메뉴 건너뛰기




Volumn 36, Issue 1, 2018, Pages 60-72

Artificial Metalloenzymes on the Verge of New-to-Nature Metabolism

Author keywords

artificial metalloenzymes; biocatalysis; directed evolution; synthetic biology; xenobiology

Indexed keywords

ASTROBIOLOGY; ENZYMES; TRANSITION METALS;

EID: 85031755986     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2017.10.003     Document Type: Review
Times cited : (72)

References (81)
  • 1
    • 84860741240 scopus 로고    scopus 로고
    • Engineering the third wave of biocatalysis
    • Bornscheuer, U.T., et al. Engineering the third wave of biocatalysis. Nature 485 (2012), 185–194.
    • (2012) Nature , vol.485 , pp. 185-194
    • Bornscheuer, U.T.1
  • 2
    • 85016159696 scopus 로고    scopus 로고
    • Chemical biology: a radical change in enzyme catalysis
    • Bornscheuer, U.T., Chemical biology: a radical change in enzyme catalysis. Nature 540 (2016), 345–346.
    • (2016) Nature , vol.540 , pp. 345-346
    • Bornscheuer, U.T.1
  • 3
    • 84977900288 scopus 로고    scopus 로고
    • Genetic optimization of metalloenzymes: enhancing enzymes for non-natural reactions
    • Hyster, T.K., Ward, T.R., Genetic optimization of metalloenzymes: enhancing enzymes for non-natural reactions. Angew. Chem. Int. Ed. Engl. 55 (2016), 7344–7357.
    • (2016) Angew. Chem. Int. Ed. Engl. , vol.55 , pp. 7344-7357
    • Hyster, T.K.1    Ward, T.R.2
  • 4
    • 0000147467 scopus 로고
    • Conversion of a protein to a homogeneous asymmetric hydrogenation catalyst by site-specific modification with a diphosphinerhodium(I) moiety
    • Wilson, M.E., Whitesides, G.M., Conversion of a protein to a homogeneous asymmetric hydrogenation catalyst by site-specific modification with a diphosphinerhodium(I) moiety. J. Am. Chem. Soc. 100 (1978), 306–307.
    • (1978) J. Am. Chem. Soc. , vol.100 , pp. 306-307
    • Wilson, M.E.1    Whitesides, G.M.2
  • 5
    • 84890369423 scopus 로고    scopus 로고
    • Artificial metalloenzymes and metallopeptide catalysts for organic synthesis
    • Lewis, J.C., Artificial metalloenzymes and metallopeptide catalysts for organic synthesis. ACS Catal. 3 (2013), 2954–2975.
    • (2013) ACS Catal. , vol.3 , pp. 2954-2975
    • Lewis, J.C.1
  • 6
    • 84921661354 scopus 로고    scopus 로고
    • Directed evolution of artificial metalloenzymes
    • Ilie, A., Reetz, M.T., Directed evolution of artificial metalloenzymes. Isr. J. Chem. 55 (2015), 51–60.
    • (2015) Isr. J. Chem. , vol.55 , pp. 51-60
    • Ilie, A.1    Reetz, M.T.2
  • 7
    • 84961382184 scopus 로고    scopus 로고
    • Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution
    • Renata, H., et al. Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution. Angew. Chem. Int. Ed. Engl. 54 (2015), 3351–3367.
    • (2015) Angew. Chem. Int. Ed. Engl. , vol.54 , pp. 3351-3367
    • Renata, H.1
  • 8
    • 85010791269 scopus 로고    scopus 로고
    • Selective C–H bond functionalization using repurposed or artificial metalloenzymes
    • Upp, D.M., Lewis, J.C., Selective C–H bond functionalization using repurposed or artificial metalloenzymes. Curr. Opin. Chem. Biol. 37 (2017), 48–55.
    • (2017) Curr. Opin. Chem. Biol. , vol.37 , pp. 48-55
    • Upp, D.M.1    Lewis, J.C.2
  • 9
    • 85021420274 scopus 로고    scopus 로고
    • Design and evolution of enzymes for non-natural chemistry
    • Hammer, S.C., et al. Design and evolution of enzymes for non-natural chemistry. Curr. Opin. Green Sustain. Chem. 7 (2017), 23–30.
