. Green Sustain. Chem. , vol.7 , pp. 23-30
    • Hammer, S.C.1
  • 7
    • 85031321120 scopus 로고    scopus 로고
    • Anti-Markovnikov alkene oxidation by metal-oxo–mediated enzyme catalysis
    • Hammer, S.C., et al. Anti-Markovnikov alkene oxidation by metal-oxo–mediated enzyme catalysis. Science 358 (2017), 215–218.
    • (2017) Science , vol.358 , pp. 215-218
    • Hammer, S.C.1
  • 8
    • 85018906900 scopus 로고    scopus 로고
    • Biocatalysis in the pharmaceutical industry: the need for speed
    • Truppo, M.D., Biocatalysis in the pharmaceutical industry: the need for speed. ACS Med. Chem. Lett. 8 (2017), 476–480.
    • (2017) ACS Med. Chem. Lett. , vol.8 , pp. 476-480
    • Truppo, M.D.1
  • 9
    • 77954797329 scopus 로고    scopus 로고
    • Biocatalytic asymmetric synthesis of chiral amines from ketones applied to Sitagliptin manufacture
    • Savile, C.K., et al. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to Sitagliptin manufacture. Science 329 (2010), 305–309.
    • (2010) Science , vol.329 , pp. 305-309
    • Savile, C.K.1
  • 10
    • 85037172390 scopus 로고    scopus 로고
    • The fourth wave of biocatalysis is approaching
    • Bornscheuer, U.T., The fourth wave of biocatalysis is approaching. Philos. Trans. R. Soc. A, 376, 2018, 20170063.
    • (2018) Philos. Trans. R. Soc. A , vol.376
    • Bornscheuer, U.T.1
  • 11
    • 84971357091 scopus 로고    scopus 로고
    • Highly engineered biocatalysts for efficient small molecule pharmaceutical synthesis
    • Lalonde, J., Highly engineered biocatalysts for efficient small molecule pharmaceutical synthesis. Curr. Opin. Biotechnol. 42 (2016), 152–158.
    • (2016) Curr. Opin. Biotechnol. , vol.42 , pp. 152-158
    • Lalonde, J.1
  • 12
    • 84896353052 scopus 로고    scopus 로고
    • New generation of biocatalysts for organic synthesis
    • Nestl, B.M., et al. New generation of biocatalysts for organic synthesis. Angew. Chem. Int. Ed. 53 (2014), 3070–3095.
    • (2014) Angew. Chem. Int. Ed. , vol.53 , pp. 3070-3095
    • Nestl, B.M.1
  • 13
    • 84977107022 scopus 로고    scopus 로고
    • What are the limitations of enzymes in synthetic organic chemistry?
    • Reetz, M.T., What are the limitations of enzymes in synthetic organic chemistry?. Chem. Rec. 16 (2016), 2449–2459.
    • (2016) Chem. Rec. , vol.16 , pp. 2449-2459
    • Reetz, M.T.1
  • 14
    • 84997080010 scopus 로고    scopus 로고
    • Directed evolution of cytochrome c for carbon–silicon bond formation: bringing silicon to life
    • Kan, S.B.J., et al. Directed evolution of cytochrome c for carbon–silicon bond formation: bringing silicon to life. Science 354 (2016), 1048–1051.
    • (2016) Science , vol.354 , pp. 1048-1051
    • Kan, S.B.J.1
  • 15
    • 85013677780 scopus 로고    scopus 로고
    • The first biocatalytic carbon-silicon bond formation
    • Lutz, S., The first biocatalytic carbon-silicon bond formation. Angew. Chem. Int. Ed. 56 (2017), 3140–3141.
    • (2017) Angew. Chem. Int. Ed. , vol.56 , pp. 3140-3141
    • Lutz, S.1
  • 16
    • 85040338163 scopus 로고    scopus 로고
    • Genetically programmed chiral organoborane synthesis
    • Kan, S.B.J., et al. Genetically programmed chiral organoborane synthesis. Nature 552 (2017), 132–136.
    • (2017) Nature , vol.552 , pp. 132-136
    • Kan, S.B.J.1
  • 17
    • 85036541667 scopus 로고    scopus 로고
    • Directed evolution: bringing new chemistry to life
    • Published online 24 October 2017
    • Arnold, F.H., Directed evolution: bringing new chemistry to life. Angew. Chem. Int. Ed., 2017, 10.1002/anie.201708408 Published online 24 October 2017.
    • (2017) Angew. Chem. Int. Ed.
    • Arnold, F.H.1
  • 18
    • 85020295301 scopus 로고    scopus 로고
    • Single-mutation fitness landscapes for an enzyme on multiple substrates reveal specificity is globally encoded
    • Wrenbeck, E.E., et al. Single-mutation fitness landscapes for an enzyme on multiple substrates reveal specificity is globally encoded. Nat. Commun., 8, 2017, 15695.
    • (2017) Nat. Commun. , vol.8
    • Wrenbeck, E.E.1
  • 19
    • 68049111471 scopus 로고    scopus 로고
    • Finding better protein engineering strategies
    • Kazlauskas, R.J., Bornscheuer, U.T., Finding better protein engineering strategies. Nat. Chem. Biol. 5 (2009), 526–529.
    • (2009) Nat. Chem. Biol. , vol.5 , pp. 526-529
    • Kazlauskas, R.J.1    Bornscheuer, U.T.2
  • 23
    • 85021391581 scopus 로고    scopus 로고
    • Exploiting and engineering hemoproteins for abiological carbene and nitrene transfer reactions
    • Brandenberg, O.F., et al. Exploiting and engineering hemoproteins for abiological carbene and nitrene transfer reactions. Curr. Opin. Biotechnol. 47 (2017), 102–111.
    • (2017) Curr. Opin. Biotechnol. , vol.47 , pp. 102-111
    • Brandenberg, O.F.1
  • 24
    • 85031755986 scopus 로고    scopus 로고
    • Artificial metalloenzymes on the verge of new-to-nature metabolism
    • Jeschek, M., et al. Artificial metalloenzymes on the verge of new-to-nature metabolism. Trends Biotechnol. 36 (2018), 60–72.
    • (2018) Trends Biotechnol. , vol.36 , pp. 60-72
    • Jeschek, M.1
  • 25
    • 84872495336 scopus 로고    scopus 로고
    • Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes
    • Coelho, P.S., et al. Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes. Science 339 (2013), 307–310.
    • (2013) Science , vol.339 , pp. 307-310
    • Coelho, P.S.1
  • 26
    • 84880921220 scopus 로고    scopus 로고
    • A serine-substituted P450 catalyzes highly efficient carbene transfer to olefins in vivo
    • Coelho, P.S., et al. A serine-substituted P450 catalyzes highly efficient carbene transfer to olefins in vivo. Nat. Chem. Biol. 9 (2013), 485–487.
    • (2013) Nat. Chem. Biol. , vol.9 , pp. 485-487
    • Coelho, P.S.1
  • 27
    • 84903168457 scopus 로고    scopus 로고
    • Improved cyclopropanation activity of histidine-ligated cytochrome P450 enables the enantioselective formal synthesis of levomilnacipran
    • Wang, Z.J., et al. Improved cyclopropanation activity of histidine-ligated cytochrome P450 enables the enantioselective formal synthesis of levomilnacipran. Angew. Chem. Int. Ed. 53 (2014), 6810–6813.
