-
1
-
-
84860741240
-
Engineering the third wave of biocatalysis
-
Bornscheuer, U.T., et al. Engineering the third wave of biocatalysis. Nature 485 (2012), 185–194.
-
(2012)
Nature
, vol.485
, pp. 185-194
-
-
Bornscheuer, U.T.1
-
2
-
-
85016159696
-
Chemical biology: a radical change in enzyme catalysis
-
Bornscheuer, U.T., Chemical biology: a radical change in enzyme catalysis. Nature 540 (2016), 345–346.
-
(2016)
Nature
, vol.540
, pp. 345-346
-
-
Bornscheuer, U.T.1
-
3
-
-
84977900288
-
Genetic optimization of metalloenzymes: enhancing enzymes for non-natural reactions
-
Hyster, T.K., Ward, T.R., Genetic optimization of metalloenzymes: enhancing enzymes for non-natural reactions. Angew. Chem. Int. Ed. Engl. 55 (2016), 7344–7357.
-
(2016)
Angew. Chem. Int. Ed. Engl.
, vol.55
, pp. 7344-7357
-
-
Hyster, T.K.1
Ward, T.R.2
-
4
-
-
0000147467
-
Conversion of a protein to a homogeneous asymmetric hydrogenation catalyst by site-specific modification with a diphosphinerhodium(I) moiety
-
Wilson, M.E., Whitesides, G.M., Conversion of a protein to a homogeneous asymmetric hydrogenation catalyst by site-specific modification with a diphosphinerhodium(I) moiety. J. Am. Chem. Soc. 100 (1978), 306–307.
-
(1978)
J. Am. Chem. Soc.
, vol.100
, pp. 306-307
-
-
Wilson, M.E.1
Whitesides, G.M.2
-
5
-
-
84890369423
-
Artificial metalloenzymes and metallopeptide catalysts for organic synthesis
-
Lewis, J.C., Artificial metalloenzymes and metallopeptide catalysts for organic synthesis. ACS Catal. 3 (2013), 2954–2975.
-
(2013)
ACS Catal.
, vol.3
, pp. 2954-2975
-
-
Lewis, J.C.1
-
6
-
-
84921661354
-
Directed evolution of artificial metalloenzymes
-
Ilie, A., Reetz, M.T., Directed evolution of artificial metalloenzymes. Isr. J. Chem. 55 (2015), 51–60.
-
(2015)
Isr. J. Chem.
, vol.55
, pp. 51-60
-
-
Ilie, A.1
Reetz, M.T.2
-
7
-
-
84961382184
-
Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution
-
Renata, H., et al. Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution. Angew. Chem. Int. Ed. Engl. 54 (2015), 3351–3367.
-
(2015)
Angew. Chem. Int. Ed. Engl.
, vol.54
, pp. 3351-3367
-
-
Renata, H.1
-
8
-
-
85010791269
-
Selective C–H bond functionalization using repurposed or artificial metalloenzymes
-
Upp, D.M., Lewis, J.C., Selective C–H bond functionalization using repurposed or artificial metalloenzymes. Curr. Opin. Chem. Biol. 37 (2017), 48–55.
-
(2017)
Curr. Opin. Chem. Biol.
, vol.37
, pp. 48-55
-
-
Upp, D.M.1
Lewis, J.C.2
-
9
-
-
85021420274
-
Design and evolution of enzymes for non-natural chemistry
-
Hammer, S.C., et al. Design and evolution of enzymes for non-natural chemistry. Curr. Opin. Green Sustain. Chem. 7 (2017), 23–30.
-
(2017)
Curr. Opin. Green Sustain. Chem.
, vol.7
, pp. 23-30
-
-
Hammer, S.C.1
-
10
-
-
85015318933
-
Emergence of a catalytic tetrad during evolution of a highly active artificial aldolase
-
Obexer, R., et al. Emergence of a catalytic tetrad during evolution of a highly active artificial aldolase. Nat. Chem. 9 (2017), 50–56.
-
(2017)
Nat. Chem.
