-
1
-
-
84893249799
-
PI3K and cancer: lessons, challenges and opportunities
-
Fruman D.A., Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nat. Rev. Drug Discov. 2014, 13:140-156.
-
(2014)
Nat. Rev. Drug Discov.
, vol.13
, pp. 140-156
-
-
Fruman, D.A.1
Rommel, C.2
-
3
-
-
84925545317
-
PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting
-
Thorpe L.M., et al. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat. Rev. Cancer 2015, 15:7-24.
-
(2015)
Nat. Rev. Cancer
, vol.15
, pp. 7-24
-
-
Thorpe, L.M.1
-
4
-
-
84857406235
-
PI3K signalling: the path to discovery and understanding
-
Vanhaesebroeck B., et al. PI3K signalling: the path to discovery and understanding. Nat. Rev. Mol. Cell Biol. 2012, 13:195-203.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 195-203
-
-
Vanhaesebroeck, B.1
-
5
-
-
84859778293
-
MTOR signaling in growth control and disease
-
Laplante M., Sabatini D.M. mTOR signaling in growth control and disease. Cell 2012, 149:274-293.
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
6
-
-
83455177213
-
Target of rapamycin (TOR) in nutrient signaling and growth control
-
Loewith R., Hall M.N. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 2011, 189:1177-1201.
-
(2011)
Genetics
, vol.189
, pp. 1177-1201
-
-
Loewith, R.1
Hall, M.N.2
-
7
-
-
84880566446
-
A growing role for mTOR in promoting anabolic metabolism
-
Howell J.J., et al. A growing role for mTOR in promoting anabolic metabolism. Biochem. Soc. Trans. 2013, 41:906-912.
-
(2013)
Biochem. Soc. Trans.
, vol.41
, pp. 906-912
-
-
Howell, J.J.1
-
8
-
-
84874655800
-
The multifaceted role of mTORC1 in the control of lipid metabolism
-
Ricoult S.J.H., Manning B.D. The multifaceted role of mTORC1 in the control of lipid metabolism. EMBO Rep. 2013, 14:242-251.
-
(2013)
EMBO Rep.
, vol.14
, pp. 242-251
-
-
Ricoult, S.J.H.1
Manning, B.D.2
-
9
-
-
84912528393
-
MTOR and autophagy: a dynamic relationship governed by nutrients and energy
-
Dunlop E.A., Tee A.R. mTOR and autophagy: a dynamic relationship governed by nutrients and energy. Semin. Cell Dev. Biol. 2014, 36:121-129.
-
(2014)
Semin. Cell Dev. Biol.
, vol.36
, pp. 121-129
-
-
Dunlop, E.A.1
Tee, A.R.2
-
10
-
-
84878532557
-
Signal integration by mTORC1 coordinates nutrient input with biosynthetic output
-
Dibble C.C., Manning B.D. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat. Cell Biol. 2013, 15:555-564.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 555-564
-
-
Dibble, C.C.1
Manning, B.D.2
-
11
-
-
84894486696
-
Nutrient regulation of the mTOR complex 1 signaling pathway
-
Kim S.G., et al. Nutrient regulation of the mTOR complex 1 signaling pathway. Mol. Cells 2013, 35:463-473.
-
(2013)
Mol. Cells
, vol.35
, pp. 463-473
-
-
Kim, S.G.1
-
12
-
-
84875423993
-
Amino acid signalling upstream of mTOR
-
Jewell J.L., et al. Amino acid signalling upstream of mTOR. Nat. Rev. Mol. Cell Biol. 2013, 14:133-139.
-
(2013)
Nat. Rev. Mol. Cell Biol.
, vol.14
, pp. 133-139
-
-
Jewell, J.L.1
-
14
-
-
0036385637
-
Coordinate regulation of translation by the PI 3-kinase and mTOR pathways
-
Martin K.A., Blenis J. Coordinate regulation of translation by the PI 3-kinase and mTOR pathways. Adv. Cancer Res. 2002, 86:1-39.
-
(2002)
Adv. Cancer Res.
, vol.86
, pp. 1-39
-
-
Martin, K.A.1
Blenis, J.2
-
15
-
-
0034982971
-
TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth
-
Gao X., Pan D. TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth. Genes Dev. 2001, 15:1383-1392.
-
(2001)
Genes Dev.
, vol.15
, pp. 1383-1392
-
-
Gao, X.1
Pan, D.2
-
16
-
-
0035805180
-
The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation
-
Tapon N., et al. The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation. Cell 2001, 105:345-355.
-
(2001)
Cell
, vol.105
, pp. 345-355
-
-
Tapon, N.1
-
17
-
-
0035805162
-
Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size
-
Potter C.J., et al. Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size. Cell 2001, 105:357-368.
-
(2001)
Cell
, vol.105
, pp. 357-368
-
-
Potter, C.J.1
-
18
-
-
0036501277
-
A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells
-
Kwiatkowski D.J., et al. A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum. Mol. Genet. 2002, 11:525-534.
-
(2002)
Hum. Mol. Genet.
, vol.11
, pp. 525-534
-
-
Kwiatkowski, D.J.1
-
19
-
-
0037163033
-
Tuberin regulates p70 S6 kinase activation and ribosomal protein S6 phosphorylation. A role for the TSC2 tumor suppressor gene in pulmonary lymphangioleiomyomatosis (LAM)
-
Goncharova E.A., et al. Tuberin regulates p70 S6 kinase activation and ribosomal protein S6 phosphorylation. A role for the TSC2 tumor suppressor gene in pulmonary lymphangioleiomyomatosis (LAM). J. Biol. Chem. 2002, 277:30958-30967.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 30958-30967
-
-
Goncharova, E.A.1
-
20
-
-
0037108750
-
Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling
-
Tee A.R., et al. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:13571-13576.
-
(2002)
Proc. Natl. Acad. Sci. U.S.A.
, vol.99
, pp. 13571-13576
-
-
Tee, A.R.1
-
21
-
-
0036342294
-
Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/Akt pathway
-
Manning B.D., et al. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/Akt pathway. Mol. Cell 2002, 10:151-162.
-
(2002)
Mol. Cell
, vol.10
, pp. 151-162
-
-
Manning, B.D.1
-
22
-
-
0036713778
-
TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
-
Inoki K., et al. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 2002, 4:648-657.
-
(2002)
Nat. Cell Biol.
, vol.4
, pp. 648-657
-
-
Inoki, K.1
-
23
-
-
0036714127
-
Akt regulates growth by directly phosphorylating Tsc2
-
Potter C.J., et al. Akt regulates growth by directly phosphorylating Tsc2. Nat. Cell Biol. 2002, 4:658-665.