    • (2014) Angew. Chem. Int. Ed. , vol.53 , pp. 6810-6813
    • Wang, Z.J.1
  • 28
    • 84947430009 scopus 로고    scopus 로고
    • Enantioselective enzyme-catalyzed aziridination enabled by active-site evolution of a cytochrome P450
    • Farwell, C.C., et al. Enantioselective enzyme-catalyzed aziridination enabled by active-site evolution of a cytochrome P450. ACS Cent. Sci. 1 (2015), 89–93.
    • (2015) ACS Cent. Sci. , vol.1 , pp. 89-93
    • Farwell, C.C.1
  • 29
    • 84902664223 scopus 로고    scopus 로고
    • Enantioselective imidation of sulfides via enzyme-catalyzed intermolecular nitrogen-atom transfer
    • Farwell, C.C., et al. Enantioselective imidation of sulfides via enzyme-catalyzed intermolecular nitrogen-atom transfer. J. Am. Chem. Soc. 136 (2014), 8766–8771.
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 8766-8771
    • Farwell, C.C.1
  • 30
    • 84908616475 scopus 로고    scopus 로고
    • Enzyme-controlled nitrogen-atom transfer enables regiodivergent C–H amination
    • Hyster, T.K., et al. Enzyme-controlled nitrogen-atom transfer enables regiodivergent C–H amination. J. Am. Chem. Soc. 136 (2014), 15505–15508.
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 15505-15508
    • Hyster, T.K.1
  • 31
    • 84960516987 scopus 로고    scopus 로고
    • Asymmetric enzymatic synthesis of allylic amines: a sigmatropic rearrangement strategy
    • Prier, C.K., et al. Asymmetric enzymatic synthesis of allylic amines: a sigmatropic rearrangement strategy. Angew. Chem. Int. Ed. 55 (2016), 4711–4715.
    • (2016) Angew. Chem. Int. Ed. , vol.55 , pp. 4711-4715
    • Prier, C.K.1
  • 32
    • 85005808040 scopus 로고    scopus 로고
    • Gram-scale synthesis of chiral cyclopropane-containing drugs and drug precursors with engineered myoglobin catalysts featuring complementary stereoselectivity
    • Bajaj, P., et al. Gram-scale synthesis of chiral cyclopropane-containing drugs and drug precursors with engineered myoglobin catalysts featuring complementary stereoselectivity. Angew. Chem. Int. Ed. 55 (2016), 16110–16114.
    • (2016) Angew. Chem. Int. Ed. , vol.55 , pp. 16110-16114
    • Bajaj, P.1
  • 33
    • 84922065193 scopus 로고    scopus 로고
    • Highly diastereoselective and enantioselective olefin cyclopropanation using engineered myoglobin-based catalysts
    • Bordeaux, M., et al. Highly diastereoselective and enantioselective olefin cyclopropanation using engineered myoglobin-based catalysts. Angew. Chem. Int. Ed. 54 (2015), 1744–1748.
    • (2015) Angew. Chem. Int. Ed. , vol.54 , pp. 1744-1748
    • Bordeaux, M.1
  • 34
    • 84951201229 scopus 로고    scopus 로고
    • Efficient conversion of primary azides to aldehydes catalyzed by active site variants of myoglobin
    • Giovani, S., et al. Efficient conversion of primary azides to aldehydes catalyzed by active site variants of myoglobin. Chem. Sci. 7 (2016), 234–239.
    • (2016) Chem. Sci. , vol.7 , pp. 234-239
    • Giovani, S.1
  • 35
    • 84925002902 scopus 로고    scopus 로고
    • Intermolecular carbene S-H insertion catalysed by engineered myoglobin-based catalysts
    • Tyagi, V., et al. Intermolecular carbene S-H insertion catalysed by engineered myoglobin-based catalysts. Chem. Sci. 6 (2015), 2488–2494.
    • (2015) Chem. Sci. , vol.6 , pp. 2488-2494
    • Tyagi, V.1
  • 36
    • 84954348262 scopus 로고    scopus 로고
    • Myoglobin-catalyzed olefination of aldehydes
    • Tyagi, V., Fasan, R., Myoglobin-catalyzed olefination of aldehydes. Angew. Chem. Int. Ed. 55 (2016), 2512–2516.
    • (2016) Angew. Chem. Int. Ed. , vol.55 , pp. 2512-2516
    • Tyagi, V.1    Fasan, R.2
  • 37
    • 84888351614 scopus 로고    scopus 로고
    • C(sp3)–H bond hydroxylation catalyzed by myoglobin reconstituted with manganese porphycene
    • Oohora, K., et al. C(sp3)–H bond hydroxylation catalyzed by myoglobin reconstituted with manganese porphycene. J. Am. Chem. Soc. 135 (2013), 17282–17285.
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 17282-17285
    • Oohora, K.1
  • 38
    • 84937889484 scopus 로고    scopus 로고
    • Engineering a dirhodium artificial metalloenzyme for selective olefin cyclopropanation
    • Srivastava, P., et al. Engineering a dirhodium artificial metalloenzyme for selective olefin cyclopropanation. Nat. Commun., 6, 2015, 7789.
    • (2015) Nat. Commun. , vol.6 , pp. 7789
    • Srivastava, P.1
  • 39
    • 84990842428 scopus 로고    scopus 로고
    • An artificial metalloenzyme with the kinetics of native enzymes
    • Dydio, P., et al. An artificial metalloenzyme with the kinetics of native enzymes. Science 354 (2016), 102–106.
    • (2016) Science , vol.354 , pp. 102-106
    • Dydio, P.1
  • 40
    • 84975764159 scopus 로고    scopus 로고
    • Abiological catalysis by artificial haem proteins containing noble metals in place of iron
    • Key, H.M., et al. Abiological catalysis by artificial haem proteins containing noble metals in place of iron. Nature 534 (2016), 534–537.
    • (2016) Nature , vol.534 , pp. 534-537
    • Key, H.M.1
  • 41
    • 85021258513 scopus 로고    scopus 로고
    • Enantioselective, intermolecular benzylic C–H amination catalysed by an engineered iron–haem enzyme
    • Prier, C.K., et al. Enantioselective, intermolecular benzylic C–H amination catalysed by an engineered iron–haem enzyme. Nat. Chem. 9 (2017), 629–634.
    • (2017) Nat. Chem. , vol.9 , pp. 629-634
    • Prier, C.K.1
  • 42
    • 84984604210 scopus 로고    scopus 로고
    • Directed evolution of artificial metalloenzymes for in vivo metathesis
    • Jeschek, M., et al. Directed evolution of artificial metalloenzymes for in vivo metathesis. Nature 537 (2016), 661–665.
    • (2016) Nature , vol.537 , pp. 661-665
    • Jeschek, M.1
  • 43
    • 84921037626 scopus 로고    scopus 로고
    • Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently
    • Currin, A., et al. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem. Soc. Rev. 44 (2015), 1172–1239.
    • (2015) Chem. Soc. Rev. , vol.44 , pp. 1172-1239
    • Currin, A.1
  • 44
    • 84872684145 scopus 로고    scopus 로고
    • Structure and dynamics of a primordial catalytic fold generated by in vitro evolution
    • Chao, F.A., et al. Structure and dynamics of a primordial catalytic fold generated by in vitro evolution. Nat. Chem. Biol. 9 (2013), 81–83.
