메뉴 건너뛰기




Volumn 25, Issue 9, 2015, Pages 545-555

Regulation of mTORC1 by PI3K signaling

Author keywords

Insulin; Lysosome; Rag; Raptor; Rheb; TSC2

Indexed keywords

AMINO ACID; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; PHOSPHATIDYLINOSITOL 3 KINASE; PROTEIN KINASE B; PROTEIN RAPTOR; RHEB PROTEIN; TUBERIN; UNCLASSIFIED DRUG; INSULIN; MECHANISTIC TARGET OF RAPAMYCIN COMPLEX 1; MULTIPROTEIN COMPLEX; SIGNAL PEPTIDE; TARGET OF RAPAMYCIN KINASE;

EID: 84940467267     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2015.06.002     Document Type: Review
Times cited : (615)

References (155)
  • 1
    • 84893249799 scopus 로고    scopus 로고
    • PI3K and cancer: lessons, challenges and opportunities
    • Fruman D.A., Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nat. Rev. Drug Discov. 2014, 13:140-156.
    • (2014) Nat. Rev. Drug Discov. , vol.13 , pp. 140-156
    • Fruman, D.A.1    Rommel, C.2
  • 3
    • 84925545317 scopus 로고    scopus 로고
    • PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting
    • Thorpe L.M., et al. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat. Rev. Cancer 2015, 15:7-24.
    • (2015) Nat. Rev. Cancer , vol.15 , pp. 7-24
    • Thorpe, L.M.1
  • 4
    • 84857406235 scopus 로고    scopus 로고
    • PI3K signalling: the path to discovery and understanding
    • Vanhaesebroeck B., et al. PI3K signalling: the path to discovery and understanding. Nat. Rev. Mol. Cell Biol. 2012, 13:195-203.
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 195-203
    • Vanhaesebroeck, B.1
  • 5
    • 84859778293 scopus 로고    scopus 로고
    • MTOR signaling in growth control and disease
    • Laplante M., Sabatini D.M. mTOR signaling in growth control and disease. Cell 2012, 149:274-293.
    • (2012) Cell , vol.149 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 6
    • 83455177213 scopus 로고    scopus 로고
    • Target of rapamycin (TOR) in nutrient signaling and growth control
    • Loewith R., Hall M.N. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 2011, 189:1177-1201.
    • (2011) Genetics , vol.189 , pp. 1177-1201
    • Loewith, R.1    Hall, M.N.2
  • 7
    • 84880566446 scopus 로고    scopus 로고
    • A growing role for mTOR in promoting anabolic metabolism
    • Howell J.J., et al. A growing role for mTOR in promoting anabolic metabolism. Biochem. Soc. Trans. 2013, 41:906-912.
    • (2013) Biochem. Soc. Trans. , vol.41 , pp. 906-912
    • Howell, J.J.1
  • 8
    • 84874655800 scopus 로고    scopus 로고
    • The multifaceted role of mTORC1 in the control of lipid metabolism
    • Ricoult S.J.H., Manning B.D. The multifaceted role of mTORC1 in the control of lipid metabolism. EMBO Rep. 2013, 14:242-251.
    • (2013) EMBO Rep. , vol.14 , pp. 242-251
    • Ricoult, S.J.H.1    Manning, B.D.2
  • 9
    • 84912528393 scopus 로고    scopus 로고
    • MTOR and autophagy: a dynamic relationship governed by nutrients and energy
    • Dunlop E.A., Tee A.R. mTOR and autophagy: a dynamic relationship governed by nutrients and energy. Semin. Cell Dev. Biol. 2014, 36:121-129.
    • (2014) Semin. Cell Dev. Biol. , vol.36 , pp. 121-129
    • Dunlop, E.A.1    Tee, A.R.2
  • 10
    • 84878532557 scopus 로고    scopus 로고
    • Signal integration by mTORC1 coordinates nutrient input with biosynthetic output
    • Dibble C.C., Manning B.D. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat. Cell Biol. 2013, 15:555-564.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 555-564
    • Dibble, C.C.1    Manning, B.D.2
  • 11
    • 84894486696 scopus 로고    scopus 로고
    • Nutrient regulation of the mTOR complex 1 signaling pathway
    • Kim S.G., et al. Nutrient regulation of the mTOR complex 1 signaling pathway. Mol. Cells 2013, 35:463-473.
    • (2013) Mol. Cells , vol.35 , pp. 463-473
    • Kim, S.G.1
  • 12
    • 84875423993 scopus 로고    scopus 로고
    • Amino acid signalling upstream of mTOR
    • Jewell J.L., et al. Amino acid signalling upstream of mTOR. Nat. Rev. Mol. Cell Biol. 2013, 14:133-139.
    • (2013) Nat. Rev. Mol. Cell Biol. , vol.14 , pp. 133-139
    • Jewell, J.L.1
  • 13
    • 84903158167 scopus 로고    scopus 로고
    • Regulation of mTORC1 by amino acids
    • Bar-Peled L., Sabatini D.M. Regulation of mTORC1 by amino acids. Trends Cell Biol. 2014, 24:400-406.
    • (2014) Trends Cell Biol. , vol.24 , pp. 400-406
    • Bar-Peled, L.1    Sabatini, D.M.2
  • 14
    • 0036385637 scopus 로고    scopus 로고
    • Coordinate regulation of translation by the PI 3-kinase and mTOR pathways
    • Martin K.A., Blenis J. Coordinate regulation of translation by the PI 3-kinase and mTOR pathways. Adv. Cancer Res. 2002, 86:1-39.
    • (2002) Adv. Cancer Res. , vol.86 , pp. 1-39
    • Martin, K.A.1    Blenis, J.2
  • 15
    • 0034982971 scopus 로고    scopus 로고
    • TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth
    • Gao X., Pan D. TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth. Genes Dev. 2001, 15:1383-1392.
    • (2001) Genes Dev. , vol.15 , pp. 1383-1392
    • Gao, X.1    Pan, D.2
  • 16
    • 0035805180 scopus 로고    scopus 로고
    • The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation
    • Tapon N., et al. The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation. Cell 2001, 105:345-355.