    • (2017) Curr. Opin. Green Sustain. Chem. , vol.7 , pp. 23-30
    • Hammer, S.C.1
  • 10
    • 85015318933 scopus 로고    scopus 로고
    • Emergence of a catalytic tetrad during evolution of a highly active artificial aldolase
    • Obexer, R., et al. Emergence of a catalytic tetrad during evolution of a highly active artificial aldolase. Nat. Chem. 9 (2017), 50–56.
    • (2017) Nat. Chem. , vol.9 , pp. 50-56
    • Obexer, R.1
  • 11
    • 85011928579 scopus 로고    scopus 로고
    • Chemoselective, enzymatic C–H bond amination catalyzed by a cytochrome P450 containing an Ir(Me)–PIX cofactor
    • Dydio, P., et al. Chemoselective, enzymatic C–H bond amination catalyzed by a cytochrome P450 containing an Ir(Me)–PIX cofactor. J. Am. Chem. Soc. 139 (2017), 1750–1753.
    • (2017) J. Am. Chem. Soc. , vol.139 , pp. 1750-1753
    • Dydio, P.1
  • 12
    • 84997080010 scopus 로고    scopus 로고
    • Directed evolution of cytochrome c for carbon–silicon bond formation: bringing silicon to life
    • Kan, S.B., et al. Directed evolution of cytochrome c for carbon–silicon bond formation: bringing silicon to life. Science 354 (2016), 1048–1051.
    • (2016) Science , vol.354 , pp. 1048-1051
    • Kan, S.B.1
  • 13
    • 84872495336 scopus 로고    scopus 로고
    • Olefinic cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes
    • Coelho, P.S., et al. Olefinic cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes. Science 339 (2013), 307–310.
    • (2013) Science , vol.339 , pp. 307-310
    • Coelho, P.S.1
  • 14
    • 85005808040 scopus 로고    scopus 로고
    • Gram-scale synthesis of chiral cyclopropane-containing drugs and drug precursors with engineered myoglobin catalysts featuring complementary stereoselectivity
    • Bajaj, P., et al. Gram-scale synthesis of chiral cyclopropane-containing drugs and drug precursors with engineered myoglobin catalysts featuring complementary stereoselectivity. Angew. Chem. Int. Ed. Engl. 55 (2016), 16110–16114.
    • (2016) Angew. Chem. Int. Ed. Engl. , vol.55 , pp. 16110-16114
    • Bajaj, P.1
  • 15
    • 85018527313 scopus 로고    scopus 로고
    • Highly diastereo- and enantioselective synthesis of trifluoromethyl-substituted cyclopropanes via myoglobin-catalyzed transfer of trifluoromethylcarbene
    • Tinoco, A., et al. Highly diastereo- and enantioselective synthesis of trifluoromethyl-substituted cyclopropanes via myoglobin-catalyzed transfer of trifluoromethylcarbene. J. Am. Chem. Soc. 139 (2017), 5293–5296.
    • (2017) J. Am. Chem. Soc. , vol.139 , pp. 5293-5296
    • Tinoco, A.1
  • 16
    • 84880921220 scopus 로고    scopus 로고
    • A serine-substituted P450 catalyzes highly efficient carbene transfer to olefins in vivo
    • Coelho, P.S., et al. A serine-substituted P450 catalyzes highly efficient carbene transfer to olefins in vivo. Nat. Chem. Biol. 9 (2013), 485–487.
    • (2013) Nat. Chem. Biol. , vol.9 , pp. 485-487
    • Coelho, P.S.1
  • 17
    • 84919425588 scopus 로고    scopus 로고
    • A designed supramolecular protein assembly with in vivo enzymatic activity
    • Song, W.J., Tezcan, F.A., A designed supramolecular protein assembly with in vivo enzymatic activity. Science 346 (2014), 1525–1528.
    • (2014) Science , vol.346 , pp. 1525-1528
    • Song, W.J.1    Tezcan, F.A.2
  • 18
    • 84984604210 scopus 로고    scopus 로고
    • Directed evolution of artificial metalloenzymes for in vivo metathesis
    • Jeschek, M., et al. Directed evolution of artificial metalloenzymes for in vivo metathesis. Nature 537 (2016), 661–665.
    • (2016) Nature , vol.537 , pp. 661-665
    • Jeschek, M.1
  • 19
    • 84873872136 scopus 로고    scopus 로고
    • Synthetic cascades are enabled by combining biocatalysts with artificial metalloenzymes
    • Kohler, V., et al. Synthetic cascades are enabled by combining biocatalysts with artificial metalloenzymes. Nat. Chem. 5 (2013), 93–99.