-
(2002)
Nat. Cell Biol.
, vol.4
, pp. 658-665
-
-
Potter, C.J.1
-
24
-
-
0036712905
-
Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling
-
Gao X., et al. Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nat. Cell Biol. 2002, 4:699-704.
-
(2002)
Nat. Cell Biol.
, vol.4
, pp. 699-704
-
-
Gao, X.1
-
25
-
-
0038304516
-
Rheb is an essential regulator of S6K in controlling cell growth in Drosophila
-
Stocker H., et al. Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat. Cell Biol. 2003, 5:559-565.
-
(2003)
Nat. Cell Biol.
, vol.5
, pp. 559-565
-
-
Stocker, H.1
-
26
-
-
0038643484
-
Rheb promotes cell growth as a component of the insulin/TOR signalling network
-
Saucedo L.J., et al. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat. Cell Biol. 2003, 5:566-571.
-
(2003)
Nat. Cell Biol.
, vol.5
, pp. 566-571
-
-
Saucedo, L.J.1
-
27
-
-
0042701991
-
Tuberous sclerosis complex gene products, tuberin and hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb
-
Tee A.R., et al. Tuberous sclerosis complex gene products, tuberin and hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. 2003, 13:1259-1268.
-
(2003)
Curr. Biol.
, vol.13
, pp. 1259-1268
-
-
Tee, A.R.1
-
28
-
-
0043127125
-
Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
-
Inoki K., et al. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 2003, 17:1829-1834.
-
(2003)
Genes Dev.
, vol.17
, pp. 1829-1834
-
-
Inoki, K.1
-
29
-
-
0038433304
-
Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2
-
Garami A., et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol. Cell 2003, 11:1457-1466.
-
(2003)
Mol. Cell
, vol.11
, pp. 1457-1466
-
-
Garami, A.1
-
30
-
-
0041356888
-
Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin- and farnesylation-dependent manner
-
Castro A.F., et al. Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin- and farnesylation-dependent manner. J. Biol. Chem. 2003, 278:32493-32496.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 32493-32496
-
-
Castro, A.F.1
-
31
-
-
0038141979
-
Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins
-
Zhang Y., et al. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat. Cell Biol. 2003, 5:578-581.
-
(2003)
Nat. Cell Biol.
, vol.5
, pp. 578-581
-
-
Zhang, Y.1
-
32
-
-
0041827366
-
Drosophila Rheb GTPase is required for cell cycle progression and cell growth
-
Patel P.H., et al. Drosophila Rheb GTPase is required for cell cycle progression and cell growth. J. Cell Sci. 2003, 116:3601-3610.
-
(2003)
J. Cell Sci.
, vol.116
, pp. 3601-3610
-
-
Patel, P.H.1
-
33
-
-
79953140523
-
Rheb is essential for murine development
-
Goorden S.M.I., et al. Rheb is essential for murine development. Mol. Cell. Biol. 2011, 31:1672-1678.
-
(2011)
Mol. Cell. Biol.
, vol.31
, pp. 1672-1678
-
-
Goorden, S.M.I.1
-
34
-
-
78651427865
-
Rheb1 is required for mTORC1 and myelination in postnatal brain development
-
Zou J., et al. Rheb1 is required for mTORC1 and myelination in postnatal brain development. Dev. Cell 2011, 20:97-108.
-
(2011)
Dev. Cell
, vol.20
, pp. 97-108
-
-
Zou, J.1
-
35
-
-
0029560416
-
A novel approach for expression cloning of small GTPases: identification, tissue distribution and chromosome mapping of the human homolog of Rheb
-
Gromov P.S., et al. A novel approach for expression cloning of small GTPases: identification, tissue distribution and chromosome mapping of the human homolog of Rheb. FEBS Lett. 1995, 377:221-226.
-
(1995)
FEBS Lett.
, vol.377
, pp. 221-226
-
-
Gromov, P.S.1
-
36
-
-
27944503577
-
Identification and characterization of RHEBL1, a novel member of Ras family, which activates transcriptional activities of NF-kappa B
-
Yuan J., et al. Identification and characterization of RHEBL1, a novel member of Ras family, which activates transcriptional activities of NF-kappa B. Mol. Biol. Rep. 2005, 32:205-214.
-
(2005)
Mol. Biol. Rep.
, vol.32
, pp. 205-214
-
-
Yuan, J.1
-
37
-
-
0141925647
-
Identification of dominant negative mutants of Rheb GTPase and their use to implicate the involvement of human Rheb in the activation of p70S6K
-
Tabancay A.P., et al. Identification of dominant negative mutants of Rheb GTPase and their use to implicate the involvement of human Rheb in the activation of p70S6K. J. Biol. Chem. 2003, 278:39921-39930.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 39921-39930
-
-
Tabancay, A.P.1
-
38
-
-
24044442298
-
Analysis of mTOR signaling by the small G-proteins, Rheb and RhebL1
-
Tee A.R., et al. Analysis of mTOR signaling by the small G-proteins, Rheb and RhebL1. FEBS Lett. 2005, 579:4763-4768.
-
(2005)
FEBS Lett.
, vol.579
, pp. 4763-4768
-
-
Tee, A.R.1
-
39
-
-
67649823420
-
Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein
-
Sato T., et al. Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein. J. Biol. Chem. 2009, 284:12783-12791.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 12783-12791
-
-
Sato, T.1
-
40
-
-
33646485688
-
TSC1/TSC2 and Rheb have different effects on TORC1 and TORC2 activity
-
Yang Q., et al. TSC1/TSC2 and Rheb have different effects on TORC1 and TORC2 activity. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:6811-6816.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 6811-6816
-
-
Yang, Q.1
-
41
-
-
44949215822
-
The TSC1-TSC2 complex is required for proper activation of mTOR complex 2
-
Huang J., et al. The TSC1-TSC2 complex is required for proper activation of mTOR complex 2. Mol. Cell. Biol. 2008, 28:4104-4115.
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 4104-4115
-
-
Huang, J.1
-
42
-
-
79952104568
-
MTOR couples cellular nutrient sensing to organismal metabolic homeostasis
-
Howell J.J., Manning B.D. mTOR couples cellular nutrient sensing to organismal metabolic homeostasis. Trends Endocrinol. Metab. 2011, 22:94-102.
-
(2011)
Trends Endocrinol. Metab.
, vol.22
, pp. 94-102
-
-
Howell, J.J.1
Manning, B.D.2
-
43
-
-
33947264077
-
PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase
-
Sancak Y., et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell 2007, 25:903-915.