    • (2001) Cell , vol.105 , pp. 345-355
    • Tapon, N.1
  • 17
    • 0035805162 scopus 로고    scopus 로고
    • Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size
    • Potter C.J., et al. Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size. Cell 2001, 105:357-368.
    • (2001) Cell , vol.105 , pp. 357-368
    • Potter, C.J.1
  • 18
    • 0036501277 scopus 로고    scopus 로고
    • A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells
    • Kwiatkowski D.J., et al. A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum. Mol. Genet. 2002, 11:525-534.
    • (2002) Hum. Mol. Genet. , vol.11 , pp. 525-534
    • Kwiatkowski, D.J.1
  • 19
    • 0037163033 scopus 로고    scopus 로고
    • Tuberin regulates p70 S6 kinase activation and ribosomal protein S6 phosphorylation. A role for the TSC2 tumor suppressor gene in pulmonary lymphangioleiomyomatosis (LAM)
    • Goncharova E.A., et al. Tuberin regulates p70 S6 kinase activation and ribosomal protein S6 phosphorylation. A role for the TSC2 tumor suppressor gene in pulmonary lymphangioleiomyomatosis (LAM). J. Biol. Chem. 2002, 277:30958-30967.
    • (2002) J. Biol. Chem. , vol.277 , pp. 30958-30967
    • Goncharova, E.A.1
  • 20
    • 0037108750 scopus 로고    scopus 로고
    • Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling
    • Tee A.R., et al. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:13571-13576.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 13571-13576
    • Tee, A.R.1
  • 21
    • 0036342294 scopus 로고    scopus 로고
    • Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/Akt pathway
    • Manning B.D., et al. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/Akt pathway. Mol. Cell 2002, 10:151-162.
    • (2002) Mol. Cell , vol.10 , pp. 151-162
    • Manning, B.D.1
  • 22
    • 0036713778 scopus 로고    scopus 로고
    • TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
    • Inoki K., et al. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 2002, 4:648-657.
    • (2002) Nat. Cell Biol. , vol.4 , pp. 648-657
    • Inoki, K.1
  • 23
    • 0036714127 scopus 로고    scopus 로고
    • Akt regulates growth by directly phosphorylating Tsc2
    • Potter C.J., et al. Akt regulates growth by directly phosphorylating Tsc2. Nat. Cell Biol. 2002, 4:658-665.
    • (2002) Nat. Cell Biol. , vol.4 , pp. 658-665
    • Potter, C.J.1
  • 24
    • 0036712905 scopus 로고    scopus 로고
    • Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling
    • Gao X., et al. Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nat. Cell Biol. 2002, 4:699-704.
    • (2002) Nat. Cell Biol. , vol.4 , pp. 699-704
    • Gao, X.1
  • 25
    • 0038304516 scopus 로고    scopus 로고
    • Rheb is an essential regulator of S6K in controlling cell growth in Drosophila
    • Stocker H., et al. Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat. Cell Biol. 2003, 5:559-565.
    • (2003) Nat. Cell Biol. , vol.5 , pp. 559-565
    • Stocker, H.1
  • 26
    • 0038643484 scopus 로고    scopus 로고
    • Rheb promotes cell growth as a component of the insulin/TOR signalling network
    • Saucedo L.J., et al. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat. Cell Biol. 2003, 5:566-571.
    • (2003) Nat. Cell Biol. , vol.5 , pp. 566-571
    • Saucedo, L.J.1
  • 27
    • 0042701991 scopus 로고    scopus 로고
    • Tuberous sclerosis complex gene products, tuberin and hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb
    • Tee A.R., et al. Tuberous sclerosis complex gene products, tuberin and hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. 2003, 13:1259-1268.
    • (2003) Curr. Biol. , vol.13 , pp. 1259-1268
    • Tee, A.R.1
  • 28
    • 0043127125 scopus 로고    scopus 로고
    • Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
    • Inoki K., et al. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 2003, 17:1829-1834.
    • (2003) Genes Dev. , vol.17 , pp. 1829-1834
    • Inoki, K.1
  • 29
    • 0038433304 scopus 로고    scopus 로고
    • Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2
    • Garami A., et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol. Cell 2003, 11:1457-1466.
    • (2003) Mol. Cell , vol.11 , pp. 1457-1466
    • Garami, A.1
  • 30
    • 0041356888 scopus 로고    scopus 로고
    • Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin- and farnesylation-dependent manner
    • Castro A.F., et al. Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin- and farnesylation-dependent manner. J. Biol. Chem. 2003, 278:32493-32496.
    • (2003) J. Biol. Chem. , vol.278 , pp. 32493-32496
    • Castro, A.F.1
  • 31
    • 0038141979 scopus 로고    scopus 로고
    • Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins
    • Zhang Y., et al. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat. Cell Biol. 2003, 5:578-581.
    • (2003) Nat. Cell Biol. , vol.5 , pp. 578-581
    • Zhang, Y.1
  • 32
    • 0041827366 scopus 로고    scopus 로고
    • Drosophila Rheb GTPase is required for cell cycle progression and cell growth
    • Patel P.H., et al. Drosophila Rheb GTPase is required for cell cycle progression and cell growth. J. Cell Sci. 2003, 116:3601-3610.
    • (2003) J. Cell Sci. , vol.116 , pp. 3601-3610
    • Patel, P.H.1
  • 33
    • 79953140523 scopus 로고    scopus 로고
    • Rheb is essential for murine development
    • Goorden S.M.I., et al. Rheb is essential for murine development. Mol. Cell. Biol. 2011, 31:1672-1678.
    • (2011) Mol. Cell. Biol. , vol.31 , pp. 1672-1678
    • Goorden, S.M.I.1
  • 34
    • 78651427865 scopus 로고    scopus 로고
    • Rheb1 is required for mTORC1 and myelination in postnatal brain development
    • Zou J., et al. Rheb1 is required for mTORC1 and myelination in postnatal brain development. Dev. Cell 2011, 20:97-108.
    • (2011) Dev. Cell , vol.20 , pp. 97-108
    • Zou, J.1
  • 35
    • 0029560416 scopus 로고
    • A novel approach for expression cloning of small GTPases: identification, tissue distribution and chromosome mapping of the human homolog of Rheb
    • Gromov P.S., et al. A novel approach for expression cloning of small GTPases: identification, tissue distribution and chromosome mapping of the human homolog of Rheb. FEBS Lett. 1995, 377:221-226.