    • (2013) Nat. Chem. Biol. , vol.9 , pp. 81-83
    • Chao, F.A.1
  • 45
    • 34547958191 scopus 로고    scopus 로고
    • Selection and evolution of enzymes from a partially randomized non-catalytic scaffold
    • Seelig, B., Szostak, J.W., Selection and evolution of enzymes from a partially randomized non-catalytic scaffold. Nature 448 (2007), 828–831.
    • (2007) Nature , vol.448 , pp. 828-831
    • Seelig, B.1    Szostak, J.W.2
  • 46
    • 85032647802 scopus 로고    scopus 로고
    • Directed evolution of proteins based on mutational scanning
    • U. Bornscheuer M. Höhne Humana Press
    • Acevedo-Rocha, C.G., et al. Directed evolution of proteins based on mutational scanning. Bornscheuer, U., Höhne, M., (eds.) Protein Engineering. Methods in Molecular Biology Vol. 1685, 2018, Humana Press, 87–128.
    • (2018) Protein Engineering. Methods in Molecular Biology Vol. 1685 , pp. 87-128
    • Acevedo-Rocha, C.G.1
  • 47
    • 54349090614 scopus 로고    scopus 로고
    • Addressing the numbers problem in directed evolution
    • Reetz, M.T., et al. Addressing the numbers problem in directed evolution. ChemBioChem 9 (2008), 1797–1804.
    • (2008) ChemBioChem , vol.9 , pp. 1797-1804
    • Reetz, M.T.1
  • 48
    • 79951914183 scopus 로고    scopus 로고
    • Sitagliptin manufacture: a compelling tale of green chemistry, process intensification, and industrial asymmetric catalysis
    • Desai, A.A., Sitagliptin manufacture: a compelling tale of green chemistry, process intensification, and industrial asymmetric catalysis. Angew. Chem. Int. Ed. 50 (2011), 1974–1976.
    • (2011) Angew. Chem. Int. Ed. , vol.50 , pp. 1974-1976
    • Desai, A.A.1
  • 49
    • 0002694056 scopus 로고
    • A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction
    • Leung, D.W., et al. A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique 1 (1989), 11–15.
    • (1989) Technique , vol.1 , pp. 11-15
    • Leung, D.W.1
  • 50
    • 0028050350 scopus 로고
    • Rapid evolution of a protein in vitro by DNA shuffling
    • Stemmer, W.P.C., Rapid evolution of a protein in vitro by DNA shuffling. Nature 370 (1994), 389–391.
    • (1994) Nature , vol.370 , pp. 389-391
    • Stemmer, W.P.C.1
  • 51
    • 0032518266 scopus 로고    scopus 로고
    • DNA shuffling of a family of genes from diverse species accelerates directed evolution
    • Crameri, A., et al. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391 (1998), 288–291.
    • (1998) Nature , vol.391 , pp. 288-291
    • Crameri, A.1
  • 52
    • 33947095042 scopus 로고    scopus 로고
    • Improving catalytic function by ProSAR-driven enzyme evolution
    • Fox, R.J., et al. Improving catalytic function by ProSAR-driven enzyme evolution. Nat. Biotechnol. 25 (2007), 338–344.
    • (2007) Nat. Biotechnol. , vol.25 , pp. 338-344
    • Fox, R.J.1
  • 53
    • 39149125127 scopus 로고    scopus 로고
    • Enzyme optimization: moving from blind evolution to statistical exploration of sequence–function space
    • Fox, R.J., Huisman, G.W., Enzyme optimization: moving from blind evolution to statistical exploration of sequence–function space. Trends Biotechnol. 26 (2008), 132–138.
    • (2008) Trends Biotechnol. , vol.26 , pp. 132-138
    • Fox, R.J.1    Huisman, G.W.2
  • 54
    • 85016932092 scopus 로고    scopus 로고
    • Exploring sequence space in search of functional enzymes using microfluidic droplets
    • Mair, P., et al. Exploring sequence space in search of functional enzymes using microfluidic droplets. Curr. Opin. Chem. Biol. 37 (2017), 137–144.
    • (2017) Curr. Opin. Chem. Biol. , vol.37 , pp. 137-144
    • Mair, P.1
  • 55
    • 84978842620 scopus 로고    scopus 로고
    • Automated structure- and sequence-based design of proteins for high bacterial expression and stability
    • Goldenzweig, A., et al. Automated structure- and sequence-based design of proteins for high bacterial expression and stability. Mol. Cell 63 (2016), 337–346.
    • (2016) Mol. Cell , vol.63 , pp. 337-346
    • Goldenzweig, A.1
  • 56
    • 85015318933 scopus 로고    scopus 로고
    • Emergence of a catalytic tetrad during evolution of a highly active artificial aldolase
    • Obexer, R., et al. Emergence of a catalytic tetrad during evolution of a highly active artificial aldolase. Nat. Chem. 9 (2017), 50–56.
    • (2017) Nat. Chem. , vol.9 , pp. 50-56
    • Obexer, R.1
  • 57
    • 85034754512 scopus 로고    scopus 로고
    • Combinatorial libraries reloaded
    • Published online November 22, 2017
    • Reetz, M.T., Combinatorial libraries reloaded. Isr. J. Chem., 2017, 10.1002/ijch.201700091 Published online November 22, 2017.
    • (2017) Isr. J. Chem.
    • Reetz, M.T.1
  • 58
    • 85029786145 scopus 로고    scopus 로고
    • Alternative evolutionary histories in the sequence space of an ancient protein
    • Starr, T.N., et al. Alternative evolutionary histories in the sequence space of an ancient protein. Nature 549 (2017), 409–413.
    • (2017) Nature , vol.549 , pp. 409-413
    • Starr, T.N.1
  • 59
    • 84989865639 scopus 로고    scopus 로고
    • Functional mining of transporters using synthetic selections
    • Genee, H.J., et al. Functional mining of transporters using synthetic selections. Nat. Chem. Biol. 12 (2016), 1015–1022.
    • (2016) Nat. Chem. Biol. , vol.12 , pp. 1015-1022
    • Genee, H.J.1
  • 60
    • 84955649920 scopus 로고    scopus 로고
    • Protein engineering: beating the odds
    • Bornscheuer, U.T., Protein engineering: beating the odds. Nat. Chem. Biol. 12 (2016), 54–55.
    • (2016) Nat. Chem. Biol. , vol.12 , pp. 54-55
    • Bornscheuer, U.T.1
  • 61
    • 84955206087 scopus 로고    scopus 로고
    • High-throughput analysis and protein engineering using microcapillary arrays
    • Chen, B., et al. High-throughput analysis and protein engineering using microcapillary arrays. Nat. Chem. Biol. 12 (2016), 76–81.
    • (2016) Nat. Chem. Biol. , vol.12 , pp. 76-81
    • Chen, B.1
  • 62
    • 84949496421 scopus 로고    scopus 로고
    • Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics
    • Colin, P.Y., et al. Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics. Nat. Commun., 6, 2015, 10008.
    • (2015) Nat. Commun. , vol.6 , pp. 10008
    • Colin, P.Y.1
  • 63
    • 85013465862 scopus 로고    scopus 로고
    • Engineering high affinity protein–protein interactions using a high-throughput microcapillary array platform
    • Lim, S., et al. Engineering high affinity protein–protein interactions using a high-throughput microcapillary array platform. ACS Chem. Biol. 12 (2017), 336–341.