    • (2013) Nat. Chem. , vol.5 , pp. 93-99
    • Kohler, V.1
  • 20
    • 84971386807 scopus 로고    scopus 로고
    • An NAD(P)H-dependent artificial transfer hydrogenase for multienzymatic cascades
    • Okamoto, Y., et al. An NAD(P)H-dependent artificial transfer hydrogenase for multienzymatic cascades. J. Am. Chem. Soc. 138 (2016), 5781–5784.
    • (2016) J. Am. Chem. Soc. , vol.138 , pp. 5781-5784
    • Okamoto, Y.1
  • 21
    • 84991736335 scopus 로고    scopus 로고
    • Upregulation of an artificial zymogen by proteolysis
    • Liu, Z., et al. Upregulation of an artificial zymogen by proteolysis. Angew. Chem. Int. Ed. Engl. 55 (2016), 11587–11590.
    • (2016) Angew. Chem. Int. Ed. Engl. , vol.55 , pp. 11587-11590
    • Liu, Z.1
  • 22
    • 85016257818 scopus 로고    scopus 로고
    • A metal ion regulated artificial metalloenzyme
    • Bersellini, M., Roelfes, G., A metal ion regulated artificial metalloenzyme. Dalton Trans. 46 (2017), 4325–4330.
    • (2017) Dalton Trans. , vol.46 , pp. 4325-4330
    • Bersellini, M.1    Roelfes, G.2
  • 23
    • 85019763304 scopus 로고    scopus 로고
    • Cross-regulation of an artificial metalloenzyme
    • Okamoto, Y., Ward, T.R., Cross-regulation of an artificial metalloenzyme. Angew. Chem. Int. Ed. Engl. 56 (2017), 1–6.
    • (2017) Angew. Chem. Int. Ed. Engl. , vol.56 , pp. 1-6
    • Okamoto, Y.1    Ward, T.R.2
  • 24
    • 84873279753 scopus 로고    scopus 로고
    • Metal complex catalysis in living biological systems
    • Sasmal, P.K., et al. Metal complex catalysis in living biological systems. Chem. Commun. 49 (2013), 1581–1587.
    • (2013) Chem. Commun. , vol.49 , pp. 1581-1587
    • Sasmal, P.K.1
  • 25
    • 84908552170 scopus 로고    scopus 로고
    • Progress towards bioorthogonal catalysis with organometallic compounds
    • Volker, T., et al. Progress towards bioorthogonal catalysis with organometallic compounds. Angew. Chem. Int. Ed. Engl. 53 (2014), 10536–10540.
    • (2014) Angew. Chem. Int. Ed. Engl. , vol.53 , pp. 10536-10540
    • Volker, T.1
  • 26
    • 84922065193 scopus 로고    scopus 로고
    • Highly diastereoselective and enantioselective olefin cyclopropanation using engineered myoglobin-based catalysts
    • Bordeaux, M., et al. Highly diastereoselective and enantioselective olefin cyclopropanation using engineered myoglobin-based catalysts. Angew. Chem. Int. Ed. Engl. 54 (2015), 1744–1748.
    • (2015) Angew. Chem. Int. Ed. Engl. , vol.54 , pp. 1744-1748
    • Bordeaux, M.1
  • 27
    • 84947430009 scopus 로고    scopus 로고
    • Enantioselective enzyme-catalyzed aziridination enabled by active-site evolution of a cytochrome P450
    • Farwell, C.C., et al. Enantioselective enzyme-catalyzed aziridination enabled by active-site evolution of a cytochrome P450. ACS Cent. Sci. 1 (2015), 89–93.
    • (2015) ACS Cent. Sci. , vol.1 , pp. 89-93
    • Farwell, C.C.1
  • 28
    • 84883040115 scopus 로고    scopus 로고
    • Enantioselective intramolecular C–H amination catalyzed by engineered cytochrome P450 enzymes in vitro and in vivo
    • McIntosh, J.A., et al. Enantioselective intramolecular C–H amination catalyzed by engineered cytochrome P450 enzymes in vitro and in vivo. Angew. Chem. Int. Ed. Engl. 52 (2013), 9309–9312.
    • (2013) Angew. Chem. Int. Ed. Engl. , vol.52 , pp. 9309-9312
    • McIntosh, J.A.1
  • 29
    • 84908646955 scopus 로고    scopus 로고
    • 3)–H amination of arylsulfonyl azides with engineered and artificial myoglobin-based catalysts
    • 3)–H amination of arylsulfonyl azides with engineered and artificial myoglobin-based catalysts. Bioorgan. Med. Chem. 22 (2014), 5697–5704.