-
(2007)
Mol. Cell
, vol.25
, pp. 903-915
-
-
Sancak, Y.1
-
44
-
-
18044381192
-
Rheb binds and regulates the mTOR kinase
-
Long X., et al. Rheb binds and regulates the mTOR kinase. Curr. Biol. 2005, 15:702-713.
-
(2005)
Curr. Biol.
, vol.15
, pp. 702-713
-
-
Long, X.1
-
45
-
-
64849101452
-
Mammalian target of rapamycin complex 1-mediated phosphorylation of eukaryotic initiation factor 4E-binding protein 1 requires multiple protein-protein interactions for substrate recognition
-
Dunlop E.A., et al. Mammalian target of rapamycin complex 1-mediated phosphorylation of eukaryotic initiation factor 4E-binding protein 1 requires multiple protein-protein interactions for substrate recognition. Cell. Signal. 2009, 21:1073-1084.
-
(2009)
Cell. Signal.
, vol.21
, pp. 1073-1084
-
-
Dunlop, E.A.1
-
46
-
-
36049043184
-
Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38
-
Bai X., et al. Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38. Science 2007, 318:977-980.
-
(2007)
Science
, vol.318
, pp. 977-980
-
-
Bai, X.1
-
47
-
-
54449097914
-
The switch I region of Rheb is critical for its interaction with FKBP38
-
Ma D., et al. The switch I region of Rheb is critical for its interaction with FKBP38. J. Biol. Chem. 2008, 283:25963-25970.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 25963-25970
-
-
Ma, D.1
-
48
-
-
58049216316
-
RalA functions as an indispensable signal mediator for the nutrient-sensing system
-
Maehama T., et al. RalA functions as an indispensable signal mediator for the nutrient-sensing system. J. Biol. Chem. 2008, 283:35053-35059.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 35053-35059
-
-
Maehama, T.1
-
49
-
-
57649165557
-
Re-evaluating the roles of proposed modulators of mammalian target of rapamycin complex 1 (mTORC1) signaling
-
Wang X., et al. Re-evaluating the roles of proposed modulators of mammalian target of rapamycin complex 1 (mTORC1) signaling. J. Biol. Chem. 2008, 283:30482-30492.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 30482-30492
-
-
Wang, X.1
-
50
-
-
61749084493
-
Reassessment of the role of FKBP38 in the Rheb/mTORC1 pathway
-
Uhlenbrock K., et al. Reassessment of the role of FKBP38 in the Rheb/mTORC1 pathway. FEBS Lett. 2009, 583:965-970.
-
(2009)
FEBS Lett.
, vol.583
, pp. 965-970
-
-
Uhlenbrock, K.1
-
51
-
-
46149098447
-
Phospholipase D1 is an effector of Rheb in the mTOR pathway
-
Sun Y., et al. Phospholipase D1 is an effector of Rheb in the mTOR pathway. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:8286-8291.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 8286-8291
-
-
Sun, Y.1
-
52
-
-
84905967489
-
Phospholipase D and the maintenance of phosphatidic acid levels for regulation of mammalian target of rapamycin (mTOR)
-
Foster D.A., et al. Phospholipase D and the maintenance of phosphatidic acid levels for regulation of mammalian target of rapamycin (mTOR). J. Biol. Chem. 2014, 289:22583-22588.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 22583-22588
-
-
Foster, D.A.1
-
53
-
-
0035976615
-
Phosphatidic acid-mediated mitogenic activation of mTOR signaling
-
Fang Y., et al. Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 2001, 294:1942-1945.
-
(2001)
Science
, vol.294
, pp. 1942-1945
-
-
Fang, Y.1
-
54
-
-
80051917141
-
Phosphatidic acid activates mammalian target of rapamycin complex 1 (mTORC1) kinase by displacing FK506 binding protein 38 (FKBP38) and exerting an allosteric effect
-
Yoon M-S., et al. Phosphatidic acid activates mammalian target of rapamycin complex 1 (mTORC1) kinase by displacing FK506 binding protein 38 (FKBP38) and exerting an allosteric effect. J. Biol. Chem. 2011, 286:29568-29574.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 29568-29574
-
-
Yoon, M.-S.1
-
55
-
-
33845547658
-
A role for phospholipase D in Drosophila embryonic cellularization
-
LaLonde M., et al. A role for phospholipase D in Drosophila embryonic cellularization. BMC Dev. Biol. 2006, 6:60.
-
(2006)
BMC Dev. Biol.
, vol.6
, pp. 60
-
-
LaLonde, M.1
-
56
-
-
77649315183
-
3 integrin activation and shear-dependent thrombus formation in mice lacking phospholipase D1
-
3 integrin activation and shear-dependent thrombus formation in mice lacking phospholipase D1. Sci. Signal. 2010, 3:ra1.
-
(2010)
Sci. Signal.
, vol.3
, pp. ra1
-
-
Elvers, M.1
-
57
-
-
79958129661
-
PLD1 rather than PLD2 regulates phorbol-ester-, adhesion-dependent and Fcγ-receptor-stimulated ROS production in neutrophils
-
Norton L.J., et al. PLD1 rather than PLD2 regulates phorbol-ester-, adhesion-dependent and Fcγ-receptor-stimulated ROS production in neutrophils. J. Cell Sci. 2011, 124:1973-1983.
-
(2011)
J. Cell Sci.
, vol.124
, pp. 1973-1983
-
-
Norton, L.J.1
-
58
-
-
84868121895
-
Redundant functions of phospholipases D1 and D2 in platelet α-granule release
-
Thielmann I., et al. Redundant functions of phospholipases D1 and D2 in platelet α-granule release. J. Thromb. Haemost. 2012, 10:2361-2372.
-
(2012)
J. Thromb. Haemost.
, vol.10
, pp. 2361-2372
-
-
Thielmann, I.1
-
59
-
-
84874433733
-
Regulation of small GTPases by GEFs, GAPs, and GDIs
-
Cherfils J., Zeghouf M. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol. Rev. 2013, 93:269-309.
-
(2013)
Physiol. Rev.
, vol.93
, pp. 269-309
-
-
Cherfils, J.1
Zeghouf, M.2
-
60
-
-
2442669194
-
The GTPase-activating protein Rap1GAP uses a catalytic asparagine
-
Daumke O., et al. The GTPase-activating protein Rap1GAP uses a catalytic asparagine. Nature 2004, 429:197-201.
-
(2004)
Nature
, vol.429
, pp. 197-201
-
-
Daumke, O.1
-
61
-
-
4444276510
-
Biochemical and functional characterizations of small GTPase Rheb and TSC2 GAP activity
-
Li Y., et al. Biochemical and functional characterizations of small GTPase Rheb and TSC2 GAP activity. Mol. Cell. Biol. 2004, 24:7965-7975.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 7965-7975
-
-
Li, Y.1
-
62
-
-
84865800800
-
An autoinhibited noncanonical mechanism of GTP hydrolysis by Rheb maintains mTORC1 homeostasis
-
Mazhab-Jafari M.T., et al. An autoinhibited noncanonical mechanism of GTP hydrolysis by Rheb maintains mTORC1 homeostasis. Structure 2012, 20:1528-1539.