    • (2017) ACS Chem. Biol. , vol.12 , pp. 336-341
    • Lim, S.1
  • 64
    • 77956234144 scopus 로고    scopus 로고
    • Natural diversity to guide focused directed evolution
    • Jochens, H., Bornscheuer, U.T., Natural diversity to guide focused directed evolution. ChemBioChem 11 (2010), 1861–1866.
    • (2010) ChemBioChem , vol.11 , pp. 1861-1866
    • Jochens, H.1    Bornscheuer, U.T.2
  • 65
    • 18144403554 scopus 로고    scopus 로고
    • Improving enzyme properties: when are closer mutations better?
    • Morley, K.L., Kazlauskas, R.J., Improving enzyme properties: when are closer mutations better?. Trends Biotechnol. 23 (2005), 231–237.
    • (2005) Trends Biotechnol. , vol.23 , pp. 231-237
    • Morley, K.L.1    Kazlauskas, R.J.2
  • 66
    • 84872552315 scopus 로고    scopus 로고
    • Navigating the protein fitness landscape with Gaussian processes
    • Romero, P.A., et al. Navigating the protein fitness landscape with Gaussian processes. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), E193–E201.
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , pp. E193-E201
    • Romero, P.A.1
  • 67
    • 85012199031 scopus 로고    scopus 로고
    • Exploring protein sequence–function landscapes
    • Starr, T.N., Thornton, J.W., Exploring protein sequence–function landscapes. Nat. Biotechnol. 35 (2017), 125–126.
    • (2017) Nat. Biotechnol. , vol.35 , pp. 125-126
    • Starr, T.N.1    Thornton, J.W.2
  • 68
    • 84905217368 scopus 로고    scopus 로고
    • Deep mutational scanning: a new style of protein science
    • Fowler, D.M., Fields, S., Deep mutational scanning: a new style of protein science. Nat. Methods 11 (2014), 801–807.
    • (2014) Nat. Methods , vol.11 , pp. 801-807
    • Fowler, D.M.1    Fields, S.2
  • 69
    • 84982285460 scopus 로고    scopus 로고
    • The generation and exploitation of protein mutability landscapes for enzyme engineering
    • van der Meer, J.Y., et al. The generation and exploitation of protein mutability landscapes for enzyme engineering. ChemBioChem 17 (2016), 1792–1799.
    • (2016) ChemBioChem , vol.17 , pp. 1792-1799
    • van der Meer, J.Y.1
  • 70
    • 84960428419 scopus 로고    scopus 로고
    • Using mutability landscapes of a promiscuous tautomerase to guide the engineering of enantioselective Michaelases
    • van der Meer, J.Y., et al. Using mutability landscapes of a promiscuous tautomerase to guide the engineering of enantioselective Michaelases. Nat. Commun., 7, 2016, 10911.
    • (2016) Nat. Commun. , vol.7 , pp. 10911
    • van der Meer, J.Y.1
  • 71
    • 84931291559 scopus 로고    scopus 로고
    • Dissecting enzyme function with microfluidic-based deep mutational scanning
    • Romero, P.A., et al. Dissecting enzyme function with microfluidic-based deep mutational scanning. Proc. Natl. Acad. Sci. U. S. A. 112 (2015), 7159–7164.
    • (2015) Proc. Natl. Acad. Sci. U. S. A. , vol.112 , pp. 7159-7164
    • Romero, P.A.1
  • 72
    • 84970024666 scopus 로고    scopus 로고
    • Local fitness landscape of the green fluorescent protein
    • Sarkisyan, K.S., et al. Local fitness landscape of the green fluorescent protein. Nature 533 (2016), 397–401.
    • (2016) Nature , vol.533 , pp. 397-401
    • Sarkisyan, K.S.1
  • 73
    • 33744475011 scopus 로고    scopus 로고
    • Directed evolution of enantioselective enzymes: iterative cycles of casting for probing protein-sequence space
    • Reetz, M.T., et al. Directed evolution of enantioselective enzymes: iterative cycles of casting for probing protein-sequence space. Angew. Chem. Int. Ed. 45 (2006), 1236–1241.
    • (2006) Angew. Chem. Int. Ed. , vol.45 , pp. 1236-1241
    • Reetz, M.T.1
  • 74
    • 34248567845 scopus 로고    scopus 로고
    • Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes
    • Reetz, M.T., Carballeira, J.D., Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat. Protoc. 2 (2007), 891–903.
    • (2007) Nat. Protoc. , vol.2 , pp. 891-903
    • Reetz, M.T.1    Carballeira, J.D.2
  • 75
    • 85040091439 scopus 로고    scopus 로고
    • Multiplexed gene synthesis in emulsions for exploring protein functional landscapes
    • Plesa, C., et al. Multiplexed gene synthesis in emulsions for exploring protein functional landscapes. Science 359 (2018), 343–347.
    • (2018) Science , vol.359 , pp. 343-347
    • Plesa, C.1
  • 76
    • 85014702390 scopus 로고    scopus 로고
    • Correlation of fitness landscapes from three orthologous TIM barrels originates from sequence and structure constraints
    • Chan, Y.H., et al. Correlation of fitness landscapes from three orthologous TIM barrels originates from sequence and structure constraints. Nat. Commun., 8, 2017, 14614.
    • (2017) Nat. Commun. , vol.8 , pp. 14614
    • Chan, Y.H.1
  • 77
    • 85027019425 scopus 로고    scopus 로고
    • Metagenome mining: a sequence directed strategy for the retrieval of enzymes for biocatalysis
    • Jeffries, J.W.E., et al. Metagenome mining: a sequence directed strategy for the retrieval of enzymes for biocatalysis. ChemistrySelect 1 (2016), 2217–2220.
    • (2016) ChemistrySelect , vol.1 , pp. 2217-2220
    • Jeffries, J.W.E.1
  • 78
    • 84949257169 scopus 로고    scopus 로고
    • FireProt: energy- and evolution-based computational design of thermostable multiple-point mutants
    • Bednar, D., et al. FireProt: energy- and evolution-based computational design of thermostable multiple-point mutants. PLoS Comput. Biol., 11, 2015, e1004556.
    • (2015) PLoS Comput. Biol. , vol.11
    • Bednar, D.1
  • 79
    • 84891421517 scopus 로고    scopus 로고
    • Computational tools for designing and engineering enzymes
    • Damborsky, J., Brezovsky, J., Computational tools for designing and engineering enzymes. Curr. Opin. Chem. Biol. 19 (2014), 8–16.
    • (2014) Curr. Opin. Chem. Biol. , vol.19 , pp. 8-16
    • Damborsky, J.1    Brezovsky, J.2
  • 80
    • 84881105793 scopus 로고    scopus 로고
    • Structure- and sequence-analysis inspired engineering of proteins for enhanced thermostability
    • Wijma, H.J., et al. Structure- and sequence-analysis inspired engineering of proteins for enhanced thermostability. Curr. Opin. Struct. Biol. 23 (2013), 588–594.
    • (2013) Curr. Opin. Struct. Biol. , vol.23 , pp. 588-594
    • Wijma, H.J.1
  • 81
    • 84892918142 scopus 로고    scopus 로고
    • Computationally designed libraries for rapid enzyme stabilization
    • Wijma, H.J., et al. Computationally designed libraries for rapid enzyme stabilization. Protein Eng. Des. Sel. 27 (2014), 49–58.