, vol.9
, pp. 50-56
-
-
Obexer, R.1
-
11
-
-
85011928579
-
Chemoselective, enzymatic C–H bond amination catalyzed by a cytochrome P450 containing an Ir(Me)–PIX cofactor
-
Dydio, P., et al. Chemoselective, enzymatic C–H bond amination catalyzed by a cytochrome P450 containing an Ir(Me)–PIX cofactor. J. Am. Chem. Soc. 139 (2017), 1750–1753.
-
(2017)
J. Am. Chem. Soc.
, vol.139
, pp. 1750-1753
-
-
Dydio, P.1
-
12
-
-
84997080010
-
Directed evolution of cytochrome c for carbon–silicon bond formation: bringing silicon to life
-
Kan, S.B., et al. Directed evolution of cytochrome c for carbon–silicon bond formation: bringing silicon to life. Science 354 (2016), 1048–1051.
-
(2016)
Science
, vol.354
, pp. 1048-1051
-
-
Kan, S.B.1
-
13
-
-
84872495336
-
Olefinic cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes
-
Coelho, P.S., et al. Olefinic cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes. Science 339 (2013), 307–310.
-
(2013)
Science
, vol.339
, pp. 307-310
-
-
Coelho, P.S.1
-
14
-
-
85005808040
-
Gram-scale synthesis of chiral cyclopropane-containing drugs and drug precursors with engineered myoglobin catalysts featuring complementary stereoselectivity
-
Bajaj, P., et al. Gram-scale synthesis of chiral cyclopropane-containing drugs and drug precursors with engineered myoglobin catalysts featuring complementary stereoselectivity. Angew. Chem. Int. Ed. Engl. 55 (2016), 16110–16114.
-
(2016)
Angew. Chem. Int. Ed. Engl.
, vol.55
, pp. 16110-16114
-
-
Bajaj, P.1
-
15
-
-
85018527313
-
Highly diastereo- and enantioselective synthesis of trifluoromethyl-substituted cyclopropanes via myoglobin-catalyzed transfer of trifluoromethylcarbene
-
Tinoco, A., et al. Highly diastereo- and enantioselective synthesis of trifluoromethyl-substituted cyclopropanes via myoglobin-catalyzed transfer of trifluoromethylcarbene. J. Am. Chem. Soc. 139 (2017), 5293–5296.
-
(2017)
J. Am. Chem. Soc.
, vol.139
, pp. 5293-5296
-
-
Tinoco, A.1
-
16
-
-
84880921220
-
A serine-substituted P450 catalyzes highly efficient carbene transfer to olefins in vivo
-
Coelho, P.S., et al. A serine-substituted P450 catalyzes highly efficient carbene transfer to olefins in vivo. Nat. Chem. Biol. 9 (2013), 485–487.
-
(2013)
Nat. Chem. Biol.
, vol.9
, pp. 485-487
-
-
Coelho, P.S.1
-
17
-
-
84919425588
-
A designed supramolecular protein assembly with in vivo enzymatic activity
-
Song, W.J., Tezcan, F.A., A designed supramolecular protein assembly with in vivo enzymatic activity. Science 346 (2014), 1525–1528.
-
(2014)
Science
, vol.346
, pp. 1525-1528
-
-
Song, W.J.1
Tezcan, F.A.2
-
18
-
-
84984604210
-
Directed evolution of artificial metalloenzymes for in vivo metathesis
-
Jeschek, M., et al. Directed evolution of artificial metalloenzymes for in vivo metathesis. Nature 537 (2016), 661–665.
-
(2016)
Nature
, vol.537
, pp. 661-665
-
-
Jeschek, M.1
-
19
-
-
84873872136
-
Synthetic cascades are enabled by combining biocatalysts with artificial metalloenzymes
-
Kohler, V., et al. Synthetic cascades are enabled by combining biocatalysts with artificial metalloenzymes. Nat. Chem. 5 (2013), 93–99.
-
(2013)
Nat. Chem.
, vol.5
, pp. 93-99
-
-
Kohler, V.1
-
20
-
-
84971386807
-
An NAD(P)H-dependent artificial transfer hydrogenase for multienzymatic cascades
-
Okamoto, Y., et al. An NAD(P)H-dependent artificial transfer hydrogenase for multienzymatic cascades. J. Am. Chem. Soc. 138 (2016), 5781–5784.