    • (1995) FEBS Lett. , vol.377 , pp. 221-226
    • Gromov, P.S.1
  • 36
    • 27944503577 scopus 로고    scopus 로고
    • Identification and characterization of RHEBL1, a novel member of Ras family, which activates transcriptional activities of NF-kappa B
    • Yuan J., et al. Identification and characterization of RHEBL1, a novel member of Ras family, which activates transcriptional activities of NF-kappa B. Mol. Biol. Rep. 2005, 32:205-214.
    • (2005) Mol. Biol. Rep. , vol.32 , pp. 205-214
    • Yuan, J.1
  • 37
    • 0141925647 scopus 로고    scopus 로고
    • Identification of dominant negative mutants of Rheb GTPase and their use to implicate the involvement of human Rheb in the activation of p70S6K
    • Tabancay A.P., et al. Identification of dominant negative mutants of Rheb GTPase and their use to implicate the involvement of human Rheb in the activation of p70S6K. J. Biol. Chem. 2003, 278:39921-39930.
    • (2003) J. Biol. Chem. , vol.278 , pp. 39921-39930
    • Tabancay, A.P.1
  • 38
    • 24044442298 scopus 로고    scopus 로고
    • Analysis of mTOR signaling by the small G-proteins, Rheb and RhebL1
    • Tee A.R., et al. Analysis of mTOR signaling by the small G-proteins, Rheb and RhebL1. FEBS Lett. 2005, 579:4763-4768.
    • (2005) FEBS Lett. , vol.579 , pp. 4763-4768
    • Tee, A.R.1
  • 39
    • 67649823420 scopus 로고    scopus 로고
    • Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein
    • Sato T., et al. Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein. J. Biol. Chem. 2009, 284:12783-12791.
    • (2009) J. Biol. Chem. , vol.284 , pp. 12783-12791
    • Sato, T.1
  • 40
    • 33646485688 scopus 로고    scopus 로고
    • TSC1/TSC2 and Rheb have different effects on TORC1 and TORC2 activity
    • Yang Q., et al. TSC1/TSC2 and Rheb have different effects on TORC1 and TORC2 activity. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:6811-6816.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 6811-6816
    • Yang, Q.1
  • 41
    • 44949215822 scopus 로고    scopus 로고
    • The TSC1-TSC2 complex is required for proper activation of mTOR complex 2
    • Huang J., et al. The TSC1-TSC2 complex is required for proper activation of mTOR complex 2. Mol. Cell. Biol. 2008, 28:4104-4115.
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 4104-4115
    • Huang, J.1
  • 42
    • 79952104568 scopus 로고    scopus 로고
    • MTOR couples cellular nutrient sensing to organismal metabolic homeostasis
    • Howell J.J., Manning B.D. mTOR couples cellular nutrient sensing to organismal metabolic homeostasis. Trends Endocrinol. Metab. 2011, 22:94-102.
    • (2011) Trends Endocrinol. Metab. , vol.22 , pp. 94-102
    • Howell, J.J.1    Manning, B.D.2
  • 43
    • 33947264077 scopus 로고    scopus 로고
    • PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase
    • Sancak Y., et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell 2007, 25:903-915.
    • (2007) Mol. Cell , vol.25 , pp. 903-915
    • Sancak, Y.1
  • 44
    • 18044381192 scopus 로고    scopus 로고
    • Rheb binds and regulates the mTOR kinase
    • Long X., et al. Rheb binds and regulates the mTOR kinase. Curr. Biol. 2005, 15:702-713.
    • (2005) Curr. Biol. , vol.15 , pp. 702-713
    • Long, X.1
  • 45
    • 64849101452 scopus 로고    scopus 로고
    • Mammalian target of rapamycin complex 1-mediated phosphorylation of eukaryotic initiation factor 4E-binding protein 1 requires multiple protein-protein interactions for substrate recognition
    • Dunlop E.A., et al. Mammalian target of rapamycin complex 1-mediated phosphorylation of eukaryotic initiation factor 4E-binding protein 1 requires multiple protein-protein interactions for substrate recognition. Cell. Signal. 2009, 21:1073-1084.
    • (2009) Cell. Signal. , vol.21 , pp. 1073-1084
    • Dunlop, E.A.1
  • 46
    • 36049043184 scopus 로고    scopus 로고
    • Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38
    • Bai X., et al. Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38. Science 2007, 318:977-980.
    • (2007) Science , vol.318 , pp. 977-980
    • Bai, X.1
  • 47
    • 54449097914 scopus 로고    scopus 로고
    • The switch I region of Rheb is critical for its interaction with FKBP38
    • Ma D., et al. The switch I region of Rheb is critical for its interaction with FKBP38. J. Biol. Chem. 2008, 283:25963-25970.
    • (2008) J. Biol. Chem. , vol.283 , pp. 25963-25970
    • Ma, D.1
  • 48
    • 58049216316 scopus 로고    scopus 로고
    • RalA functions as an indispensable signal mediator for the nutrient-sensing system
    • Maehama T., et al. RalA functions as an indispensable signal mediator for the nutrient-sensing system. J. Biol. Chem. 2008, 283:35053-35059.
    • (2008) J. Biol. Chem. , vol.283 , pp. 35053-35059
    • Maehama, T.1
  • 49
    • 57649165557 scopus 로고    scopus 로고
    • Re-evaluating the roles of proposed modulators of mammalian target of rapamycin complex 1 (mTORC1) signaling
    • Wang X., et al. Re-evaluating the roles of proposed modulators of mammalian target of rapamycin complex 1 (mTORC1) signaling. J. Biol. Chem. 2008, 283:30482-30492.
    • (2008) J. Biol. Chem. , vol.283 , pp. 30482-30492
    • Wang, X.1
  • 50
    • 61749084493 scopus 로고    scopus 로고
    • Reassessment of the role of FKBP38 in the Rheb/mTORC1 pathway
    • Uhlenbrock K., et al. Reassessment of the role of FKBP38 in the Rheb/mTORC1 pathway. FEBS Lett. 2009, 583:965-970.