-
(2012)
Structure
, vol.20
, pp. 1528-1539
-
-
Mazhab-Jafari, M.T.1
-
63
-
-
0030888163
-
The Ras-related protein Rheb is farnesylated and antagonizes Ras signaling and transformation
-
Clark G.J., et al. The Ras-related protein Rheb is farnesylated and antagonizes Ras signaling and transformation. J. Biol. Chem. 1997, 272:10608-10615.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 10608-10615
-
-
Clark, G.J.1
-
64
-
-
20444442724
-
Structural basis for the unique biological function of small GTPase RHEB
-
Yu Y., et al. Structural basis for the unique biological function of small GTPase RHEB. J. Biol. Chem. 2005, 280:17093-17100.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 17093-17100
-
-
Yu, Y.1
-
65
-
-
84894114029
-
Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome
-
Menon S., et al. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 2014, 156:771-785.
-
(2014)
Cell
, vol.156
, pp. 771-785
-
-
Menon, S.1
-
66
-
-
32244435285
-
Regulation of the small GTPase Rheb by amino acids
-
Roccio M., et al. Regulation of the small GTPase Rheb by amino acids. Oncogene 2006, 25:657-664.
-
(2006)
Oncogene
, vol.25
, pp. 657-664
-
-
Roccio, M.1
-
67
-
-
0037191045
-
Tuberous sclerosis complex tumor suppressor-mediated S6 kinase inhibition by phosphatidylinositide-3-OH kinase is mTOR independent
-
Jaeschke A., et al. Tuberous sclerosis complex tumor suppressor-mediated S6 kinase inhibition by phosphatidylinositide-3-OH kinase is mTOR independent. J. Cell Biol. 2002, 159:217-224.
-
(2002)
J. Cell Biol.
, vol.159
, pp. 217-224
-
-
Jaeschke, A.1
-
68
-
-
0033582748
-
Gigas, a Drosophila homolog of tuberous sclerosis gene product-2, regulates the cell cycle
-
Ito N., Rubin G.M. gigas, a Drosophila homolog of tuberous sclerosis gene product-2, regulates the cell cycle. Cell 1999, 96:529-539.
-
(1999)
Cell
, vol.96
, pp. 529-539
-
-
Ito, N.1
Rubin, G.M.2
-
69
-
-
0033559663
-
Renal carcinogenesis, hepatic hemangiomatosis, and embryonic lethality caused by a germ-line Tsc2 mutation in mice
-
Kobayashi T., et al. Renal carcinogenesis, hepatic hemangiomatosis, and embryonic lethality caused by a germ-line Tsc2 mutation in mice. Cancer Res. 1999, 59:1206-1211.
-
(1999)
Cancer Res.
, vol.59
, pp. 1206-1211
-
-
Kobayashi, T.1
-
70
-
-
0037108151
-
Lethality of Drosophila lacking TSC tumor suppressor function rescued by reducing dS6K signaling
-
Radimerski T., et al. Lethality of Drosophila lacking TSC tumor suppressor function rescued by reducing dS6K signaling. Genes Dev. 2002, 16:2627-2632.
-
(2002)
Genes Dev.
, vol.16
, pp. 2627-2632
-
-
Radimerski, T.1
-
71
-
-
33644781670
-
Drosophila target of rapamycin kinase functions as a multimer
-
Zhang Y., et al. Drosophila target of rapamycin kinase functions as a multimer. Genetics 2006, 172:355-362.
-
(2006)
Genetics
, vol.172
, pp. 355-362
-
-
Zhang, Y.1
-
72
-
-
48649085816
-
Regulation of TORC1 by Rag GTPases in nutrient response
-
Kim E., et al. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 2008, 10:935-945.
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 935-945
-
-
Kim, E.1
-
73
-
-
0032213545
-
Hamartin, the product of the tuberous sclerosis 1 (TSC1) gene, interacts with tuberin and appears to be localized to cytoplasmic vesicles
-
Plank T.L., et al. Hamartin, the product of the tuberous sclerosis 1 (TSC1) gene, interacts with tuberin and appears to be localized to cytoplasmic vesicles. Cancer Res. 1998, 58:4766-4770.
-
(1998)
Cancer Res.
, vol.58
, pp. 4766-4770
-
-
Plank, T.L.1
-
74
-
-
7144255533
-
Interaction between hamartin and tuberin, the TSC1 and TSC2 gene products
-
van Slegtenhorst M., et al. Interaction between hamartin and tuberin, the TSC1 and TSC2 gene products. Hum. Mol. Genet. 1998, 7:1053-1057.
-
(1998)
Hum. Mol. Genet.
, vol.7
, pp. 1053-1057
-
-
van Slegtenhorst, M.1
-
75
-
-
84865371057
-
TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1
-
Dibble C.C., et al. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol. Cell 2012, 47:535-546.
-
(2012)
Mol. Cell
, vol.47
, pp. 535-546
-
-
Dibble, C.C.1
-
76
-
-
84866519139
-
The TSC1-TSC2 complex consists of multiple TSC1 and TSC2 subunits
-
Hoogeveen-Westerveld M., et al. The TSC1-TSC2 complex consists of multiple TSC1 and TSC2 subunits. BMC Biochem. 2012, 13:18.
-
(2012)
BMC Biochem.
, vol.13
, pp. 18
-
-
Hoogeveen-Westerveld, M.1
-
77
-
-
84880366057
-
Crystal structure of the yeast TSC1 core domain and implications for tuberous sclerosis pathological mutations
-
Sun W., et al. Crystal structure of the yeast TSC1 core domain and implications for tuberous sclerosis pathological mutations. Nat. Commun. 2013, 4:2135.
-
(2013)
Nat. Commun.
, vol.4
, pp. 2135
-
-
Sun, W.1
-
78
-
-
44449161481
-
The TSC1-TSC2 complex: a molecular switchboard controlling cell growth
-
Huang J., Manning B.D. The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem. J. 2008, 412:179-190.
-
(2008)
Biochem. J.
, vol.412
, pp. 179-190
-
-
Huang, J.1
Manning, B.D.2
-
79
-
-
17844369428
-
The tuberous sclerosis-1 (TSC1) gene product hamartin suppresses cell growth and augments the expression of the TSC2 product tuberin by inhibiting its ubiquitination
-
Benvenuto G., et al. The tuberous sclerosis-1 (TSC1) gene product hamartin suppresses cell growth and augments the expression of the TSC2 product tuberin by inhibiting its ubiquitination. Oncogene 2000, 19:6306-6316.