-
(2016)
J. Am. Chem. Soc.
, vol.138
, pp. 5781-5784
-
-
Okamoto, Y.1
-
21
-
-
84991736335
-
Upregulation of an artificial zymogen by proteolysis
-
Liu, Z., et al. Upregulation of an artificial zymogen by proteolysis. Angew. Chem. Int. Ed. Engl. 55 (2016), 11587–11590.
-
(2016)
Angew. Chem. Int. Ed. Engl.
, vol.55
, pp. 11587-11590
-
-
Liu, Z.1
-
22
-
-
85016257818
-
A metal ion regulated artificial metalloenzyme
-
Bersellini, M., Roelfes, G., A metal ion regulated artificial metalloenzyme. Dalton Trans. 46 (2017), 4325–4330.
-
(2017)
Dalton Trans.
, vol.46
, pp. 4325-4330
-
-
Bersellini, M.1
Roelfes, G.2
-
23
-
-
85019763304
-
Cross-regulation of an artificial metalloenzyme
-
Okamoto, Y., Ward, T.R., Cross-regulation of an artificial metalloenzyme. Angew. Chem. Int. Ed. Engl. 56 (2017), 1–6.
-
(2017)
Angew. Chem. Int. Ed. Engl.
, vol.56
, pp. 1-6
-
-
Okamoto, Y.1
Ward, T.R.2
-
24
-
-
84873279753
-
Metal complex catalysis in living biological systems
-
Sasmal, P.K., et al. Metal complex catalysis in living biological systems. Chem. Commun. 49 (2013), 1581–1587.
-
(2013)
Chem. Commun.
, vol.49
, pp. 1581-1587
-
-
Sasmal, P.K.1
-
25
-
-
84908552170
-
Progress towards bioorthogonal catalysis with organometallic compounds
-
Volker, T., et al. Progress towards bioorthogonal catalysis with organometallic compounds. Angew. Chem. Int. Ed. Engl. 53 (2014), 10536–10540.
-
(2014)
Angew. Chem. Int. Ed. Engl.
, vol.53
, pp. 10536-10540
-
-
Volker, T.1
-
26
-
-
84922065193
-
Highly diastereoselective and enantioselective olefin cyclopropanation using engineered myoglobin-based catalysts
-
Bordeaux, M., et al. Highly diastereoselective and enantioselective olefin cyclopropanation using engineered myoglobin-based catalysts. Angew. Chem. Int. Ed. Engl. 54 (2015), 1744–1748.
-
(2015)
Angew. Chem. Int. Ed. Engl.
, vol.54
, pp. 1744-1748
-
-
Bordeaux, M.1
-
27
-
-
84947430009
-
Enantioselective enzyme-catalyzed aziridination enabled by active-site evolution of a cytochrome P450
-
Farwell, C.C., et al. Enantioselective enzyme-catalyzed aziridination enabled by active-site evolution of a cytochrome P450. ACS Cent. Sci. 1 (2015), 89–93.
-
(2015)
ACS Cent. Sci.
, vol.1
, pp. 89-93
-
-
Farwell, C.C.1
-
28
-
-
84883040115
-
Enantioselective intramolecular C–H amination catalyzed by engineered cytochrome P450 enzymes in vitro and in vivo
-
McIntosh, J.A., et al. Enantioselective intramolecular C–H amination catalyzed by engineered cytochrome P450 enzymes in vitro and in vivo. Angew. Chem. Int. Ed. Engl. 52 (2013), 9309–9312.
-
(2013)
Angew. Chem. Int. Ed. Engl.
, vol.52
, pp. 9309-9312
-
-
McIntosh, J.A.1
-
29
-
-
84908646955
-
3)–H amination of arylsulfonyl azides with engineered and artificial myoglobin-based catalysts
-
3)–H amination of arylsulfonyl azides with engineered and artificial myoglobin-based catalysts. Bioorgan. Med. Chem. 22 (2014), 5697–5704.
-
(2014)
Bioorgan. Med. Chem.