    • (2014) Bioorgan. Med. Chem. , vol.22 , pp. 5697-5704
    • Bordeaux, M.1
  • 30
    • 84908616475 scopus 로고    scopus 로고
    • Enzyme-controlled nitrogen-atom transfer enables regiodivergent C–H amination
    • Hyster, T.K., et al. Enzyme-controlled nitrogen-atom transfer enables regiodivergent C–H amination. J. Am. Chem. Soc. 136 (2014), 15505–15508.
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 15505-15508
    • Hyster, T.K.1
  • 31
    • 85021258513 scopus 로고    scopus 로고
    • Enantioselective, intermolecular benzylic C–H amination catalysed by an engineered iron–haem enzyme
    • Prier, C.K., et al. Enantioselective, intermolecular benzylic C–H amination catalysed by an engineered iron–haem enzyme. Nat. Chem. 9 (2017), 629–634.
    • (2017) Nat. Chem. , vol.9 , pp. 629-634
    • Prier, C.K.1
  • 32
    • 84902664223 scopus 로고    scopus 로고
    • Enantioselective imidation of sulfides via enzyme-catalyzed intermolecular nitrogen-atom transfer
    • Farwell, C.C., et al. Enantioselective imidation of sulfides via enzyme-catalyzed intermolecular nitrogen-atom transfer. J. Am. Chem. Soc. 136 (2014), 8766–8771.
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 8766-8771
    • Farwell, C.C.1
  • 33
    • 84960516987 scopus 로고    scopus 로고
    • Asymmetric enzymatic synthesis of allylic amines: a sigmatropic rearrangement strategy
    • Prier, C.K., et al. Asymmetric enzymatic synthesis of allylic amines: a sigmatropic rearrangement strategy. Angew. Chem. Int. Ed. Engl. 55 (2016), 4711–4715.
    • (2016) Angew. Chem. Int. Ed. Engl. , vol.55 , pp. 4711-4715
    • Prier, C.K.1
  • 34
    • 84891459977 scopus 로고    scopus 로고
    • Cytochrome P450-catalyzed insertion of carbenoids into N–H bonds
    • Wang, Z.J., et al. Cytochrome P450-catalyzed insertion of carbenoids into N–H bonds. Chem. Sci. 5 (2014), 598–601.
    • (2014) Chem. Sci. , vol.5 , pp. 598-601
    • Wang, Z.J.1
  • 35
    • 84921290865 scopus 로고    scopus 로고
    • Myoglobin-catalyzed intermolecular carbene N–H insertion with arylamine substrates
    • Sreenilayam, G., Fasan, R., Myoglobin-catalyzed intermolecular carbene N–H insertion with arylamine substrates. Chem. Commun., 51, 2015, 1744.
    • (2015) Chem. Commun. , vol.51 , pp. 1744
    • Sreenilayam, G.1    Fasan, R.2
  • 36
    • 84925002902 scopus 로고    scopus 로고
    • Intermolecular carbene S–H insertion catalysed by engineered myoglobin-based catalysts
    • Tyagi, V., et al. Intermolecular carbene S–H insertion catalysed by engineered myoglobin-based catalysts. Chem. Sci. 6 (2015), 2488–2494.
    • (2015) Chem. Sci. , vol.6 , pp. 2488-2494
    • Tyagi, V.1
  • 37
    • 84894039595 scopus 로고    scopus 로고
    • Direct nitration and azidation of aliphatic carbons by an iron-dependent halogenase
    • Matthews, M.L., et al. Direct nitration and azidation of aliphatic carbons by an iron-dependent halogenase. Nat. Chem. Biol. 10 (2014), 209–215.
    • (2014) Nat. Chem. Biol. , vol.10 , pp. 209-215
    • Matthews, M.L.1
  • 38
    • 84856397386 scopus 로고    scopus 로고
    • Hydrolytic catalysis and structural stabilization in a designed metalloprotein
    • Zastrow, M.L., et al. Hydrolytic catalysis and structural stabilization in a designed metalloprotein. Nat. Chem. 4 (2012), 118–123.
    • (2012) Nat. Chem. , vol.4 , pp. 118-123
    • Zastrow, M.L.1
  • 39
    • 0030874443 scopus 로고    scopus 로고
    • De novo design of mercury-binding two- and three-helical bundles
    • Dieckmann, G.R., et al. De novo design of mercury-binding two- and three-helical bundles. J. Am. Chem. Soc. 119 (1997), 6195–6196.