    • (2009) FEBS Lett. , vol.583 , pp. 965-970
    • Uhlenbrock, K.1
  • 51
    • 46149098447 scopus 로고    scopus 로고
    • Phospholipase D1 is an effector of Rheb in the mTOR pathway
    • Sun Y., et al. Phospholipase D1 is an effector of Rheb in the mTOR pathway. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:8286-8291.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 8286-8291
    • Sun, Y.1
  • 52
    • 84905967489 scopus 로고    scopus 로고
    • Phospholipase D and the maintenance of phosphatidic acid levels for regulation of mammalian target of rapamycin (mTOR)
    • Foster D.A., et al. Phospholipase D and the maintenance of phosphatidic acid levels for regulation of mammalian target of rapamycin (mTOR). J. Biol. Chem. 2014, 289:22583-22588.
    • (2014) J. Biol. Chem. , vol.289 , pp. 22583-22588
    • Foster, D.A.1
  • 53
    • 0035976615 scopus 로고    scopus 로고
    • Phosphatidic acid-mediated mitogenic activation of mTOR signaling
    • Fang Y., et al. Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 2001, 294:1942-1945.
    • (2001) Science , vol.294 , pp. 1942-1945
    • Fang, Y.1
  • 54
    • 80051917141 scopus 로고    scopus 로고
    • Phosphatidic acid activates mammalian target of rapamycin complex 1 (mTORC1) kinase by displacing FK506 binding protein 38 (FKBP38) and exerting an allosteric effect
    • Yoon M-S., et al. Phosphatidic acid activates mammalian target of rapamycin complex 1 (mTORC1) kinase by displacing FK506 binding protein 38 (FKBP38) and exerting an allosteric effect. J. Biol. Chem. 2011, 286:29568-29574.
    • (2011) J. Biol. Chem. , vol.286 , pp. 29568-29574
    • Yoon, M.-S.1
  • 55
    • 33845547658 scopus 로고    scopus 로고
    • A role for phospholipase D in Drosophila embryonic cellularization
    • LaLonde M., et al. A role for phospholipase D in Drosophila embryonic cellularization. BMC Dev. Biol. 2006, 6:60.
    • (2006) BMC Dev. Biol. , vol.6 , pp. 60
    • LaLonde, M.1
  • 56
    • 77649315183 scopus 로고    scopus 로고
    • 3 integrin activation and shear-dependent thrombus formation in mice lacking phospholipase D1
    • 3 integrin activation and shear-dependent thrombus formation in mice lacking phospholipase D1. Sci. Signal. 2010, 3:ra1.
    • (2010) Sci. Signal. , vol.3 , pp. ra1
    • Elvers, M.1
  • 57
    • 79958129661 scopus 로고    scopus 로고
    • PLD1 rather than PLD2 regulates phorbol-ester-, adhesion-dependent and Fcγ-receptor-stimulated ROS production in neutrophils
    • Norton L.J., et al. PLD1 rather than PLD2 regulates phorbol-ester-, adhesion-dependent and Fcγ-receptor-stimulated ROS production in neutrophils. J. Cell Sci. 2011, 124:1973-1983.
    • (2011) J. Cell Sci. , vol.124 , pp. 1973-1983
    • Norton, L.J.1
  • 58
    • 84868121895 scopus 로고    scopus 로고
    • Redundant functions of phospholipases D1 and D2 in platelet α-granule release
    • Thielmann I., et al. Redundant functions of phospholipases D1 and D2 in platelet α-granule release. J. Thromb. Haemost. 2012, 10:2361-2372.
    • (2012) J. Thromb. Haemost. , vol.10 , pp. 2361-2372
    • Thielmann, I.1
  • 59
    • 84874433733 scopus 로고    scopus 로고
    • Regulation of small GTPases by GEFs, GAPs, and GDIs
    • Cherfils J., Zeghouf M. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol. Rev. 2013, 93:269-309.
    • (2013) Physiol. Rev. , vol.93 , pp. 269-309
    • Cherfils, J.1    Zeghouf, M.2
  • 60
    • 2442669194 scopus 로고    scopus 로고
    • The GTPase-activating protein Rap1GAP uses a catalytic asparagine
    • Daumke O., et al. The GTPase-activating protein Rap1GAP uses a catalytic asparagine. Nature 2004, 429:197-201.
    • (2004) Nature , vol.429 , pp. 197-201
    • Daumke, O.1
  • 61
    • 4444276510 scopus 로고    scopus 로고
    • Biochemical and functional characterizations of small GTPase Rheb and TSC2 GAP activity
    • Li Y., et al. Biochemical and functional characterizations of small GTPase Rheb and TSC2 GAP activity. Mol. Cell. Biol. 2004, 24:7965-7975.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 7965-7975
    • Li, Y.1
  • 62
    • 84865800800 scopus 로고    scopus 로고
    • An autoinhibited noncanonical mechanism of GTP hydrolysis by Rheb maintains mTORC1 homeostasis
    • Mazhab-Jafari M.T., et al. An autoinhibited noncanonical mechanism of GTP hydrolysis by Rheb maintains mTORC1 homeostasis. Structure 2012, 20:1528-1539.
    • (2012) Structure , vol.20 , pp. 1528-1539
    • Mazhab-Jafari, M.T.1
  • 63
    • 0030888163 scopus 로고    scopus 로고
    • The Ras-related protein Rheb is farnesylated and antagonizes Ras signaling and transformation
    • Clark G.J., et al. The Ras-related protein Rheb is farnesylated and antagonizes Ras signaling and transformation. J. Biol. Chem. 1997, 272:10608-10615.
    • (1997) J. Biol. Chem. , vol.272 , pp. 10608-10615
    • Clark, G.J.1
  • 64
    • 20444442724 scopus 로고    scopus 로고
    • Structural basis for the unique biological function of small GTPase RHEB
    • Yu Y., et al. Structural basis for the unique biological function of small GTPase RHEB. J. Biol. Chem. 2005, 280:17093-17100.
    • (2005) J. Biol. Chem. , vol.280 , pp. 17093-17100
    • Yu, Y.1
  • 65
    • 84894114029 scopus 로고    scopus 로고
    • Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome
    • Menon S., et al. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 2014, 156:771-785.