, vol.22
, pp. 5697-5704
-
-
Bordeaux, M.1
-
30
-
-
84908616475
-
Enzyme-controlled nitrogen-atom transfer enables regiodivergent C–H amination
-
Hyster, T.K., et al. Enzyme-controlled nitrogen-atom transfer enables regiodivergent C–H amination. J. Am. Chem. Soc. 136 (2014), 15505–15508.
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 15505-15508
-
-
Hyster, T.K.1
-
31
-
-
85021258513
-
Enantioselective, intermolecular benzylic C–H amination catalysed by an engineered iron–haem enzyme
-
Prier, C.K., et al. Enantioselective, intermolecular benzylic C–H amination catalysed by an engineered iron–haem enzyme. Nat. Chem. 9 (2017), 629–634.
-
(2017)
Nat. Chem.
, vol.9
, pp. 629-634
-
-
Prier, C.K.1
-
32
-
-
84902664223
-
Enantioselective imidation of sulfides via enzyme-catalyzed intermolecular nitrogen-atom transfer
-
Farwell, C.C., et al. Enantioselective imidation of sulfides via enzyme-catalyzed intermolecular nitrogen-atom transfer. J. Am. Chem. Soc. 136 (2014), 8766–8771.
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 8766-8771
-
-
Farwell, C.C.1
-
33
-
-
84960516987
-
Asymmetric enzymatic synthesis of allylic amines: a sigmatropic rearrangement strategy
-
Prier, C.K., et al. Asymmetric enzymatic synthesis of allylic amines: a sigmatropic rearrangement strategy. Angew. Chem. Int. Ed. Engl. 55 (2016), 4711–4715.
-
(2016)
Angew. Chem. Int. Ed. Engl.
, vol.55
, pp. 4711-4715
-
-
Prier, C.K.1
-
34
-
-
84891459977
-
Cytochrome P450-catalyzed insertion of carbenoids into N–H bonds
-
Wang, Z.J., et al. Cytochrome P450-catalyzed insertion of carbenoids into N–H bonds. Chem. Sci. 5 (2014), 598–601.
-
(2014)
Chem. Sci.
, vol.5
, pp. 598-601
-
-
Wang, Z.J.1
-
35
-
-
84921290865
-
Myoglobin-catalyzed intermolecular carbene N–H insertion with arylamine substrates
-
Sreenilayam, G., Fasan, R., Myoglobin-catalyzed intermolecular carbene N–H insertion with arylamine substrates. Chem. Commun., 51, 2015, 1744.
-
(2015)
Chem. Commun.
, vol.51
, pp. 1744
-
-
Sreenilayam, G.1
Fasan, R.2
-
36
-
-
84925002902
-
Intermolecular carbene S–H insertion catalysed by engineered myoglobin-based catalysts
-
Tyagi, V., et al. Intermolecular carbene S–H insertion catalysed by engineered myoglobin-based catalysts. Chem. Sci. 6 (2015), 2488–2494.
-
(2015)
Chem. Sci.
, vol.6
, pp. 2488-2494
-
-
Tyagi, V.1
-
37
-
-
84894039595
-
Direct nitration and azidation of aliphatic carbons by an iron-dependent halogenase
-
Matthews, M.L., et al. Direct nitration and azidation of aliphatic carbons by an iron-dependent halogenase. Nat. Chem. Biol. 10 (2014), 209–215.
-
(2014)
Nat. Chem. Biol.
, vol.10
, pp. 209-215
-
-
Matthews, M.L.1
-
38
-
-
84856397386
-
Hydrolytic catalysis and structural stabilization in a designed metalloprotein
-
Zastrow, M.L., et al. Hydrolytic catalysis and structural stabilization in a designed metalloprotein. Nat. Chem. 4 (2012), 118–123.
-
(2012)
Nat. Chem.
, vol.4
, pp. 118-123
-
-
Zastrow, M.L.1
-
39
-
-
0030874443
-
De novo design of mercury-binding two- and three-helical bundles
-
Dieckmann, G.R., et al. De novo design of mercury-binding two- and three-helical bundles. J. Am. Chem. Soc. 119 (1997), 6195–6196.
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 6195-6196
-
-
Dieckmann, G.R.1
-
41
-
-
84862776507
-
Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis
-
Khare, S.D., et al. Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis. Nat. Chem. Biol. 8 (2012), 294–300.