    • (1997) J. Am. Chem. Soc. , vol.119 , pp. 6195-6196
    • Dieckmann, G.R.1
  • 41
    • 84862776507 scopus 로고    scopus 로고
    • Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis
    • Khare, S.D., et al. Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis. Nat. Chem. Biol. 8 (2012), 294–300.
    • (2012) Nat. Chem. Biol. , vol.8 , pp. 294-300
    • Khare, S.D.1
  • 42
    • 84888351614 scopus 로고    scopus 로고
    • 3)–H bond hydroxylation catalyzed by myoglobin reconstituted with manganese porphycene
    • 3)–H bond hydroxylation catalyzed by myoglobin reconstituted with manganese porphycene. J. Am. Chem. Soc. 135 (2013), 17282–17285.
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 17282-17285
    • Oohora, K.1
  • 43
    • 84975764159 scopus 로고    scopus 로고
    • Abiological catalysis by artificial haem proteins containing noble metals in place of iron
    • Key, H.M., et al. Abiological catalysis by artificial haem proteins containing noble metals in place of iron. Nature 534 (2016), 534–537.
    • (2016) Nature , vol.534 , pp. 534-537
    • Key, H.M.1
  • 44
    • 84990842428 scopus 로고    scopus 로고
    • An artificial metalloenzyme with the kinetics of native enzymes
    • Dydio, P., et al. An artificial metalloenzyme with the kinetics of native enzymes. Science 354 (2016), 102–106.
    • (2016) Science , vol.354 , pp. 102-106
    • Dydio, P.1
  • 45
    • 84989260406 scopus 로고    scopus 로고
    • An evolved orthogonal enzyme/cofactor pair
    • Reynolds, E.W., et al. An evolved orthogonal enzyme/cofactor pair. J. Am. Chem. Soc. 138 (2016), 12451–12458.
    • (2016) J. Am. Chem. Soc. , vol.138 , pp. 12451-12458
    • Reynolds, E.W.1
  • 46
    • 84892799731 scopus 로고    scopus 로고
    • A general method for artificial metalloenzyme formation through strain-promoted azide–alkyne cycloaddition
    • Yang, H., et al. A general method for artificial metalloenzyme formation through strain-promoted azide–alkyne cycloaddition. Chembiochem 15 (2014), 223–227.
    • (2014) Chembiochem , vol.15 , pp. 223-227
    • Yang, H.1
  • 47
    • 84937889484 scopus 로고    scopus 로고
    • Engineering a dirhodium artificial metalloenzyme for selective olefin cyclopropanation
    • Srivastava, P., et al. Engineering a dirhodium artificial metalloenzyme for selective olefin cyclopropanation. Nat. Commun., 6, 2015, 7789.
    • (2015) Nat. Commun. , vol.6
    • Srivastava, P.1
  • 48
    • 84867768045 scopus 로고    scopus 로고
    • Biotinylated Rh(III) complexes in engineered streptavidin for accelerated asymmetric C–H activation
    • Hyster, T.K., et al. Biotinylated Rh(III) complexes in engineered streptavidin for accelerated asymmetric C–H activation. Science 338 (2012), 500–503.
    • (2012) Science , vol.338 , pp. 500-503
    • Hyster, T.K.1
  • 49
    • 84898007405 scopus 로고    scopus 로고
    • Protein design: toward functional metalloenzymes
    • Yu, F.T., et al. Protein design: toward functional metalloenzymes. Chem. Rev. 114 (2014), 3495–3578.
    • (2014) Chem. Rev. , vol.114 , pp. 3495-3578
    • Yu, F.T.1
  • 50
    • 33845983675 scopus 로고    scopus 로고
    • Relative tolerance of mesostable and thermostable protein homologs to extensive mutation
    • Besenmatter, W., et al. Relative tolerance of mesostable and thermostable protein homologs to extensive mutation. Proteins Struct. Funct. Bioinf. 66 (2007), 500–506.
    • (2007) Proteins Struct. Funct. Bioinf. , vol.66 , pp. 500-506
    • Besenmatter, W.1
  • 51
    • 70349901079 scopus 로고    scopus 로고
    • Stability effects of mutations and protein evolvability
    • Tokuriki, N., Tawfik, D.S., Stability effects of mutations and protein evolvability. Curr. Opin. Struct. Biol. 19 (2009), 596–604.