    • (2014) Cell , vol.156 , pp. 771-785
    • Menon, S.1
  • 66
    • 32244435285 scopus 로고    scopus 로고
    • Regulation of the small GTPase Rheb by amino acids
    • Roccio M., et al. Regulation of the small GTPase Rheb by amino acids. Oncogene 2006, 25:657-664.
    • (2006) Oncogene , vol.25 , pp. 657-664
    • Roccio, M.1
  • 67
    • 0037191045 scopus 로고    scopus 로고
    • Tuberous sclerosis complex tumor suppressor-mediated S6 kinase inhibition by phosphatidylinositide-3-OH kinase is mTOR independent
    • Jaeschke A., et al. Tuberous sclerosis complex tumor suppressor-mediated S6 kinase inhibition by phosphatidylinositide-3-OH kinase is mTOR independent. J. Cell Biol. 2002, 159:217-224.
    • (2002) J. Cell Biol. , vol.159 , pp. 217-224
    • Jaeschke, A.1
  • 68
    • 0033582748 scopus 로고    scopus 로고
    • Gigas, a Drosophila homolog of tuberous sclerosis gene product-2, regulates the cell cycle
    • Ito N., Rubin G.M. gigas, a Drosophila homolog of tuberous sclerosis gene product-2, regulates the cell cycle. Cell 1999, 96:529-539.
    • (1999) Cell , vol.96 , pp. 529-539
    • Ito, N.1    Rubin, G.M.2
  • 69
    • 0033559663 scopus 로고    scopus 로고
    • Renal carcinogenesis, hepatic hemangiomatosis, and embryonic lethality caused by a germ-line Tsc2 mutation in mice
    • Kobayashi T., et al. Renal carcinogenesis, hepatic hemangiomatosis, and embryonic lethality caused by a germ-line Tsc2 mutation in mice. Cancer Res. 1999, 59:1206-1211.
    • (1999) Cancer Res. , vol.59 , pp. 1206-1211
    • Kobayashi, T.1
  • 70
    • 0037108151 scopus 로고    scopus 로고
    • Lethality of Drosophila lacking TSC tumor suppressor function rescued by reducing dS6K signaling
    • Radimerski T., et al. Lethality of Drosophila lacking TSC tumor suppressor function rescued by reducing dS6K signaling. Genes Dev. 2002, 16:2627-2632.
    • (2002) Genes Dev. , vol.16 , pp. 2627-2632
    • Radimerski, T.1
  • 71
    • 33644781670 scopus 로고    scopus 로고
    • Drosophila target of rapamycin kinase functions as a multimer
    • Zhang Y., et al. Drosophila target of rapamycin kinase functions as a multimer. Genetics 2006, 172:355-362.
    • (2006) Genetics , vol.172 , pp. 355-362
    • Zhang, Y.1
  • 72
    • 48649085816 scopus 로고    scopus 로고
    • Regulation of TORC1 by Rag GTPases in nutrient response
    • Kim E., et al. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 2008, 10:935-945.
    • (2008) Nat. Cell Biol. , vol.10 , pp. 935-945
    • Kim, E.1
  • 73
    • 0032213545 scopus 로고    scopus 로고
    • Hamartin, the product of the tuberous sclerosis 1 (TSC1) gene, interacts with tuberin and appears to be localized to cytoplasmic vesicles
    • Plank T.L., et al. Hamartin, the product of the tuberous sclerosis 1 (TSC1) gene, interacts with tuberin and appears to be localized to cytoplasmic vesicles. Cancer Res. 1998, 58:4766-4770.
    • (1998) Cancer Res. , vol.58 , pp. 4766-4770
    • Plank, T.L.1
  • 74
    • 7144255533 scopus 로고    scopus 로고
    • Interaction between hamartin and tuberin, the TSC1 and TSC2 gene products
    • van Slegtenhorst M., et al. Interaction between hamartin and tuberin, the TSC1 and TSC2 gene products. Hum. Mol. Genet. 1998, 7:1053-1057.
    • (1998) Hum. Mol. Genet. , vol.7 , pp. 1053-1057
    • van Slegtenhorst, M.1
  • 75
    • 84865371057 scopus 로고    scopus 로고
    • TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1
    • Dibble C.C., et al. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol. Cell 2012, 47:535-546.
    • (2012) Mol. Cell , vol.47 , pp. 535-546
    • Dibble, C.C.1
  • 76
    • 84866519139 scopus 로고    scopus 로고
    • The TSC1-TSC2 complex consists of multiple TSC1 and TSC2 subunits
    • Hoogeveen-Westerveld M., et al. The TSC1-TSC2 complex consists of multiple TSC1 and TSC2 subunits. BMC Biochem. 2012, 13:18.
    • (2012) BMC Biochem. , vol.13 , pp. 18
    • Hoogeveen-Westerveld, M.1
  • 77
    • 84880366057 scopus 로고    scopus 로고
    • Crystal structure of the yeast TSC1 core domain and implications for tuberous sclerosis pathological mutations
    • Sun W., et al. Crystal structure of the yeast TSC1 core domain and implications for tuberous sclerosis pathological mutations. Nat. Commun. 2013, 4:2135.
    • (2013) Nat. Commun. , vol.4 , pp. 2135
    • Sun, W.1
  • 78
    • 44449161481 scopus 로고    scopus 로고
    • The TSC1-TSC2 complex: a molecular switchboard controlling cell growth
    • Huang J., Manning B.D. The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem. J. 2008, 412:179-190.
    • (2008) Biochem. J. , vol.412 , pp. 179-190
    • Huang, J.1    Manning, B.D.2
  • 79
    • 17844369428 scopus 로고    scopus 로고
    • The tuberous sclerosis-1 (TSC1) gene product hamartin suppresses cell growth and augments the expression of the TSC2 product tuberin by inhibiting its ubiquitination
    • Benvenuto G., et al. The tuberous sclerosis-1 (TSC1) gene product hamartin suppresses cell growth and augments the expression of the TSC2 product tuberin by inhibiting its ubiquitination. Oncogene 2000, 19:6306-6316.