-
(2012)
Nat. Chem. Biol.
, vol.8
, pp. 294-300
-
-
Khare, S.D.1
-
42
-
-
84888351614
-
3)–H bond hydroxylation catalyzed by myoglobin reconstituted with manganese porphycene
-
3)–H bond hydroxylation catalyzed by myoglobin reconstituted with manganese porphycene. J. Am. Chem. Soc. 135 (2013), 17282–17285.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 17282-17285
-
-
Oohora, K.1
-
43
-
-
84975764159
-
Abiological catalysis by artificial haem proteins containing noble metals in place of iron
-
Key, H.M., et al. Abiological catalysis by artificial haem proteins containing noble metals in place of iron. Nature 534 (2016), 534–537.
-
(2016)
Nature
, vol.534
, pp. 534-537
-
-
Key, H.M.1
-
44
-
-
84990842428
-
An artificial metalloenzyme with the kinetics of native enzymes
-
Dydio, P., et al. An artificial metalloenzyme with the kinetics of native enzymes. Science 354 (2016), 102–106.
-
(2016)
Science
, vol.354
, pp. 102-106
-
-
Dydio, P.1
-
45
-
-
84989260406
-
An evolved orthogonal enzyme/cofactor pair
-
Reynolds, E.W., et al. An evolved orthogonal enzyme/cofactor pair. J. Am. Chem. Soc. 138 (2016), 12451–12458.
-
(2016)
J. Am. Chem. Soc.
, vol.138
, pp. 12451-12458
-
-
Reynolds, E.W.1
-
46
-
-
84892799731
-
A general method for artificial metalloenzyme formation through strain-promoted azide–alkyne cycloaddition
-
Yang, H., et al. A general method for artificial metalloenzyme formation through strain-promoted azide–alkyne cycloaddition. Chembiochem 15 (2014), 223–227.
-
(2014)
Chembiochem
, vol.15
, pp. 223-227
-
-
Yang, H.1
-
47
-
-
84937889484
-
Engineering a dirhodium artificial metalloenzyme for selective olefin cyclopropanation
-
Srivastava, P., et al. Engineering a dirhodium artificial metalloenzyme for selective olefin cyclopropanation. Nat. Commun., 6, 2015, 7789.
-
(2015)
Nat. Commun.
, vol.6
-
-
Srivastava, P.1
-
48
-
-
84867768045
-
Biotinylated Rh(III) complexes in engineered streptavidin for accelerated asymmetric C–H activation
-
Hyster, T.K., et al. Biotinylated Rh(III) complexes in engineered streptavidin for accelerated asymmetric C–H activation. Science 338 (2012), 500–503.
-
(2012)
Science
, vol.338
, pp. 500-503
-
-
Hyster, T.K.1
-
49
-
-
84898007405
-
Protein design: toward functional metalloenzymes
-
Yu, F.T., et al. Protein design: toward functional metalloenzymes. Chem. Rev. 114 (2014), 3495–3578.
-
(2014)
Chem. Rev.
, vol.114
, pp. 3495-3578
-
-
Yu, F.T.1
-
50
-
-
33845983675
-
Relative tolerance of mesostable and thermostable protein homologs to extensive mutation
-
Besenmatter, W., et al. Relative tolerance of mesostable and thermostable protein homologs to extensive mutation. Proteins Struct. Funct. Bioinf. 66 (2007), 500–506.
-
(2007)
Proteins Struct. Funct. Bioinf.
, vol.66
, pp. 500-506
-
-
Besenmatter, W.1
-
51
-
-
70349901079
-
Stability effects of mutations and protein evolvability
-
Tokuriki, N., Tawfik, D.S., Stability effects of mutations and protein evolvability. Curr. Opin. Struct. Biol. 19 (2009), 596–604.
-
(2009)
Curr. Opin. Struct. Biol.
, vol.19
, pp. 596-604
-
-
Tokuriki, N.1
Tawfik, D.S.2
-
52
-
-
40949108497
-
A robust protein host for anchoring chelating ligands and organocatalysts
-
Reetz, M.T., et al. A robust protein host for anchoring chelating ligands and organocatalysts. Chembiochem 9 (2008), 552–564.