    • (2009) Curr. Opin. Struct. Biol. , vol.19 , pp. 596-604
    • Tokuriki, N.1    Tawfik, D.S.2
  • 52
    • 40949108497 scopus 로고    scopus 로고
    • A robust protein host for anchoring chelating ligands and organocatalysts
    • Reetz, M.T., et al. A robust protein host for anchoring chelating ligands and organocatalysts. Chembiochem 9 (2008), 552–564.
    • (2008) Chembiochem , vol.9 , pp. 552-564
    • Reetz, M.T.1
  • 53
    • 85018291716 scopus 로고    scopus 로고
    • A well-defined osmium–cupin complex: hyperstable artificial osmium peroxygenase
    • Fujieda, N., et al. A well-defined osmium–cupin complex: hyperstable artificial osmium peroxygenase. J. Am. Chem. Soc. 139 (2017), 5149–5155.
    • (2017) J. Am. Chem. Soc. , vol.139 , pp. 5149-5155
    • Fujieda, N.1
  • 54
    • 0033955337 scopus 로고    scopus 로고
    • Heterologous protein expression in the methylotrophic yeast Pichia pastoris
    • Cereghino, J.L., Cregg, J.M., Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol. Rev. 24 (2000), 45–66.
    • (2000) FEMS Microbiol. Rev. , vol.24 , pp. 45-66
    • Cereghino, J.L.1    Cregg, J.M.2
  • 55
    • 84887836752 scopus 로고    scopus 로고
    • High-level secretion of recombinant full-length streptavidin in Pichia pastoris and its application to enantioselective catalysis
    • Nogueira, E.S., et al. High-level secretion of recombinant full-length streptavidin in Pichia pastoris and its application to enantioselective catalysis. Protein Expr. Purif. 93 (2014), 54–62.
    • (2014) Protein Expr. Purif. , vol.93 , pp. 54-62
    • Nogueira, E.S.1
  • 56
    • 64649088018 scopus 로고    scopus 로고
    • Outer membrane permeability and antibiotic resistance
    • Delcour, A.H., Outer membrane permeability and antibiotic resistance. Biochim. Biophys. Acta Proteins Proteomics 1794 (2009), 808–816.
    • (2009) Biochim. Biophys. Acta Proteins Proteomics , vol.1794 , pp. 808-816
    • Delcour, A.H.1
  • 57
    • 57649107157 scopus 로고    scopus 로고
    • Bacterial heme-transport proteins and their heme-coordination modes
    • Tong, Y., Guo, M., Bacterial heme-transport proteins and their heme-coordination modes. Arch. Biochem. Biophys. 481 (2009), 1–15.
    • (2009) Arch. Biochem. Biophys. , vol.481 , pp. 1-15
    • Tong, Y.1    Guo, M.2
  • 58
    • 85019581867 scopus 로고    scopus 로고
    • Predictive compound accumulation rules yield a broad-spectrum antibiotic
    • Richter, M.F., et al. Predictive compound accumulation rules yield a broad-spectrum antibiotic. Nature 545 (2017), 299–304.
    • (2017) Nature , vol.545 , pp. 299-304
    • Richter, M.F.1
  • 59
    • 84984600744 scopus 로고    scopus 로고
    • Periplasmic screening for artificial metalloenzymes
    • Jeschek, M., et al. Periplasmic screening for artificial metalloenzymes. Methods Enzymol. 580 (2016), 539–556.
    • (2016) Methods Enzymol. , vol.580 , pp. 539-556
    • Jeschek, M.1
  • 60
    • 79851496868 scopus 로고    scopus 로고
    • Metal-substituted protein MRI contrast agents engineered for enhanced relaxivity and ligand sensitivity
    • Lelyveld, V.S., et al. Metal-substituted protein MRI contrast agents engineered for enhanced relaxivity and ligand sensitivity. J. Am. Chem. Soc. 133 (2011), 649–651.
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 649-651
    • Lelyveld, V.S.1
  • 61
    • 80051786355 scopus 로고    scopus 로고
    • Engineering of an E. coli outer membrane protein FhuA with increased channel diameter
    • Krewinkel, M., et al. Engineering of an E. coli outer membrane protein FhuA with increased channel diameter. J. Nanobiotechnol., 9, 2011, 33.
    • (2011) J. Nanobiotechnol. , vol.9 , pp. 33
    • Krewinkel, M.1
  • 62
    • 0035014528 scopus 로고    scopus 로고
    • Isolation of high-affinity ligand-binding proteins by periplasmic expression with cytometric screening (PECS)
    • Chen, G., et al. Isolation of high-affinity ligand-binding proteins by periplasmic expression with cytometric screening (PECS). Nat. Biotechnol. 19 (2001), 537–542.