    • (2014) Protein Eng. Des. Sel. , vol.27 , pp. 49-58
    • Wijma, H.J.1
  • 82
    • 85030668169 scopus 로고    scopus 로고
    • Massively parallel de novo protein design for targeted therapeutics
    • Chevalier, A., et al. Massively parallel de novo protein design for targeted therapeutics. Nature 550 (2017), 74–79.
    • (2017) Nature , vol.550 , pp. 74-79
    • Chevalier, A.1
  • 83
    • 85025476839 scopus 로고    scopus 로고
    • Global analysis of protein folding using massively parallel design, synthesis, and testing
    • Rocklin, G.J., et al. Global analysis of protein folding using massively parallel design, synthesis, and testing. Science 357 (2017), 168–175.
    • (2017) Science , vol.357 , pp. 168-175
    • Rocklin, G.J.1
  • 84
    • 85031819585 scopus 로고    scopus 로고
    • The coming peptide tidal wave
    • Kruger, R.P., The coming peptide tidal wave. Cell, 171, 2017, 497.
    • (2017) Cell , vol.171 , pp. 497
    • Kruger, R.P.1
  • 85
    • 85021143420 scopus 로고    scopus 로고
    • Engineering protein stability with atomic precision in a monomeric miniprotein
    • Baker, E.G., et al. Engineering protein stability with atomic precision in a monomeric miniprotein. Nat. Chem. Biol. 13 (2017), 764–770.
    • (2017) Nat. Chem. Biol. , vol.13 , pp. 764-770
    • Baker, E.G.1
  • 86
    • 84966333727 scopus 로고    scopus 로고
    • De novo design of protein homo-oligomers with modular hydrogen-bond network-mediated specificity
    • Boyken, S.E., et al. De novo design of protein homo-oligomers with modular hydrogen-bond network-mediated specificity. Science 352 (2016), 680–687.
    • (2016) Science , vol.352 , pp. 680-687
    • Boyken, S.E.1
  • 87
    • 84988443529 scopus 로고    scopus 로고
    • The coming of age of de novo protein design
    • Huang, P.S., et al. The coming of age of de novo protein design. Nature 537 (2016), 320–327.
    • (2016) Nature , vol.537 , pp. 320-327
    • Huang, P.S.1
  • 88
    • 84950276750 scopus 로고    scopus 로고
    • De novo design of a four-fold symmetric TIM-barrel protein with atomic-level accuracy
    • Huang, P.S., et al. De novo design of a four-fold symmetric TIM-barrel protein with atomic-level accuracy. Nat. Chem. Biol. 12 (2016), 29–34.
    • (2016) Nat. Chem. Biol. , vol.12 , pp. 29-34
    • Huang, P.S.1
  • 89
    • 84868611622 scopus 로고    scopus 로고
    • Principles for designing ideal protein structures
    • Koga, N., et al. Principles for designing ideal protein structures. Nature 491 (2012), 222–227.
    • (2012) Nature , vol.491 , pp. 222-227
    • Koga, N.1
  • 90
    • 85009090143 scopus 로고    scopus 로고
    • Synthetic DNA synthesis and assembly: putting the synthetic in synthetic biology
    • Hughes, R.A., Ellington, A.D., Synthetic DNA synthesis and assembly: putting the synthetic in synthetic biology. Cold Spring Harb. Perspect. Biol., 9, 2017, a023812.
    • (2017) Cold Spring Harb. Perspect. Biol. , vol.9
    • Hughes, R.A.1    Ellington, A.D.2
  • 91
    • 84899696363 scopus 로고    scopus 로고
    • Large-scale de novo DNA synthesis: technologies and applications
    • Kosuri, S., Church, G.M., Large-scale de novo DNA synthesis: technologies and applications. Nat. Methods 11 (2014), 499–507.
    • (2014) Nat. Methods , vol.11 , pp. 499-507
    • Kosuri, S.1    Church, G.M.2
  • 92
    • 84974674507 scopus 로고    scopus 로고
    • The Genome Project-Write
    • Boeke, J.D., et al. The Genome Project-Write. Science 353 (2016), 126–127.
    • (2016) Science , vol.353 , pp. 126-127
    • Boeke, J.D.1
  • 93
    • 48549111326 scopus 로고
    • Why are enzymes so big?
    • Srere, P.A., Why are enzymes so big?. Trends Biochem. Sci. 9 (1984), 387–390.
    • (1984) Trends Biochem. Sci. , vol.9 , pp. 387-390
    • Srere, P.A.1
  • 94
  • 95
    • 84948701202 scopus 로고    scopus 로고
    • New tricks for old proteins: single mutations in a nonenzymatic protein give rise to various enzymatic activities
    • Moroz, Y.S., et al. New tricks for old proteins: single mutations in a nonenzymatic protein give rise to various enzymatic activities. J. Am. Chem. Soc. 137 (2015), 14905–14911.
    • (2015) J. Am. Chem. Soc. , vol.137 , pp. 14905-14911
    • Moroz, Y.S.1
  • 96
    • 84956614149 scopus 로고    scopus 로고
    • Design of an allosterically regulated retroaldolase
    • Raymond, E.A., et al. Design of an allosterically regulated retroaldolase. Protein Sci. 24 (2015), 561–570.
    • (2015) Protein Sci. , vol.24 , pp. 561-570
    • Raymond, E.A.1
  • 97
    • 85040309415 scopus 로고    scopus 로고
    • Protein science by dna sequencing: how advances in molecular biology are accelerating biochemistry
    • Higgins, S.A., Savage, D.F., Protein science by dna sequencing: how advances in molecular biology are accelerating biochemistry. Biochemistry 57 (2018), 38–46.
    • (2018) Biochemistry , vol.57 , pp. 38-46
    • Higgins, S.A.1    Savage, D.F.2
  • 98
    • 84983605294 scopus 로고    scopus 로고
    • Installing hydrolytic activity into a completely de novo protein framework
    • Burton, A.J., et al. Installing hydrolytic activity into a completely de novo protein framework. Nat. Chem. 8 (2016), 837–844.
    • (2016) Nat. Chem. , vol.8 , pp. 837-844
    • Burton, A.J.1
  • 99
    • 84984598798 scopus 로고    scopus 로고
    • Enzyme design: functional Frankensteins
    • Makhlynets, O.V., Korendovych, I.V., Enzyme design: functional Frankensteins. Nat. Chem. 8 (2016), 823–824.
    • (2016) Nat. Chem. , vol.8 , pp. 823-824
    • Makhlynets, O.V.1    Korendovych, I.V.2
  • 100
    • 85032724402 scopus 로고    scopus 로고
    • Machine learning to design integral membrane channelrhodopsins for efficient eukaryotic expression and plasma membrane localization
    • Bedbrook, C.N., et al. Machine learning to design integral membrane channelrhodopsins for efficient eukaryotic expression and plasma membrane localization. PLoS Comput. Biol., 13, 2017, e1005786.
    • (2017) PLoS Comput. Biol. , vol.13
    • Bedbrook, C.N.1
  • 101
    • 84958231511 scopus 로고    scopus 로고
    • Kinetic characterization of 100 glycoside hydrolase mutants enables the discovery of structural features correlated with kinetic constants
    • Carlin, D.A., et al. Kinetic characterization of 100 glycoside hydrolase mutants enables the discovery of structural features correlated with kinetic constants. PLoS One, 11, 2016, e0147596.