-
(2000)
Oncogene
, vol.19
, pp. 6306-6316
-
-
Benvenuto, G.1
-
80
-
-
34547590810
-
Functional dissection of Rab GTPases involved in primary cilium formation
-
Yoshimura S-I., et al. Functional dissection of Rab GTPases involved in primary cilium formation. J. Cell Biol. 2007, 178:363-369.
-
(2007)
J. Cell Biol.
, vol.178
, pp. 363-369
-
-
Yoshimura, S.-I.1
-
81
-
-
0035798385
-
Evolution of the Rab family of small GTP-binding proteins
-
Pereira-Leal J.B., Seabra M.C. Evolution of the Rab family of small GTP-binding proteins. J. Mol. Biol. 2001, 313:889-901.
-
(2001)
J. Mol. Biol.
, vol.313
, pp. 889-901
-
-
Pereira-Leal, J.B.1
Seabra, M.C.2
-
82
-
-
80855128256
-
Modularity and hormone sensitivity of the Drosophila melanogaster insulin receptor/target of rapamycin interaction proteome
-
Glatter T., et al. Modularity and hormone sensitivity of the Drosophila melanogaster insulin receptor/target of rapamycin interaction proteome. Mol. Syst. Biol. 2011, 7:547.
-
(2011)
Mol. Syst. Biol.
, vol.7
, pp. 547
-
-
Glatter, T.1
-
83
-
-
33847174115
-
Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase
-
Hsu Y-C., et al. Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase. Nature 2007, 445:785-788.
-
(2007)
Nature
, vol.445
, pp. 785-788
-
-
Hsu, Y.-C.1
-
84
-
-
69949143367
-
Molecular basis of the acceleration of the GDP-GTP exchange of human Ras homolog enriched in brain by human translationally controlled tumor protein
-
Dong X., et al. Molecular basis of the acceleration of the GDP-GTP exchange of human Ras homolog enriched in brain by human translationally controlled tumor protein. J. Biol. Chem. 2009, 284:23754-23764.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 23754-23764
-
-
Dong, X.1
-
85
-
-
49649086599
-
Biochemical characterisation of TCTP questions its function as a guanine nucleotide exchange factor for Rheb
-
Rehmann H., et al. Biochemical characterisation of TCTP questions its function as a guanine nucleotide exchange factor for Rheb. FEBS Lett. 2008, 582:3005-3010.
-
(2008)
FEBS Lett.
, vol.582
, pp. 3005-3010
-
-
Rehmann, H.1
-
86
-
-
34347391544
-
A knockout mouse approach reveals that TCTP functions as an essential factor for cell proliferation and survival in a tissue- or cell type-specific manner
-
Chen S.H., et al. A knockout mouse approach reveals that TCTP functions as an essential factor for cell proliferation and survival in a tissue- or cell type-specific manner. Mol. Biol. Cell 2007, 18:2525-2532.
-
(2007)
Mol. Biol. Cell
, vol.18
, pp. 2525-2532
-
-
Chen, S.H.1
-
87
-
-
20744435491
-
Phosphorylation and binding partner analysis of the TSC1-TSC2 complex
-
Nellist M., et al. Phosphorylation and binding partner analysis of the TSC1-TSC2 complex. Biochem. Biophys. Res. Commun. 2005, 333:818-826.
-
(2005)
Biochem. Biophys. Res. Commun.
, vol.333
, pp. 818-826
-
-
Nellist, M.1
-
88
-
-
57749196164
-
Sphingosine-1-phosphate induced mTOR-activation is mediated by the E3-ubiquitin ligase PAM
-
Maeurer C., et al. Sphingosine-1-phosphate induced mTOR-activation is mediated by the E3-ubiquitin ligase PAM. Cell. Signal. 2009, 21:293-300.
-
(2009)
Cell. Signal.
, vol.21
, pp. 293-300
-
-
Maeurer, C.1
-
89
-
-
84874849890
-
Membrane-dependent modulation of the mTOR activator Rheb: NMR observations of a GTPase tethered to a lipid-bilayer nanodisc
-
Mazhab-Jafari M.T., et al. Membrane-dependent modulation of the mTOR activator Rheb: NMR observations of a GTPase tethered to a lipid-bilayer nanodisc. J. Am. Chem. Soc. 2013, 135:3367-3370.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 3367-3370
-
-
Mazhab-Jafari, M.T.1
-
90
-
-
0028143584
-
Physiological concentrations of purines and pyrimidines
-
Traut T.W. Physiological concentrations of purines and pyrimidines. Mol. Cell. Biochem. 1994, 140:1-22.
-
(1994)
Mol. Cell. Biochem.
, vol.140
, pp. 1-22
-
-
Traut, T.W.1
-
91
-
-
67650523945
-
Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway
-
Zhang H.H., et al. Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway. PLoS ONE 2009, 4:e6189.
-
(2009)
PLoS ONE
, vol.4
, pp. e6189
-
-
Zhang, H.H.1
-
92
-
-
5444233787
-
Tsc2 is not a critical target of Akt during normal Drosophila development
-
Dong J., Pan D. Tsc2 is not a critical target of Akt during normal Drosophila development. Genes Dev. 2004, 18:2479-2484.
-
(2004)
Genes Dev.
, vol.18
, pp. 2479-2484
-
-
Dong, J.1
Pan, D.2
-
93
-
-
84855970149
-
Tissue-specific coupling between insulin/IGF and TORC1 signaling via PRAS40 in Drosophila
-
Pallares-Cartes C., et al. Tissue-specific coupling between insulin/IGF and TORC1 signaling via PRAS40 in Drosophila. Dev. Cell 2012, 22:172-182.
-
(2012)
Dev. Cell
, vol.22
, pp. 172-182
-
-
Pallares-Cartes, C.1
-
94
-
-
84897534723
-
Phosphorylation by Akt within the ST loop of AMPK-α1 down-regulates its activation in tumour cells
-
Hawley S.A., et al. Phosphorylation by Akt within the ST loop of AMPK-α1 down-regulates its activation in tumour cells. Biochem. J. 2014, 459:275-287.
-
(2014)
Biochem. J.
, vol.459
, pp. 275-287
-
-
Hawley, S.A.1
-
95
-
-
1342342993
-
PDK1, the master regulator of AGC kinase signal transduction
-
Mora A., et al. PDK1, the master regulator of AGC kinase signal transduction. Semin. Cell Dev. Biol. 2004, 15:161-170.