-
(2008)
Chembiochem
, vol.9
, pp. 552-564
-
-
Reetz, M.T.1
-
53
-
-
85018291716
-
A well-defined osmium–cupin complex: hyperstable artificial osmium peroxygenase
-
Fujieda, N., et al. A well-defined osmium–cupin complex: hyperstable artificial osmium peroxygenase. J. Am. Chem. Soc. 139 (2017), 5149–5155.
-
(2017)
J. Am. Chem. Soc.
, vol.139
, pp. 5149-5155
-
-
Fujieda, N.1
-
54
-
-
0033955337
-
Heterologous protein expression in the methylotrophic yeast Pichia pastoris
-
Cereghino, J.L., Cregg, J.M., Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol. Rev. 24 (2000), 45–66.
-
(2000)
FEMS Microbiol. Rev.
, vol.24
, pp. 45-66
-
-
Cereghino, J.L.1
Cregg, J.M.2
-
55
-
-
84887836752
-
High-level secretion of recombinant full-length streptavidin in Pichia pastoris and its application to enantioselective catalysis
-
Nogueira, E.S., et al. High-level secretion of recombinant full-length streptavidin in Pichia pastoris and its application to enantioselective catalysis. Protein Expr. Purif. 93 (2014), 54–62.
-
(2014)
Protein Expr. Purif.
, vol.93
, pp. 54-62
-
-
Nogueira, E.S.1
-
56
-
-
64649088018
-
Outer membrane permeability and antibiotic resistance
-
Delcour, A.H., Outer membrane permeability and antibiotic resistance. Biochim. Biophys. Acta Proteins Proteomics 1794 (2009), 808–816.
-
(2009)
Biochim. Biophys. Acta Proteins Proteomics
, vol.1794
, pp. 808-816
-
-
Delcour, A.H.1
-
57
-
-
57649107157
-
Bacterial heme-transport proteins and their heme-coordination modes
-
Tong, Y., Guo, M., Bacterial heme-transport proteins and their heme-coordination modes. Arch. Biochem. Biophys. 481 (2009), 1–15.
-
(2009)
Arch. Biochem. Biophys.
, vol.481
, pp. 1-15
-
-
Tong, Y.1
Guo, M.2
-
58
-
-
85019581867
-
Predictive compound accumulation rules yield a broad-spectrum antibiotic
-
Richter, M.F., et al. Predictive compound accumulation rules yield a broad-spectrum antibiotic. Nature 545 (2017), 299–304.
-
(2017)
Nature
, vol.545
, pp. 299-304
-
-
Richter, M.F.1
-
59
-
-
84984600744
-
Periplasmic screening for artificial metalloenzymes
-
Jeschek, M., et al. Periplasmic screening for artificial metalloenzymes. Methods Enzymol. 580 (2016), 539–556.
-
(2016)
Methods Enzymol.
, vol.580
, pp. 539-556
-
-
Jeschek, M.1
-
60
-
-
79851496868
-
Metal-substituted protein MRI contrast agents engineered for enhanced relaxivity and ligand sensitivity
-
Lelyveld, V.S., et al. Metal-substituted protein MRI contrast agents engineered for enhanced relaxivity and ligand sensitivity. J. Am. Chem. Soc. 133 (2011), 649–651.
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 649-651
-
-
Lelyveld, V.S.1
-
61
-
-
80051786355
-
Engineering of an E. coli outer membrane protein FhuA with increased channel diameter
-
Krewinkel, M., et al. Engineering of an E. coli outer membrane protein FhuA with increased channel diameter. J. Nanobiotechnol., 9, 2011, 33.
-
(2011)
J. Nanobiotechnol.
, vol.9
, pp. 33
-
-
Krewinkel, M.1
-
62
-
-
0035014528
-
Isolation of high-affinity ligand-binding proteins by periplasmic expression with cytometric screening (PECS)
-
Chen, G., et al. Isolation of high-affinity ligand-binding proteins by periplasmic expression with cytometric screening (PECS). Nat. Biotechnol. 19 (2001), 537–542.