    • (2016) PLoS One , vol.11
    • Carlin, D.A.1
  • 102
    • 85019957005 scopus 로고    scopus 로고
    • Thermal stability and kinetic constants for 129 variants of a family 1 glycoside hydrolase reveal that enzyme activity and stability can be separately designed
    • Carlin, D.A., et al. Thermal stability and kinetic constants for 129 variants of a family 1 glycoside hydrolase reveal that enzyme activity and stability can be separately designed. PLoS One, 12, 2017, e0176255.
    • (2017) PLoS One , vol.12
    • Carlin, D.A.1
  • 103
    • 34147184400 scopus 로고    scopus 로고
    • Engineering proteinase K using machine learning and synthetic genes
    • Liao, J., et al. Engineering proteinase K using machine learning and synthetic genes. BMC Biotechnol., 7, 2007, 16.
    • (2007) BMC Biotechnol. , vol.7 , pp. 16
    • Liao, J.1
  • 104
    • 84930787339 scopus 로고    scopus 로고
    • A web-based tool for rational screening of mutants libraries using ProSAR
    • Berland, M., et al. A web-based tool for rational screening of mutants libraries using ProSAR. Protein Eng. Des. Sel. 27 (2014), 375–381.
    • (2014) Protein Eng. Des. Sel. , vol.27 , pp. 375-381
    • Berland, M.1
  • 105
    • 85027835659 scopus 로고    scopus 로고
    • Origins of coevolution between residues distant in protein 3D structures
    • Anishchenko, I., et al. Origins of coevolution between residues distant in protein 3D structures. Proc. Natl. Acad. Sci. U. S. A. 114 (2017), 9122–9127.
    • (2017) Proc. Natl. Acad. Sci. U. S. A. , vol.114 , pp. 9122-9127
    • Anishchenko, I.1
  • 106
    • 84890816704 scopus 로고    scopus 로고
    • Coevolutionary signals across protein lineages help capture multiple protein conformations
    • Morcos, F., et al. Coevolutionary signals across protein lineages help capture multiple protein conformations. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 20533–20538.
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , pp. 20533-20538
    • Morcos, F.1
  • 107
    • 85011967183 scopus 로고    scopus 로고
    • Mutation effects predicted from sequence co-variation
    • Hopf, T.A., et al. Mutation effects predicted from sequence co-variation. Nat. Biotechnol. 35 (2017), 128–135.
    • (2017) Nat. Biotechnol. , vol.35 , pp. 128-135
    • Hopf, T.A.1
  • 108
    • 84996528086 scopus 로고    scopus 로고
    • Potts Hamiltonian models of protein co-variation, free energy landscapes, and evolutionary fitness
    • Levy, R.M., et al. Potts Hamiltonian models of protein co-variation, free energy landscapes, and evolutionary fitness. Curr. Opin. Struct. Biol. 43 (2017), 55–62.
    • (2017) Curr. Opin. Struct. Biol. , vol.43 , pp. 55-62
    • Levy, R.M.1
  • 109
    • 85047289998 scopus 로고    scopus 로고
    • Structure-guided SCHEMA recombination generates diverse chimeric channelrhodopsins
    • Bedbrook, C.N., et al. Structure-guided SCHEMA recombination generates diverse chimeric channelrhodopsins. Proc. Natl. Acad. Sci. U. S. A. 114 (2017), E2624–E2633.
    • (2017) Proc. Natl. Acad. Sci. U. S. A. , vol.114 , pp. E2624-E2633
    • Bedbrook, C.N.1
  • 110
    • 85018192389 scopus 로고    scopus 로고
    • Editorial overview: beyond native biocatalysts and natural biotransformations
    • Hauer, B., Lutz, S., Editorial overview: beyond native biocatalysts and natural biotransformations. Curr. Opin. Chem. Biol. 37 (2017), iv–v.
    • (2017) Curr. Opin. Chem. Biol. , vol.37 , pp. iv-v
    • Hauer, B.1    Lutz, S.2
  • 111
    • 84936942726 scopus 로고    scopus 로고
    • Unusual biology across a group comprising more than 15% of domain Bacteria
    • Brown, C.T., et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523 (2015), 208–211.
    • (2015) Nature , vol.523 , pp. 208-211
    • Brown, C.T.1
  • 112
    • 84966929319 scopus 로고    scopus 로고
    • A new view of the tree of life
    • Hug, L.A., et al. A new view of the tree of life. Nat. Microbiol., 1, 2016, 16048.
    • (2016) Nat. Microbiol. , vol.1 , pp. 16048
    • Hug, L.A.1
  • 113
    • 85019643526 scopus 로고    scopus 로고
    • CorNet: assigning function to networks of co-evolving residues by automated literature mining
    • van den Bergh, T., et al. CorNet: assigning function to networks of co-evolving residues by automated literature mining. PLoS One, 12, 2017, e0176427.
    • (2017) PLoS One , vol.12
    • van den Bergh, T.1
  • 114
    • 85014545090 scopus 로고    scopus 로고
    • Discovering protein-coding genes from the environment: time for the eukaryotes?
    • Marmeisse, R., et al. Discovering protein-coding genes from the environment: time for the eukaryotes?. Trends Biotechnol. 35 (2017), 824–835.
    • (2017) Trends Biotechnol. , vol.35 , pp. 824-835
    • Marmeisse, R.1
  • 115
    • 84959456473 scopus 로고    scopus 로고
    • The impact of structural genomics: the first quindecennial
    • Grabowski, M., et al. The impact of structural genomics: the first quindecennial. J. Struct. Funct. Genomics 17 (2016), 1–16.
    • (2016) J. Struct. Funct. Genomics , vol.17 , pp. 1-16
    • Grabowski, M.1
  • 116
    • 85010065713 scopus 로고    scopus 로고
    • Big-data approaches to protein structure prediction
    • Söding, J., Big-data approaches to protein structure prediction. Science 355 (2017), 248–249.
    • (2017) Science , vol.355 , pp. 248-249
    • Söding, J.1
  • 117
    • 82855163967 scopus 로고    scopus 로고
    • Protein 3D structure computed from evolutionary sequence variation
    • Marks, D.S., et al. Protein 3D structure computed from evolutionary sequence variation. PLoS One, 6, 2011, e28766.
    • (2011) PLoS One , vol.6
    • Marks, D.S.1
  • 118
    • 84869447010 scopus 로고    scopus 로고
    • Protein structure prediction from sequence variation
    • Marks, D.S., et al. Protein structure prediction from sequence variation. Nat. Biotechnol. 30 (2012), 1072–1080.
    • (2012) Nat. Biotechnol. , vol.30 , pp. 1072-1080
    • Marks, D.S.1
  • 119
    • 85029813783 scopus 로고    scopus 로고
    • Predicting accurate contacts in thousands of Pfam domain families using PconsC3
    • Michel, M., et al. Predicting accurate contacts in thousands of Pfam domain families using PconsC3. Bioinformatics 33 (2017), 2859–2866.
    • (2017) Bioinformatics , vol.33 , pp. 2859-2866
    • Michel, M.1
  • 120
    • 85010073180 scopus 로고    scopus 로고
    • Protein structure determination using metagenome sequence data
    • Ovchinnikov, S., et al. Protein structure determination using metagenome sequence data. Science 355 (2017), 294–298.