-
(2004)
Semin. Cell Dev. Biol.
, vol.15
, pp. 161-170
-
-
Mora, A.1
-
96
-
-
72949093349
-
The nuts and bolts of AGC protein kinases
-
Pearce L.R., et al. The nuts and bolts of AGC protein kinases. Nat. Rev. Mol. Cell Biol. 2010, 11:9-22.
-
(2010)
Nat. Rev. Mol. Cell Biol.
, vol.11
, pp. 9-22
-
-
Pearce, L.R.1
-
97
-
-
84899484738
-
Cell-cycle-regulated activation of Akt kinase by phosphorylation at its carboxyl terminus
-
Liu P., et al. Cell-cycle-regulated activation of Akt kinase by phosphorylation at its carboxyl terminus. Nature 2014, 508:541-545.
-
(2014)
Nature
, vol.508
, pp. 541-545
-
-
Liu, P.1
-
98
-
-
79960470913
-
MTOR complex 2 signaling and functions
-
Oh W.J., Jacinto E. mTOR complex 2 signaling and functions. Cell Cycle 2011, 10:2305-2316.
-
(2011)
Cell Cycle
, vol.10
, pp. 2305-2316
-
-
Oh, W.J.1
Jacinto, E.2
-
99
-
-
13844312400
-
Phosphorylation and regulation of Akt/PKB by the Rictor-mTOR complex
-
Sarbassov D.D., et al. Phosphorylation and regulation of Akt/PKB by the Rictor-mTOR complex. Science 2005, 307:1098-1101.
-
(2005)
Science
, vol.307
, pp. 1098-1101
-
-
Sarbassov, D.D.1
-
100
-
-
28844434558
-
MTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes
-
Hresko R.C., Mueckler M. mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J. Biol. Chem. 2005, 280:40406-40416.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 40406-40416
-
-
Hresko, R.C.1
Mueckler, M.2
-
101
-
-
79953216041
-
Evidence for direct activation of mTORC2 kinase activity by phosphatidylinositol 3,4,5-trisphosphate
-
Gan X., et al. Evidence for direct activation of mTORC2 kinase activity by phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 2011, 286:10998-11002.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 10998-11002
-
-
Gan, X.1
-
102
-
-
84876685913
-
PI3K regulation of the SKP-2/p27 axis through mTORC2
-
Shanmugasundaram K., et al. PI3K regulation of the SKP-2/p27 axis through mTORC2. Oncogene 2013, 32:2027-2036.
-
(2013)
Oncogene
, vol.32
, pp. 2027-2036
-
-
Shanmugasundaram, K.1
-
103
-
-
0029942186
-
Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors
-
Andjelkovic M., et al. Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors. Proc. Natl. Acad. Sci. U.S.A. 1996, 93:5699-5704.
-
(1996)
Proc. Natl. Acad. Sci. U.S.A.
, vol.93
, pp. 5699-5704
-
-
Andjelkovic, M.1
-
104
-
-
33947203621
-
PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms
-
Brognard J., et al. PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol. Cell 2007, 25:917-931.
-
(2007)
Mol. Cell
, vol.25
, pp. 917-931
-
-
Brognard, J.1
-
105
-
-
78649961357
-
Inositol pyrophosphates inhibit Akt signaling, thereby regulating insulin sensitivity and weight gain
-
Chakraborty A., et al. Inositol pyrophosphates inhibit Akt signaling, thereby regulating insulin sensitivity and weight gain. Cell 2010, 143:897-910.
-
(2010)
Cell
, vol.143
, pp. 897-910
-
-
Chakraborty, A.1
-
106
-
-
33847397874
-
Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40
-
Vander Haar E., et al. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol. 2007, 9:316-323.
-
(2007)
Nat. Cell Biol.
, vol.9
, pp. 316-323
-
-
Vander Haar, E.1
-
107
-
-
34547099855
-
PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding
-
Wang L., et al. PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J. Biol. Chem. 2007, 282:20036-20044.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 20036-20044
-
-
Wang, L.1
-
108
-
-
47049127002
-
Regulation of proline-rich Akt substrate of 40kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation
-
Wang L., et al. Regulation of proline-rich Akt substrate of 40kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation. J. Biol. Chem. 2008, 283:15619-15627.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 15619-15627
-
-
Wang, L.1
-
109
-
-
80055073635
-
The mechanism of insulin-stimulated 4E-BP protein binding to mammalian target of rapamycin (mTOR) complex 1 and its contribution to mTOR complex 1 signaling
-
Rapley J., et al. The mechanism of insulin-stimulated 4E-BP protein binding to mammalian target of rapamycin (mTOR) complex 1 and its contribution to mTOR complex 1 signaling. J. Biol. Chem. 2011, 286:38043-38053.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 38043-38053
-
-
Rapley, J.1
-
110
-
-
41649101570
-
The binding of PRAS40 to 14-3-3 proteins is not required for activation of mTORC1 signalling by phorbol esters/ERK
-
Fonseca B.D., et al. The binding of PRAS40 to 14-3-3 proteins is not required for activation of mTORC1 signalling by phorbol esters/ERK. Biochem. J. 2008, 411:141-149.
-
(2008)
Biochem. J.
, vol.411
, pp. 141-149
-
-
Fonseca, B.D.1
-
111
-
-
84896268983
-
PRAS40 plays a pivotal role in protecting against stroke by linking the Akt and mTOR pathways
-
Xiong X., et al. PRAS40 plays a pivotal role in protecting against stroke by linking the Akt and mTOR pathways. Neurobiol. Dis. 2014, 66:43-52.
-
(2014)
Neurobiol. Dis.
, vol.66
, pp. 43-52
-
-
Xiong, X.1
-
112
-
-
67349241955
-
DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival
-
Peterson T.R., et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 2009, 137:873-886.