    • (2000) Oncogene , vol.19 , pp. 6306-6316
    • Benvenuto, G.1
  • 80
    • 34547590810 scopus 로고    scopus 로고
    • Functional dissection of Rab GTPases involved in primary cilium formation
    • Yoshimura S-I., et al. Functional dissection of Rab GTPases involved in primary cilium formation. J. Cell Biol. 2007, 178:363-369.
    • (2007) J. Cell Biol. , vol.178 , pp. 363-369
    • Yoshimura, S.-I.1
  • 81
    • 0035798385 scopus 로고    scopus 로고
    • Evolution of the Rab family of small GTP-binding proteins
    • Pereira-Leal J.B., Seabra M.C. Evolution of the Rab family of small GTP-binding proteins. J. Mol. Biol. 2001, 313:889-901.
    • (2001) J. Mol. Biol. , vol.313 , pp. 889-901
    • Pereira-Leal, J.B.1    Seabra, M.C.2
  • 82
    • 80855128256 scopus 로고    scopus 로고
    • Modularity and hormone sensitivity of the Drosophila melanogaster insulin receptor/target of rapamycin interaction proteome
    • Glatter T., et al. Modularity and hormone sensitivity of the Drosophila melanogaster insulin receptor/target of rapamycin interaction proteome. Mol. Syst. Biol. 2011, 7:547.
    • (2011) Mol. Syst. Biol. , vol.7 , pp. 547
    • Glatter, T.1
  • 83
    • 33847174115 scopus 로고    scopus 로고
    • Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase
    • Hsu Y-C., et al. Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase. Nature 2007, 445:785-788.
    • (2007) Nature , vol.445 , pp. 785-788
    • Hsu, Y.-C.1
  • 84
    • 69949143367 scopus 로고    scopus 로고
    • Molecular basis of the acceleration of the GDP-GTP exchange of human Ras homolog enriched in brain by human translationally controlled tumor protein
    • Dong X., et al. Molecular basis of the acceleration of the GDP-GTP exchange of human Ras homolog enriched in brain by human translationally controlled tumor protein. J. Biol. Chem. 2009, 284:23754-23764.
    • (2009) J. Biol. Chem. , vol.284 , pp. 23754-23764
    • Dong, X.1
  • 85
    • 49649086599 scopus 로고    scopus 로고
    • Biochemical characterisation of TCTP questions its function as a guanine nucleotide exchange factor for Rheb
    • Rehmann H., et al. Biochemical characterisation of TCTP questions its function as a guanine nucleotide exchange factor for Rheb. FEBS Lett. 2008, 582:3005-3010.
    • (2008) FEBS Lett. , vol.582 , pp. 3005-3010
    • Rehmann, H.1
  • 86
    • 34347391544 scopus 로고    scopus 로고
    • A knockout mouse approach reveals that TCTP functions as an essential factor for cell proliferation and survival in a tissue- or cell type-specific manner
    • Chen S.H., et al. A knockout mouse approach reveals that TCTP functions as an essential factor for cell proliferation and survival in a tissue- or cell type-specific manner. Mol. Biol. Cell 2007, 18:2525-2532.
    • (2007) Mol. Biol. Cell , vol.18 , pp. 2525-2532
    • Chen, S.H.1
  • 87
    • 20744435491 scopus 로고    scopus 로고
    • Phosphorylation and binding partner analysis of the TSC1-TSC2 complex
    • Nellist M., et al. Phosphorylation and binding partner analysis of the TSC1-TSC2 complex. Biochem. Biophys. Res. Commun. 2005, 333:818-826.
    • (2005) Biochem. Biophys. Res. Commun. , vol.333 , pp. 818-826
    • Nellist, M.1
  • 88
    • 57749196164 scopus 로고    scopus 로고
    • Sphingosine-1-phosphate induced mTOR-activation is mediated by the E3-ubiquitin ligase PAM
    • Maeurer C., et al. Sphingosine-1-phosphate induced mTOR-activation is mediated by the E3-ubiquitin ligase PAM. Cell. Signal. 2009, 21:293-300.
    • (2009) Cell. Signal. , vol.21 , pp. 293-300
    • Maeurer, C.1
  • 89
    • 84874849890 scopus 로고    scopus 로고
    • Membrane-dependent modulation of the mTOR activator Rheb: NMR observations of a GTPase tethered to a lipid-bilayer nanodisc
    • Mazhab-Jafari M.T., et al. Membrane-dependent modulation of the mTOR activator Rheb: NMR observations of a GTPase tethered to a lipid-bilayer nanodisc. J. Am. Chem. Soc. 2013, 135:3367-3370.
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 3367-3370
    • Mazhab-Jafari, M.T.1
  • 90
    • 0028143584 scopus 로고
    • Physiological concentrations of purines and pyrimidines
    • Traut T.W. Physiological concentrations of purines and pyrimidines. Mol. Cell. Biochem. 1994, 140:1-22.
    • (1994) Mol. Cell. Biochem. , vol.140 , pp. 1-22
    • Traut, T.W.1
  • 91
    • 67650523945 scopus 로고    scopus 로고
    • Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway
    • Zhang H.H., et al. Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway. PLoS ONE 2009, 4:e6189.
    • (2009) PLoS ONE , vol.4 , pp. e6189
    • Zhang, H.H.1
  • 92
    • 5444233787 scopus 로고    scopus 로고
    • Tsc2 is not a critical target of Akt during normal Drosophila development
    • Dong J., Pan D. Tsc2 is not a critical target of Akt during normal Drosophila development. Genes Dev. 2004, 18:2479-2484.
    • (2004) Genes Dev. , vol.18 , pp. 2479-2484
    • Dong, J.1    Pan, D.2
  • 93
    • 84855970149 scopus 로고    scopus 로고
    • Tissue-specific coupling between insulin/IGF and TORC1 signaling via PRAS40 in Drosophila
    • Pallares-Cartes C., et al. Tissue-specific coupling between insulin/IGF and TORC1 signaling via PRAS40 in Drosophila. Dev. Cell 2012, 22:172-182.
    • (2012) Dev. Cell , vol.22 , pp. 172-182
    • Pallares-Cartes, C.1
  • 94
    • 84897534723 scopus 로고    scopus 로고
    • Phosphorylation by Akt within the ST loop of AMPK-α1 down-regulates its activation in tumour cells
    • Hawley S.A., et al. Phosphorylation by Akt within the ST loop of AMPK-α1 down-regulates its activation in tumour cells. Biochem. J. 2014, 459:275-287.