    • (2017) Science , vol.355 , pp. 294-298
    • Ovchinnikov, S.1
  • 121
    • 84981531911 scopus 로고    scopus 로고
    • Correlated positions in protein evolution and engineering
    • Franceus, J., et al. Correlated positions in protein evolution and engineering. J. Ind. Microbiol. Biotechnol. 44 (2017), 687–695.
    • (2017) J. Ind. Microbiol. Biotechnol. , vol.44 , pp. 687-695
    • Franceus, J.1
  • 122
    • 84855221954 scopus 로고    scopus 로고
    • Directed evolution to re-adapt a co-evolved network within an enzyme
    • Strafford, J., et al. Directed evolution to re-adapt a co-evolved network within an enzyme. J. Biotechnol. 157 (2012), 237–245.
    • (2012) J. Biotechnol. , vol.157 , pp. 237-245
    • Strafford, J.1
  • 123
    • 0029969577 scopus 로고    scopus 로고
    • Directed evolution of subtilisin E in Bacillus subtilis to enhance total activity in aqueous dimethylformamide
    • You, L., Arnold, F.H., Directed evolution of subtilisin E in Bacillus subtilis to enhance total activity in aqueous dimethylformamide. Protein Eng. 9 (1996), 77–83.
    • (1996) Protein Eng. , vol.9 , pp. 77-83
    • You, L.1    Arnold, F.H.2
  • 124
    • 85020374755 scopus 로고    scopus 로고
    • Protein engineering by highly parallel screening of computationally designed variants
    • Sun, M.G.F., et al. Protein engineering by highly parallel screening of computationally designed variants. Sci. Adv., 2, 2016, e1600692.
    • (2016) Sci. Adv. , vol.2
    • Sun, M.G.F.1
  • 125
    • 85024105614 scopus 로고    scopus 로고
    • Biocatalysis with unnatural amino acids: enzymology meets xenobiology
    • Agostini, F., et al. Biocatalysis with unnatural amino acids: enzymology meets xenobiology. Angew. Chem. Int. Ed. 56 (2017), 9680–9703.
    • (2017) Angew. Chem. Int. Ed. , vol.56 , pp. 9680-9703
    • Agostini, F.1
  • 126
    • 84937521963 scopus 로고    scopus 로고
    • Unnatural amino acid mutagenesis-based enzyme engineering
    • Ravikumar, Y., et al. Unnatural amino acid mutagenesis-based enzyme engineering. Trends Biotechnol. 33 (2015), 462–470.
    • (2015) Trends Biotechnol. , vol.33 , pp. 462-470
    • Ravikumar, Y.1
  • 127
    • 85014682601 scopus 로고    scopus 로고
    • Extending enzyme molecular recognition with an expanded amino acid alphabet
    • Windle, C.L., et al. Extending enzyme molecular recognition with an expanded amino acid alphabet. Proc. Natl. Acad. Sci. U. S. A. 114 (2017), 2610–2615.
    • (2017) Proc. Natl. Acad. Sci. U. S. A. , vol.114 , pp. 2610-2615
    • Windle, C.L.1
  • 128
    • 85016161632 scopus 로고    scopus 로고
    • Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light
    • Emmanuel, M.A., et al. Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light. Nature 540 (2016), 414–417.
    • (2016) Nature , vol.540 , pp. 414-417
    • Emmanuel, M.A.1
  • 129
    • 85028082875 scopus 로고    scopus 로고
    • Enantioselective hydrogen atom transfer: discovery of catalytic promiscuity in flavin-dependent ‘ene’-reductases
    • Sandoval, B.A., et al. Enantioselective hydrogen atom transfer: discovery of catalytic promiscuity in flavin-dependent ‘ene’-reductases. J. Am. Chem. Soc. 139 (2017), 11313–11316.
    • (2017) J. Am. Chem. Soc. , vol.139 , pp. 11313-11316
    • Sandoval, B.A.1
  • 130
    • 85031940779 scopus 로고    scopus 로고
    • DNA sequencing at 40: past, present and future
    • Shendure, J., et al. DNA sequencing at 40: past, present and future. Nature 550 (2017), 345–353.
    • (2017) Nature , vol.550 , pp. 345-353
    • Shendure, J.1
  • 131
    • 85010936415 scopus 로고    scopus 로고
    • DNA sequencing technologies: 2006–2016
    • Mardis, E.R., DNA sequencing technologies: 2006–2016. Nat. Protoc. 12 (2017), 213–218.
    • (2017) Nat. Protoc. , vol.12 , pp. 213-218
    • Mardis, E.R.1
  • 132
    • 84971280828 scopus 로고    scopus 로고
    • Three decades of nanopore sequencing
    • Deamer, D., et al. Three decades of nanopore sequencing. Nat. Biotechnol. 34 (2016), 518–524.
    • (2016) Nat. Biotechnol. , vol.34 , pp. 518-524
    • Deamer, D.1
  • 133
    • 84938421951 scopus 로고    scopus 로고
    • A complete bacterial genome assembled de novo using only nanopore sequencing data
    • Loman, N.J., et al. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat. Methods 12 (2015), 733–735.
    • (2015) Nat. Methods , vol.12 , pp. 733-735
    • Loman, N.J.1
  • 134
    • 84979501968 scopus 로고    scopus 로고
    • 3 resolution using a subnanometre-diameter pore
    • 3 resolution using a subnanometre-diameter pore. Nat. Nanotechnol. 11 (2016), 968–976.
    • (2016) Nat. Nanotechnol. , vol.11 , pp. 968-976
    • Kennedy, E.1
  • 135
    • 84893839485 scopus 로고    scopus 로고
    • Single-molecule site-specific detection of protein phosphorylation with a nanopore
    • Rosen, C.B., et al. Single-molecule site-specific detection of protein phosphorylation with a nanopore. Nat. Biotechnol. 32 (2014), 179–181.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 179-181
    • Rosen, C.B.1
  • 136
    • 85008608178 scopus 로고    scopus 로고
    • Real-time shape approximation and fingerprinting of single proteins using a nanopore
    • Yusko, E.C., et al. Real-time shape approximation and fingerprinting of single proteins using a nanopore. Nat. Nanotechnol. 12 (2017), 360–367.
    • (2017) Nat. Nanotechnol. , vol.12 , pp. 360-367
    • Yusko, E.C.1
  • 137
    • 84963517324 scopus 로고    scopus 로고
    • A synthetic biochemistry module for production of bio-based chemicals from glucose
    • Opgenorth, P.H., et al. A synthetic biochemistry module for production of bio-based chemicals from glucose. Nat. Chem. Biol. 12 (2016), 393–395.
    • (2016) Nat. Chem. Biol. , vol.12 , pp. 393-395
    • Opgenorth, P.H.1
  • 138
    • 85019893734 scopus 로고    scopus 로고
    • A synthetic biochemistry platform for cell free production of monoterpenes from glucose
    • Korman, T.P., et al. A synthetic biochemistry platform for cell free production of monoterpenes from glucose. Nat. Commun., 8, 2017, 15526.
    • (2017) Nat. Commun. , vol.8 , pp. 15526
    • Korman, T.P.1
  • 139
    • 84876784070 scopus 로고    scopus 로고
    • High-level semi-synthetic production of the potent antimalarial artemisinin
    • Paddon, C.J., et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496 (2013), 528–532.