-
(2009)
Cell
, vol.137
, pp. 873-886
-
-
Peterson, T.R.1
-
113
-
-
67651210833
-
Site-specific mTOR phosphorylation promotes mTORC1-mediated signaling and cell growth
-
Acosta-Jaquez H.A., et al. Site-specific mTOR phosphorylation promotes mTORC1-mediated signaling and cell growth. Mol. Cell. Biol. 2009, 29:4308-4324.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 4308-4324
-
-
Acosta-Jaquez, H.A.1
-
114
-
-
84906971768
-
Akt-dependent activation of mTORC1 complex involves phosphorylation of mTOR (mammalian target of rapamycin) by IκB kinase α (IKKα)
-
Dan H.C., et al. Akt-dependent activation of mTORC1 complex involves phosphorylation of mTOR (mammalian target of rapamycin) by IκB kinase α (IKKα). J. Biol. Chem. 2014, 289:25227-25240.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 25227-25240
-
-
Dan, H.C.1
-
115
-
-
22544455676
-
Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase
-
Holz M.K., Blenis J. Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase. J. Biol. Chem. 2005, 280:26089-26093.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 26089-26093
-
-
Holz, M.K.1
Blenis, J.2
-
116
-
-
77950900079
-
MTOR Ser-2481 autophosphorylation monitors mTORC-specific catalytic activity and clarifies rapamycin mechanism of action
-
Soliman G.A., et al. mTOR Ser-2481 autophosphorylation monitors mTORC-specific catalytic activity and clarifies rapamycin mechanism of action. J. Biol. Chem. 2010, 285:7866-7879.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 7866-7879
-
-
Soliman, G.A.1
-
117
-
-
76449100739
-
MTOR phosphorylated at S2448 binds to Raptor and Rictor
-
Rosner M., et al. mTOR phosphorylated at S2448 binds to Raptor and Rictor. Amino Acids 2010, 38:223-228.
-
(2010)
Amino Acids
, vol.38
, pp. 223-228
-
-
Rosner, M.1
-
118
-
-
67649344456
-
Mammalian target of rapamycin complex 1 (mTORC1) activity is associated with phosphorylation of raptor by mTOR
-
Wang L., et al. Mammalian target of rapamycin complex 1 (mTORC1) activity is associated with phosphorylation of raptor by mTOR. J. Biol. Chem. 2009, 284:14693-14697.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 14693-14697
-
-
Wang, L.1
-
119
-
-
73649098283
-
Regulation of mTOR complex 1 (mTORC1) by raptor Ser863 and multisite phosphorylation
-
Foster K.G., et al. Regulation of mTOR complex 1 (mTORC1) by raptor Ser863 and multisite phosphorylation. J. Biol. Chem. 2010, 285:80-94.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 80-94
-
-
Foster, K.G.1
-
120
-
-
18544375193
-
Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin
-
Dan H.C., et al. Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin. J. Biol. Chem. 2002, 277:35364-35370.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 35364-35370
-
-
Dan, H.C.1
-
121
-
-
0038362751
-
Akt activation promotes degradation of tuberin and FOXO3a via the proteasome
-
Plas D.R., Thompson C.B. Akt activation promotes degradation of tuberin and FOXO3a via the proteasome. J. Biol. Chem. 2003, 278:12361-12366.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 12361-12366
-
-
Plas, D.R.1
Thompson, C.B.2
-
122
-
-
33646111903
-
Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning
-
Cai S-L., et al. Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. J. Cell Biol. 2006, 173:279-289.
-
(2006)
J. Cell Biol.
, vol.173
, pp. 279-289
-
-
Cai, S.-L.1
-
123
-
-
84885105969
-
A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS
-
Zhang J., et al. A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS. Nat. Cell Biol. 2013, 15:1186-1196.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 1186-1196
-
-
Zhang, J.1
-
124
-
-
77951213258
-
Insulin like growth factor-1-induced phosphorylation and altered distribution of tuberous sclerosis complex (TSC)1/TSC2 in C2C12 myotubes
-
Miyazaki M., et al. Insulin like growth factor-1-induced phosphorylation and altered distribution of tuberous sclerosis complex (TSC)1/TSC2 in C2C12 myotubes. FEBS J. 2010, 277:2180-2191.
-
(2010)
FEBS J.
, vol.277
, pp. 2180-2191
-
-
Miyazaki, M.1
-
125
-
-
0033553624
-
Interaction of RAFT1 with gephyrin required for rapamycin-sensitive signaling
-
Sabatini D.M., et al. Interaction of RAFT1 with gephyrin required for rapamycin-sensitive signaling. Science 1999, 284:1161-1164.
-
(1999)
Science
, vol.284
, pp. 1161-1164
-
-
Sabatini, D.M.1
-
126
-
-
18244362311
-
Novel role of the small GTPase Rheb: its implication in endocytic pathway independent of the activation of mammalian target of rapamycin
-
Saito K., et al. Novel role of the small GTPase Rheb: its implication in endocytic pathway independent of the activation of mammalian target of rapamycin. J. Biochem. 2005, 137:423-430.
-
(2005)
J. Biochem.
, vol.137
, pp. 423-430
-
-
Saito, K.1
-
127
-
-
45849105156
-
The Rag GTPases bind Raptor and mediate amino acid signaling to mTORC1
-
Sancak Y., et al. The Rag GTPases bind Raptor and mediate amino acid signaling to mTORC1. Science 2008, 320:1496-1501.
-
(2008)
Science
, vol.320
, pp. 1496-1501
-
-
Sancak, Y.1
-
128
-
-
84926418992
-
MCRS1 binds and couples Rheb to amino acid-dependent mTORC1 activation
-
Fawal M-A., et al. MCRS1 binds and couples Rheb to amino acid-dependent mTORC1 activation. Dev. Cell 2015, 33:67-81.
-
(2015)
Dev. Cell
, vol.33
, pp. 67-81
-
-
Fawal, M.-A.1
-
129
-
-
84894212463
-
Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2
-
Demetriades C., et al. Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell 2014, 156:786-799.
-
(2014)
Cell
, vol.156
, pp. 786-799
-
-
Demetriades, C.1
-
130
-
-
0030879277
-
Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34
-
van Slegtenhorst M., et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 1997, 277:805-808.
-
(1997)
Science
, vol.277
, pp. 805-808
-
-
van Slegtenhorst, M.1
-
131
-
-
0037102523
-
Multicompartmental distribution of the tuberous sclerosis gene products, hamartin and tuberin
-
Yamamoto Y., et al. Multicompartmental distribution of the tuberous sclerosis gene products, hamartin and tuberin. Arch. Biochem. Biophys. 2002, 404:210-217.
-
(2002)
Arch. Biochem. Biophys.
, vol.404
, pp. 210-217
-
-
Yamamoto, Y.1
-
132
-
-
77951768486
-
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Sancak Y., et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010, 141:290-303.
-
(2010)
Cell
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
-
133
-
-
84896702221
-
Mammalian target of rapamycin complex I (mTORC1) activity in Ras Homologue enriched in brain (Rheb)-deficient mouse embryonic fibroblasts
-
Groenewoud M.J., et al. Mammalian target of rapamycin complex I (mTORC1) activity in Ras Homologue enriched in brain (Rheb)-deficient mouse embryonic fibroblasts. PLoS ONE 2013, 8:e81649.
-
(2013)
PLoS ONE
, vol.8
, pp. e81649
-
-
Groenewoud, M.J.1
-
134
-
-
84878357685
-
A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1
-
Bar-Peled L., et al. A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 2013, 340:1100-1106.