-
(2001)
Nat. Biotechnol.
, vol.19
, pp. 537-542
-
-
Chen, G.1
-
63
-
-
84963729946
-
Designer micelles accelerate flux through engineered metabolism in E. coli and support biocompatible chemistry
-
Wallace, S., Balskus, E.P., Designer micelles accelerate flux through engineered metabolism in E. coli and support biocompatible chemistry. Angew. Chem. Int. Ed. Engl. 55 (2016), 6023–6027.
-
(2016)
Angew. Chem. Int. Ed. Engl.
, vol.55
, pp. 6023-6027
-
-
Wallace, S.1
Balskus, E.P.2
-
64
-
-
0035917812
-
Expanding the genetic code of Escherichia coli
-
Wang, L., et al. Expanding the genetic code of Escherichia coli. Science 292 (2001), 498–500.
-
(2001)
Science
, vol.292
, pp. 498-500
-
-
Wang, L.1
-
65
-
-
84878661780
-
Metal-conjugated affinity labels: a new concept to create enantioselective artificial metalloenzymes
-
Reiner, T., et al. Metal-conjugated affinity labels: a new concept to create enantioselective artificial metalloenzymes. ChemistryOpen 2 (2013), 50–54.
-
(2013)
ChemistryOpen
, vol.2
, pp. 50-54
-
-
Reiner, T.1
-
66
-
-
77954835199
-
An artificial metalloenzyme: creation of a designed copper binding site in a thermostable protein
-
Podtetenieff, J., et al. An artificial metalloenzyme: creation of a designed copper binding site in a thermostable protein. Angew. Chem. Int. Ed. Engl. 49 (2010), 5151–5155.
-
(2010)
Angew. Chem. Int. Ed. Engl.
, vol.49
, pp. 5151-5155
-
-
Podtetenieff, J.1
-
67
-
-
53549097676
-
Biosynthesis of a site-specific DNA cleaving protein
-
Lee, H.S., Schultz, P.G., Biosynthesis of a site-specific DNA cleaving protein. J. Am. Chem. Soc. 130 (2008), 13194–13195.
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 13194-13195
-
-
Lee, H.S.1
Schultz, P.G.2
-
68
-
-
84915750588
-
Novel artificial metalloenzymes by in vivo incorporation of metal-binding unnatural amino acids
-
Drienovska, I., et al. Novel artificial metalloenzymes by in vivo incorporation of metal-binding unnatural amino acids. Chem. Sci. 6 (2015), 770–776.
-
(2015)
Chem. Sci.
, vol.6
, pp. 770-776
-
-
Drienovska, I.1
-
69
-
-
85009290725
-
Biotin-independent strains of Escherichia coli for enhanced streptavidin production
-
Jeschek, M., et al. Biotin-independent strains of Escherichia coli for enhanced streptavidin production. Metab. Eng. 40 (2017), 33–40.
-
(2017)
Metab. Eng.
, vol.40
, pp. 33-40
-
-
Jeschek, M.1
-
70
-
-
79960430882
-
Human carbonic anhydrase II as a host for piano-stool complexes bearing a sulfonamide anchor
-
Monnard, F.W., et al. Human carbonic anhydrase II as a host for piano-stool complexes bearing a sulfonamide anchor. Chem. Commun. 47 (2011), 8238–8240.
-
(2011)
Chem. Commun.
, vol.47
, pp. 8238-8240
-
-
Monnard, F.W.1
-
71
-
-
84929352958
-
Carbonic anhydrase II as host protein for the creation of a biocompatible artificial metathesase
-
Zhao, J.M., et al. Carbonic anhydrase II as host protein for the creation of a biocompatible artificial metathesase. Org. Biomol. Chem. 13 (2015), 5652–5655.
-
(2015)
Org. Biomol. Chem.
, vol.13
, pp. 5652-5655
-
-
Zhao, J.M.1
-
72
-
-
43149109080
-
Hemozymes peroxidase activity of artificial hemoproteins constructed from the Streptomyces lividans xylanase A and iron(III)-carboxy-substituted porphyrins
-
Ricoux, R., et al. Hemozymes peroxidase activity of artificial hemoproteins constructed from the Streptomyces lividans xylanase A and iron(III)-carboxy-substituted porphyrins. Bioconjug. Chem. 19 (2008), 899–910.