    • (2001) Nat. Biotechnol. , vol.19 , pp. 537-542
    • Chen, G.1
  • 63
    • 84963729946 scopus 로고    scopus 로고
    • Designer micelles accelerate flux through engineered metabolism in E. coli and support biocompatible chemistry
    • Wallace, S., Balskus, E.P., Designer micelles accelerate flux through engineered metabolism in E. coli and support biocompatible chemistry. Angew. Chem. Int. Ed. Engl. 55 (2016), 6023–6027.
    • (2016) Angew. Chem. Int. Ed. Engl. , vol.55 , pp. 6023-6027
    • Wallace, S.1    Balskus, E.P.2
  • 64
    • 0035917812 scopus 로고    scopus 로고
    • Expanding the genetic code of Escherichia coli
    • Wang, L., et al. Expanding the genetic code of Escherichia coli. Science 292 (2001), 498–500.
    • (2001) Science , vol.292 , pp. 498-500
    • Wang, L.1
  • 65
    • 84878661780 scopus 로고    scopus 로고
    • Metal-conjugated affinity labels: a new concept to create enantioselective artificial metalloenzymes
    • Reiner, T., et al. Metal-conjugated affinity labels: a new concept to create enantioselective artificial metalloenzymes. ChemistryOpen 2 (2013), 50–54.
    • (2013) ChemistryOpen , vol.2 , pp. 50-54
    • Reiner, T.1
  • 66
    • 77954835199 scopus 로고    scopus 로고
    • An artificial metalloenzyme: creation of a designed copper binding site in a thermostable protein
    • Podtetenieff, J., et al. An artificial metalloenzyme: creation of a designed copper binding site in a thermostable protein. Angew. Chem. Int. Ed. Engl. 49 (2010), 5151–5155.
    • (2010) Angew. Chem. Int. Ed. Engl. , vol.49 , pp. 5151-5155
    • Podtetenieff, J.1
  • 67
    • 53549097676 scopus 로고    scopus 로고
    • Biosynthesis of a site-specific DNA cleaving protein
    • Lee, H.S., Schultz, P.G., Biosynthesis of a site-specific DNA cleaving protein. J. Am. Chem. Soc. 130 (2008), 13194–13195.
    • (2008) J. Am. Chem. Soc. , vol.130 , pp. 13194-13195
    • Lee, H.S.1    Schultz, P.G.2
  • 68
    • 84915750588 scopus 로고    scopus 로고
    • Novel artificial metalloenzymes by in vivo incorporation of metal-binding unnatural amino acids
    • Drienovska, I., et al. Novel artificial metalloenzymes by in vivo incorporation of metal-binding unnatural amino acids. Chem. Sci. 6 (2015), 770–776.
    • (2015) Chem. Sci. , vol.6 , pp. 770-776
    • Drienovska, I.1
  • 69
    • 85009290725 scopus 로고    scopus 로고
    • Biotin-independent strains of Escherichia coli for enhanced streptavidin production
    • Jeschek, M., et al. Biotin-independent strains of Escherichia coli for enhanced streptavidin production. Metab. Eng. 40 (2017), 33–40.
    • (2017) Metab. Eng. , vol.40 , pp. 33-40
    • Jeschek, M.1
  • 70
    • 79960430882 scopus 로고    scopus 로고
    • Human carbonic anhydrase II as a host for piano-stool complexes bearing a sulfonamide anchor
    • Monnard, F.W., et al. Human carbonic anhydrase II as a host for piano-stool complexes bearing a sulfonamide anchor. Chem. Commun. 47 (2011), 8238–8240.
    • (2011) Chem. Commun. , vol.47 , pp. 8238-8240
    • Monnard, F.W.1
  • 71
    • 84929352958 scopus 로고    scopus 로고
    • Carbonic anhydrase II as host protein for the creation of a biocompatible artificial metathesase
    • Zhao, J.M., et al. Carbonic anhydrase II as host protein for the creation of a biocompatible artificial metathesase. Org. Biomol. Chem. 13 (2015), 5652–5655.
    • (2015) Org. Biomol. Chem. , vol.13 , pp. 5652-5655
    • Zhao, J.M.1
  • 72
    • 43149109080 scopus 로고    scopus 로고
    • Hemozymes peroxidase activity of artificial hemoproteins constructed from the Streptomyces lividans xylanase A and iron(III)-carboxy-substituted porphyrins
    • Ricoux, R., et al. Hemozymes peroxidase activity of artificial hemoproteins constructed from the Streptomyces lividans xylanase A and iron(III)-carboxy-substituted porphyrins. Bioconjug. Chem. 19 (2008), 899–910.