    • (2014) Biochem. J. , vol.459 , pp. 275-287
    • Hawley, S.A.1
  • 95
    • 1342342993 scopus 로고    scopus 로고
    • PDK1, the master regulator of AGC kinase signal transduction
    • Mora A., et al. PDK1, the master regulator of AGC kinase signal transduction. Semin. Cell Dev. Biol. 2004, 15:161-170.
    • (2004) Semin. Cell Dev. Biol. , vol.15 , pp. 161-170
    • Mora, A.1
  • 96
    • 72949093349 scopus 로고    scopus 로고
    • The nuts and bolts of AGC protein kinases
    • Pearce L.R., et al. The nuts and bolts of AGC protein kinases. Nat. Rev. Mol. Cell Biol. 2010, 11:9-22.
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , pp. 9-22
    • Pearce, L.R.1
  • 97
    • 84899484738 scopus 로고    scopus 로고
    • Cell-cycle-regulated activation of Akt kinase by phosphorylation at its carboxyl terminus
    • Liu P., et al. Cell-cycle-regulated activation of Akt kinase by phosphorylation at its carboxyl terminus. Nature 2014, 508:541-545.
    • (2014) Nature , vol.508 , pp. 541-545
    • Liu, P.1
  • 98
    • 79960470913 scopus 로고    scopus 로고
    • MTOR complex 2 signaling and functions
    • Oh W.J., Jacinto E. mTOR complex 2 signaling and functions. Cell Cycle 2011, 10:2305-2316.
    • (2011) Cell Cycle , vol.10 , pp. 2305-2316
    • Oh, W.J.1    Jacinto, E.2
  • 99
    • 13844312400 scopus 로고    scopus 로고
    • Phosphorylation and regulation of Akt/PKB by the Rictor-mTOR complex
    • Sarbassov D.D., et al. Phosphorylation and regulation of Akt/PKB by the Rictor-mTOR complex. Science 2005, 307:1098-1101.
    • (2005) Science , vol.307 , pp. 1098-1101
    • Sarbassov, D.D.1
  • 100
    • 28844434558 scopus 로고    scopus 로고
    • MTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes
    • Hresko R.C., Mueckler M. mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J. Biol. Chem. 2005, 280:40406-40416.
    • (2005) J. Biol. Chem. , vol.280 , pp. 40406-40416
    • Hresko, R.C.1    Mueckler, M.2
  • 101
    • 79953216041 scopus 로고    scopus 로고
    • Evidence for direct activation of mTORC2 kinase activity by phosphatidylinositol 3,4,5-trisphosphate
    • Gan X., et al. Evidence for direct activation of mTORC2 kinase activity by phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 2011, 286:10998-11002.
    • (2011) J. Biol. Chem. , vol.286 , pp. 10998-11002
    • Gan, X.1
  • 102
    • 84876685913 scopus 로고    scopus 로고
    • PI3K regulation of the SKP-2/p27 axis through mTORC2
    • Shanmugasundaram K., et al. PI3K regulation of the SKP-2/p27 axis through mTORC2. Oncogene 2013, 32:2027-2036.
    • (2013) Oncogene , vol.32 , pp. 2027-2036
    • Shanmugasundaram, K.1
  • 103
    • 0029942186 scopus 로고    scopus 로고
    • Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors
    • Andjelkovic M., et al. Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors. Proc. Natl. Acad. Sci. U.S.A. 1996, 93:5699-5704.
    • (1996) Proc. Natl. Acad. Sci. U.S.A. , vol.93 , pp. 5699-5704
    • Andjelkovic, M.1
  • 104
    • 33947203621 scopus 로고    scopus 로고
    • PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms
    • Brognard J., et al. PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol. Cell 2007, 25:917-931.
    • (2007) Mol. Cell , vol.25 , pp. 917-931
    • Brognard, J.1
  • 105
    • 78649961357 scopus 로고    scopus 로고
    • Inositol pyrophosphates inhibit Akt signaling, thereby regulating insulin sensitivity and weight gain
    • Chakraborty A., et al. Inositol pyrophosphates inhibit Akt signaling, thereby regulating insulin sensitivity and weight gain. Cell 2010, 143:897-910.
    • (2010) Cell , vol.143 , pp. 897-910
    • Chakraborty, A.1
  • 106
    • 33847397874 scopus 로고    scopus 로고
    • Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40
    • Vander Haar E., et al. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol. 2007, 9:316-323.
    • (2007) Nat. Cell Biol. , vol.9 , pp. 316-323
    • Vander Haar, E.1
  • 107
    • 34547099855 scopus 로고    scopus 로고
    • PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding
    • Wang L., et al. PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J. Biol. Chem. 2007, 282:20036-20044.
    • (2007) J. Biol. Chem. , vol.282 , pp. 20036-20044
    • Wang, L.1
  • 108
    • 47049127002 scopus 로고    scopus 로고
    • Regulation of proline-rich Akt substrate of 40kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation
    • Wang L., et al. Regulation of proline-rich Akt substrate of 40kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation. J. Biol. Chem. 2008, 283:15619-15627.
    • (2008) J. Biol. Chem. , vol.283 , pp. 15619-15627
    • Wang, L.1
  • 109
    • 80055073635 scopus 로고    scopus 로고
    • The mechanism of insulin-stimulated 4E-BP protein binding to mammalian target of rapamycin (mTOR) complex 1 and its contribution to mTOR complex 1 signaling
    • Rapley J., et al. The mechanism of insulin-stimulated 4E-BP protein binding to mammalian target of rapamycin (mTOR) complex 1 and its contribution to mTOR complex 1 signaling. J. Biol. Chem. 2011, 286:38043-38053.
    • (2011) J. Biol. Chem. , vol.286 , pp. 38043-38053
    • Rapley, J.1
  • 110
    • 41649101570 scopus 로고    scopus 로고
    • The binding of PRAS40 to 14-3-3 proteins is not required for activation of mTORC1 signalling by phorbol esters/ERK
    • Fonseca B.D., et al. The binding of PRAS40 to 14-3-3 proteins is not required for activation of mTORC1 signalling by phorbol esters/ERK. Biochem. J. 2008, 411:141-149.