-
(2008)
Bioconjug. Chem.
, vol.19
, pp. 899-910
-
-
Ricoux, R.1
-
73
-
-
84855908872
-
Incorporation of manganese complexes into xylanase: new artificial metalloenzymes for enantioselective epoxidation
-
Allard, M., et al. Incorporation of manganese complexes into xylanase: new artificial metalloenzymes for enantioselective epoxidation. Chembiochem 13 (2012), 240–251.
-
(2012)
Chembiochem
, vol.13
, pp. 240-251
-
-
Allard, M.1
-
74
-
-
84900652157
-
Artificial metalloenzymes derived from bovine beta-lactoglobulin for the asymmetric transfer hydrogenation of an aryl ketone – synthesis, characterization and catalytic activity
-
Chevalley, A., et al. Artificial metalloenzymes derived from bovine beta-lactoglobulin for the asymmetric transfer hydrogenation of an aryl ketone – synthesis, characterization and catalytic activity. Dalton Trans. 43 (2014), 5482–5489.
-
(2014)
Dalton Trans.
, vol.43
, pp. 5482-5489
-
-
Chevalley, A.1
-
75
-
-
84903281049
-
Neutralizing the detrimental effect of glutathione on precious metal catalysts
-
Wilson, Y.M., et al. Neutralizing the detrimental effect of glutathione on precious metal catalysts. J. Am. Chem. Soc. 136 (2014), 8928–8932.
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 8928-8932
-
-
Wilson, Y.M.1
-
76
-
-
84928626673
-
Interfacing microbial styrene production with a biocompatible cyclopropanation reaction
-
Wallace, S., Balskus, E.P., Interfacing microbial styrene production with a biocompatible cyclopropanation reaction. Angew. Chem. Int. Ed. Engl. 54 (2015), 7106–7109.
-
(2015)
Angew. Chem. Int. Ed. Engl.
, vol.54
, pp. 7106-7109
-
-
Wallace, S.1
Balskus, E.P.2
-
77
-
-
84920872755
-
Enzyme engineering in the context of novel pathways and products
-
Otte, K.B., Hauer, B., Enzyme engineering in the context of novel pathways and products. Curr. Opin. Biotechnol. 35 (2015), 16–22.
-
(2015)
Curr. Opin. Biotechnol.
, vol.35
, pp. 16-22
-
-
Otte, K.B.1
Hauer, B.2
-
78
-
-
85010908796
-
Synthetic metabolism: metabolic engineering meets enzyme design
-
Erb, T.J., et al. Synthetic metabolism: metabolic engineering meets enzyme design. Curr. Opin. Chem. Biol. 37 (2017), 56–62.
-
(2017)
Curr. Opin. Chem. Biol.
, vol.37
, pp. 56-62
-
-
Erb, T.J.1
-
79
-
-
85019747293
-
Enzyme cascades in whole cells for the synthesis of chiral cyclic amines
-
Hepworth, L.J., et al. Enzyme cascades in whole cells for the synthesis of chiral cyclic amines. ACS Catal. 7 (2017), 2920–2925.
-
(2017)
ACS Catal.
, vol.7
, pp. 2920-2925
-
-
Hepworth, L.J.1
-
80
-
-
85013635648
-
In vivo gold complex catalysis within live mice
-
Tsubokura, K., et al. In vivo gold complex catalysis within live mice. Angew. Chem. Int. Ed. Engl. 56 (2017), 3579–3584.
-
(2017)
Angew. Chem. Int. Ed. Engl.
, vol.56
, pp. 3579-3584
-
-
Tsubokura, K.1
-
81
-
-
84874039900
-
Designing enzyme-like catalysts: a rhodium(II) metallopeptide case study
-
Ball, Z.T., Designing enzyme-like catalysts: a rhodium(II) metallopeptide case study. Acc. Chem. Res. 46 (2013), 560–570.
-
(2013)
Acc. Chem. Res.
, vol.46
, pp. 560-570
-
-
Ball, Z.T.1
|