    • (2013) Nature , vol.496 , pp. 528-532
    • Paddon, C.J.1
  • 140
    • 85012896729 scopus 로고    scopus 로고
    • Accelerating the semisynthesis of alkaloid-based drugs through metabolic engineering
    • Ehrenworth, A.M., Peralta-Yahya, P., Accelerating the semisynthesis of alkaloid-based drugs through metabolic engineering. Nat. Chem. Biol. 13 (2017), 249–258.
    • (2017) Nat. Chem. Biol. , vol.13 , pp. 249-258
    • Ehrenworth, A.M.1    Peralta-Yahya, P.2
  • 141
    • 84939563893 scopus 로고    scopus 로고
    • Stereochemical inversion of (S)-reticuline by a cytochrome P450 fusion in opium poppy
    • Farrow, S.C., et al. Stereochemical inversion of (S)-reticuline by a cytochrome P450 fusion in opium poppy. Nat. Chem. Biol. 11 (2015), 728–732.
    • (2015) Nat. Chem. Biol. , vol.11 , pp. 728-732
    • Farrow, S.C.1
  • 142
    • 84941346066 scopus 로고    scopus 로고
    • Complete biosynthesis of opioids in yeast
    • Galanie, S., et al. Complete biosynthesis of opioids in yeast. Science 349 (2015), 1095–1100.
    • (2015) Science , vol.349 , pp. 1095-1100
    • Galanie, S.1
  • 143
    • 84937845964 scopus 로고    scopus 로고
    • Morphinan biosynthesis in opium poppy requires a P450–oxidoreductase fusion protein
    • Winzer, T., et al. Morphinan biosynthesis in opium poppy requires a P450–oxidoreductase fusion protein. Science 349 (2015), 309–312.
    • (2015) Science , vol.349 , pp. 309-312
    • Winzer, T.1
  • 144
    • 84931573824 scopus 로고    scopus 로고
    • An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose
    • DeLoache, W.C., et al. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nat. Chem. Biol. 11 (2015), 465–471.
    • (2015) Nat. Chem. Biol. , vol.11 , pp. 465-471
    • DeLoache, W.C.1
  • 145
  • 146
    • 85007416022 scopus 로고    scopus 로고
    • Pathway swapping: toward modular engineering of essential cellular processes
    • Kuijpers, N.G., et al. Pathway swapping: toward modular engineering of essential cellular processes. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), 15060–15065.
    • (2016) Proc. Natl. Acad. Sci. U. S. A. , vol.113 , pp. 15060-15065
    • Kuijpers, N.G.1
  • 147
    • 84921517479 scopus 로고    scopus 로고
    • Functional optimization of gene clusters by combinatorial design and assembly
    • Smanski, M.J., et al. Functional optimization of gene clusters by combinatorial design and assembly. Nat. Biotechnol. 32 (2014), 1241–1249.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 1241-1249
    • Smanski, M.J.1
  • 148
    • 85025431475 scopus 로고    scopus 로고
    • High-fidelity de novo synthesis of pathways using microchip-synthesized oligonucleotides and general molecular biology equipment
    • Wan, W., et al. High-fidelity de novo synthesis of pathways using microchip-synthesized oligonucleotides and general molecular biology equipment. Sci. Rep., 7, 2017, 6119.
    • (2017) Sci. Rep. , vol.7 , pp. 6119
    • Wan, W.1
  • 149
    • 85021069824 scopus 로고    scopus 로고
    • Construction of a synthetic metabolic pathway for biosynthesis of the non-natural methionine precursor 2,4-dihydroxybutyric acid
    • Walther, T., et al. Construction of a synthetic metabolic pathway for biosynthesis of the non-natural methionine precursor 2,4-dihydroxybutyric acid. Nat. Commun., 8, 2017, 15828.
    • (2017) Nat. Commun. , vol.8 , pp. 15828
    • Walther, T.1
  • 150
    • 79959374585 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol
    • Yim, H., et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat. Chem. Biol. 7 (2011), 445–452.
    • (2011) Nat. Chem. Biol. , vol.7 , pp. 445-452
    • Yim, H.1
  • 151
    • 0031854986 scopus 로고    scopus 로고
    • Man-made cell-like compartments for molecular evolution
    • Tawfik, D.S., Griffiths, A.D., Man-made cell-like compartments for molecular evolution. Nat. Biotechnol. 16 (1998), 652–656.
    • (1998) Nat. Biotechnol. , vol.16 , pp. 652-656
    • Tawfik, D.S.1    Griffiths, A.D.2
  • 152
    • 84940192158 scopus 로고    scopus 로고
    • Enzyme engineering in biomimetic compartments
    • Colin, P.Y., et al. Enzyme engineering in biomimetic compartments. Curr. Opin. Struct. Biol. 33 (2015), 42–51.
    • (2015) Curr. Opin. Struct. Biol. , vol.33 , pp. 42-51
    • Colin, P.Y.1
  • 153
    • 84865492433 scopus 로고    scopus 로고
    • Picoliter cell lysate assays in microfluidic droplet compartments for directed enzyme evolution
    • Kintses, B., et al. Picoliter cell lysate assays in microfluidic droplet compartments for directed enzyme evolution. Chem. Biol. 19 (2012), 1001–1009.
    • (2012) Chem. Biol. , vol.19 , pp. 1001-1009
    • Kintses, B.1
  • 154
    • 84900653348 scopus 로고    scopus 로고
    • One in a million: flow cytometric sorting of single cell-lysate assays in monodisperse picolitre double emulsion droplets for directed evolution
    • Zinchenko, A., et al. One in a million: flow cytometric sorting of single cell-lysate assays in monodisperse picolitre double emulsion droplets for directed evolution. Anal. Chem. 86 (2014), 2526–2533.
    • (2014) Anal. Chem. , vol.86 , pp. 2526-2533
    • Zinchenko, A.1
  • 155
    • 85034580663 scopus 로고    scopus 로고
    • Bacterial microcolonies in gel beads for high-throughput screening of libraries in synthetic biology
    • Duarte, J.M., et al. Bacterial microcolonies in gel beads for high-throughput screening of libraries in synthetic biology. ACS Synth. Biol. 6 (2017), 1988–1995.
    • (2017) ACS Synth. Biol. , vol.6 , pp. 1988-1995
    • Duarte, J.M.1
  • 156
    • 84906549486 scopus 로고    scopus 로고
    • Evolution of enzyme catalysts caged in biomimetic gel-shell beads
    • Fischlechner, M., et al. Evolution of enzyme catalysts caged in biomimetic gel-shell beads. Nat. Chem. 6 (2014), 791–796.
    • (2014) Nat. Chem. , vol.6 , pp. 791-796
    • Fischlechner, M.1
  • 157
    • 84996478400 scopus 로고    scopus 로고
    • Ultrahigh-throughput-directed enzyme evolution by absorbance-activated droplet sorting (AADS)
    • Gielen, F., et al. Ultrahigh-throughput-directed enzyme evolution by absorbance-activated droplet sorting (AADS). Proc. Natl. Acad. Sci. U. S. A. 113 (2016), E7383–E7389.
    • (2016) Proc. Natl. Acad. Sci. U. S. A. , vol.113 , pp. E7383-E7389
    • Gielen, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.