    • (2008) Bioconjug. Chem. , vol.19 , pp. 899-910
    • Ricoux, R.1
  • 73
    • 84855908872 scopus 로고    scopus 로고
    • Incorporation of manganese complexes into xylanase: new artificial metalloenzymes for enantioselective epoxidation
    • Allard, M., et al. Incorporation of manganese complexes into xylanase: new artificial metalloenzymes for enantioselective epoxidation. Chembiochem 13 (2012), 240–251.
    • (2012) Chembiochem , vol.13 , pp. 240-251
    • Allard, M.1
  • 74
    • 84900652157 scopus 로고    scopus 로고
    • Artificial metalloenzymes derived from bovine beta-lactoglobulin for the asymmetric transfer hydrogenation of an aryl ketone – synthesis, characterization and catalytic activity
    • Chevalley, A., et al. Artificial metalloenzymes derived from bovine beta-lactoglobulin for the asymmetric transfer hydrogenation of an aryl ketone – synthesis, characterization and catalytic activity. Dalton Trans. 43 (2014), 5482–5489.
    • (2014) Dalton Trans. , vol.43 , pp. 5482-5489
    • Chevalley, A.1
  • 75
    • 84903281049 scopus 로고    scopus 로고
    • Neutralizing the detrimental effect of glutathione on precious metal catalysts
    • Wilson, Y.M., et al. Neutralizing the detrimental effect of glutathione on precious metal catalysts. J. Am. Chem. Soc. 136 (2014), 8928–8932.
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 8928-8932
    • Wilson, Y.M.1
  • 76
    • 84928626673 scopus 로고    scopus 로고
    • Interfacing microbial styrene production with a biocompatible cyclopropanation reaction
    • Wallace, S., Balskus, E.P., Interfacing microbial styrene production with a biocompatible cyclopropanation reaction. Angew. Chem. Int. Ed. Engl. 54 (2015), 7106–7109.
    • (2015) Angew. Chem. Int. Ed. Engl. , vol.54 , pp. 7106-7109
    • Wallace, S.1    Balskus, E.P.2
  • 77
    • 84920872755 scopus 로고    scopus 로고
    • Enzyme engineering in the context of novel pathways and products
    • Otte, K.B., Hauer, B., Enzyme engineering in the context of novel pathways and products. Curr. Opin. Biotechnol. 35 (2015), 16–22.
    • (2015) Curr. Opin. Biotechnol. , vol.35 , pp. 16-22
    • Otte, K.B.1    Hauer, B.2
  • 78
    • 85010908796 scopus 로고    scopus 로고
    • Synthetic metabolism: metabolic engineering meets enzyme design
    • Erb, T.J., et al. Synthetic metabolism: metabolic engineering meets enzyme design. Curr. Opin. Chem. Biol. 37 (2017), 56–62.
    • (2017) Curr. Opin. Chem. Biol. , vol.37 , pp. 56-62
    • Erb, T.J.1
  • 79
    • 85019747293 scopus 로고    scopus 로고
    • Enzyme cascades in whole cells for the synthesis of chiral cyclic amines
    • Hepworth, L.J., et al. Enzyme cascades in whole cells for the synthesis of chiral cyclic amines. ACS Catal. 7 (2017), 2920–2925.
    • (2017) ACS Catal. , vol.7 , pp. 2920-2925
    • Hepworth, L.J.1
  • 80
    • 85013635648 scopus 로고    scopus 로고
    • In vivo gold complex catalysis within live mice
    • Tsubokura, K., et al. In vivo gold complex catalysis within live mice. Angew. Chem. Int. Ed. Engl. 56 (2017), 3579–3584.
    • (2017) Angew. Chem. Int. Ed. Engl. , vol.56 , pp. 3579-3584
    • Tsubokura, K.1
  • 81
    • 84874039900 scopus 로고    scopus 로고
    • Designing enzyme-like catalysts: a rhodium(II) metallopeptide case study
    • Ball, Z.T., Designing enzyme-like catalysts: a rhodium(II) metallopeptide case study. Acc. Chem. Res. 46 (2013), 560–570.
    • (2013) Acc. Chem. Res. , vol.46 , pp. 560-570
    • Ball, Z.T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.