-
(2013)
Science
, vol.340
, pp. 1100-1106
-
-
Bar-Peled, L.1
-
135
-
-
79955389182
-
Cell-type-dependent regulation of mTORC1 by REDD1 and the tumor suppressors TSC1/TSC2 and LKB1 in response to hypoxia
-
Wolff N.C., et al. Cell-type-dependent regulation of mTORC1 by REDD1 and the tumor suppressors TSC1/TSC2 and LKB1 in response to hypoxia. Mol. Cell. Biol. 2011, 31:1870-1884.
-
(2011)
Mol. Cell. Biol.
, vol.31
, pp. 1870-1884
-
-
Wolff, N.C.1
-
136
-
-
33749076673
-
SIN1/MIP1 maintains Rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity
-
Jacinto E., et al. SIN1/MIP1 maintains Rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 2006, 127:125-137.
-
(2006)
Cell
, vol.127
, pp. 125-137
-
-
Jacinto, E.1
-
137
-
-
33751348056
-
Ablation in mice of the mTORC components Raptor, Rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCα, but not S6K1
-
Guertin D.A., et al. Ablation in mice of the mTORC components Raptor, Rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCα, but not S6K1. Dev. Cell 2006, 11:859-871.
-
(2006)
Dev. Cell
, vol.11
, pp. 859-871
-
-
Guertin, D.A.1
-
138
-
-
58649114084
-
MTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice
-
Guertin D.A., et al. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell 2009, 15:148-159.
-
(2009)
Cancer Cell
, vol.15
, pp. 148-159
-
-
Guertin, D.A.1
-
139
-
-
61349141302
-
Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2
-
Feldman M.E., et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 2009, 7:e38.
-
(2009)
PLoS Biol.
, vol.7
, pp. e38
-
-
Feldman, M.E.1
-
140
-
-
67650312583
-
Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR)
-
García-Martínez J.M., et al. Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem. J. 2009, 421:29-42.
-
(2009)
Biochem. J.
, vol.421
, pp. 29-42
-
-
García-Martínez, J.M.1
-
141
-
-
0029804116
-
Mechanism of activation of protein kinase B by insulin and IGF-1
-
Alessi D.R., et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 1996, 15:6541-6551.
-
(1996)
EMBO J.
, vol.15
, pp. 6541-6551
-
-
Alessi, D.R.1
-
142
-
-
0036295728
-
Molecular mechanism for the regulation of protein kinase B/Akt by hydrophobic motif phosphorylation
-
Yang J., et al. Molecular mechanism for the regulation of protein kinase B/Akt by hydrophobic motif phosphorylation. Mol. Cell 2002, 9:1227-1240.
-
(2002)
Mol. Cell
, vol.9
, pp. 1227-1240
-
-
Yang, J.1
-
143
-
-
47949125486
-
The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C
-
Facchinetti V., et al. The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J. 2008, 27:1932-1943.
-
(2008)
EMBO J.
, vol.27
, pp. 1932-1943
-
-
Facchinetti, V.1
-
144
-
-
0034718540
-
Modulation of Akt kinase activity by binding to Hsp90
-
Sato S., et al. Modulation of Akt kinase activity by binding to Hsp90. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:10832-10837.
-
(2000)
Proc. Natl. Acad. Sci. U.S.A.
, vol.97
, pp. 10832-10837
-
-
Sato, S.1
-
145
-
-
84923277043
-
Making sense of amino acid sensing
-
Abraham R.T. Making sense of amino acid sensing. Science 2015, 347:128-129.
-
(2015)
Science
, vol.347
, pp. 128-129
-
-
Abraham, R.T.1
-
146
-
-
84873665112
-
Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival
-
Efeyan A., et al. Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature 2013, 493:679-683.
-
(2013)
Nature
, vol.493
, pp. 679-683
-
-
Efeyan, A.1
-
147
-
-
84866431363
-
Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1
-
Bar-Peled L., et al. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 2012, 150:1196-1208.
-
(2012)
Cell
, vol.150
, pp. 1196-1208
-
-
Bar-Peled, L.1
-
148
-
-
84856453804
-
Regulation of TOR by small GTPases
-
Durán R.V., Hall M.N. Regulation of TOR by small GTPases. EMBO Rep. 2012, 13:121-128.
-
(2012)
EMBO Rep.
, vol.13
, pp. 121-128
-
-
Durán, R.V.1
Hall, M.N.2
-
149
-
-
21244480367
-
The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses
-
Smith E.M., et al. The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses. J. Biol. Chem. 2005, 280:18717-18727.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 18717-18727
-
-
Smith, E.M.1
-
150
-
-
26444575415
-
Amino acids mediate mTOR/Raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase
-
Nobukuni T., et al. Amino acids mediate mTOR/Raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:14238-14243.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 14238-14243
-
-
Nobukuni, T.1
-
151
-
-
79953211540
-
Amino acids activate mammalian target of rapamycin complex 2 (mTORC2) via PI3K/Akt signaling
-
Tato I., et al. Amino acids activate mammalian target of rapamycin complex 2 (mTORC2) via PI3K/Akt signaling. J. Biol. Chem. 2011, 286:6128-6142.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 6128-6142
-
-
Tato, I.1
-
152
-
-
84912068759
-
Rab1A is an mTORC1 activator and a colorectal oncogene
-
Thomas J.D., et al. Rab1A is an mTORC1 activator and a colorectal oncogene. Cancer Cell 2014, 26:754-769.
-
(2014)
Cancer Cell
, vol.26
, pp. 754-769
-
-
Thomas, J.D.1
-
153
-
-
69249227502
-
Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function
-
Saftig P., Klumperman J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat. Rev. Mol. Cell Biol. 2009, 10:623-635.
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 623-635
-
-
Saftig, P.1
Klumperman, J.2
-
154
-
-
18344394166
-
Post-prenylation-processing enzymes as new targets in oncogenesis
-
Winter-Vann A.M., Casey P.J. Post-prenylation-processing enzymes as new targets in oncogenesis. Nat. Rev. Cancer 2005, 5:405-412.
-
(2005)
Nat. Rev. Cancer
, vol.5
, pp. 405-412
-
-
Winter-Vann, A.M.1
Casey, P.J.2
-
155
-
-
84870175363
-
Rab proteins of the endoplasmic reticulum: functions and interactors
-
Sandoval C.O., Simmen T. Rab proteins of the endoplasmic reticulum: functions and interactors. Biochem. Soc. Trans. 2012, 40:1426-1432.
-
(2012)
Biochem. Soc. Trans.
, vol.40
, pp. 1426-1432
-
-
Sandoval, C.O.1
Simmen, T.2
|