    • (2008) Biochem. J. , vol.411 , pp. 141-149
    • Fonseca, B.D.1
  • 111
    • 84896268983 scopus 로고    scopus 로고
    • PRAS40 plays a pivotal role in protecting against stroke by linking the Akt and mTOR pathways
    • Xiong X., et al. PRAS40 plays a pivotal role in protecting against stroke by linking the Akt and mTOR pathways. Neurobiol. Dis. 2014, 66:43-52.
    • (2014) Neurobiol. Dis. , vol.66 , pp. 43-52
    • Xiong, X.1
  • 112
    • 67349241955 scopus 로고    scopus 로고
    • DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival
    • Peterson T.R., et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 2009, 137:873-886.
    • (2009) Cell , vol.137 , pp. 873-886
    • Peterson, T.R.1
  • 113
    • 67651210833 scopus 로고    scopus 로고
    • Site-specific mTOR phosphorylation promotes mTORC1-mediated signaling and cell growth
    • Acosta-Jaquez H.A., et al. Site-specific mTOR phosphorylation promotes mTORC1-mediated signaling and cell growth. Mol. Cell. Biol. 2009, 29:4308-4324.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 4308-4324
    • Acosta-Jaquez, H.A.1
  • 114
    • 84906971768 scopus 로고    scopus 로고
    • Akt-dependent activation of mTORC1 complex involves phosphorylation of mTOR (mammalian target of rapamycin) by IκB kinase α (IKKα)
    • Dan H.C., et al. Akt-dependent activation of mTORC1 complex involves phosphorylation of mTOR (mammalian target of rapamycin) by IκB kinase α (IKKα). J. Biol. Chem. 2014, 289:25227-25240.
    • (2014) J. Biol. Chem. , vol.289 , pp. 25227-25240
    • Dan, H.C.1
  • 115
    • 22544455676 scopus 로고    scopus 로고
    • Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase
    • Holz M.K., Blenis J. Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase. J. Biol. Chem. 2005, 280:26089-26093.
    • (2005) J. Biol. Chem. , vol.280 , pp. 26089-26093
    • Holz, M.K.1    Blenis, J.2
  • 116
    • 77950900079 scopus 로고    scopus 로고
    • MTOR Ser-2481 autophosphorylation monitors mTORC-specific catalytic activity and clarifies rapamycin mechanism of action
    • Soliman G.A., et al. mTOR Ser-2481 autophosphorylation monitors mTORC-specific catalytic activity and clarifies rapamycin mechanism of action. J. Biol. Chem. 2010, 285:7866-7879.
    • (2010) J. Biol. Chem. , vol.285 , pp. 7866-7879
    • Soliman, G.A.1
  • 117
    • 76449100739 scopus 로고    scopus 로고
    • MTOR phosphorylated at S2448 binds to Raptor and Rictor
    • Rosner M., et al. mTOR phosphorylated at S2448 binds to Raptor and Rictor. Amino Acids 2010, 38:223-228.
    • (2010) Amino Acids , vol.38 , pp. 223-228
    • Rosner, M.1
  • 118
    • 67649344456 scopus 로고    scopus 로고
    • Mammalian target of rapamycin complex 1 (mTORC1) activity is associated with phosphorylation of raptor by mTOR
    • Wang L., et al. Mammalian target of rapamycin complex 1 (mTORC1) activity is associated with phosphorylation of raptor by mTOR. J. Biol. Chem. 2009, 284:14693-14697.
    • (2009) J. Biol. Chem. , vol.284 , pp. 14693-14697
    • Wang, L.1
  • 119
    • 73649098283 scopus 로고    scopus 로고
    • Regulation of mTOR complex 1 (mTORC1) by raptor Ser863 and multisite phosphorylation
    • Foster K.G., et al. Regulation of mTOR complex 1 (mTORC1) by raptor Ser863 and multisite phosphorylation. J. Biol. Chem. 2010, 285:80-94.
    • (2010) J. Biol. Chem. , vol.285 , pp. 80-94
    • Foster, K.G.1
  • 120
    • 18544375193 scopus 로고    scopus 로고
    • Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin
    • Dan H.C., et al. Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin. J. Biol. Chem. 2002, 277:35364-35370.
    • (2002) J. Biol. Chem. , vol.277 , pp. 35364-35370
    • Dan, H.C.1
  • 121
    • 0038362751 scopus 로고    scopus 로고
    • Akt activation promotes degradation of tuberin and FOXO3a via the proteasome
    • Plas D.R., Thompson C.B. Akt activation promotes degradation of tuberin and FOXO3a via the proteasome. J. Biol. Chem. 2003, 278:12361-12366.
    • (2003) J. Biol. Chem. , vol.278 , pp. 12361-12366
    • Plas, D.R.1    Thompson, C.B.2
  • 122
    • 33646111903 scopus 로고    scopus 로고
    • Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning
    • Cai S-L., et al. Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. J. Cell Biol. 2006, 173:279-289.
    • (2006) J. Cell Biol. , vol.173 , pp. 279-289
    • Cai, S.-L.1
  • 123
    • 84885105969 scopus 로고    scopus 로고
    • A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS
    • Zhang J., et al. A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS. Nat. Cell Biol. 2013, 15:1186-1196.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 1186-1196
    • Zhang, J.1
  • 124
    • 77951213258 scopus 로고    scopus 로고
    • Insulin like growth factor-1-induced phosphorylation and altered distribution of tuberous sclerosis complex (TSC)1/TSC2 in C2C12 myotubes
    • Miyazaki M., et al. Insulin like growth factor-1-induced phosphorylation and altered distribution of tuberous sclerosis complex (TSC)1/TSC2 in C2C12 myotubes. FEBS J. 2010, 277:2180-2191.
    • (2010) FEBS J. , vol.277 , pp. 2180-2191
    • Miyazaki, M.1
  • 125
    • 0033553624 scopus 로고    scopus 로고
    • Interaction of RAFT1 with gephyrin required for rapamycin-sensitive signaling
    • Sabatini D.M., et al. Interaction of RAFT1 with gephyrin required for rapamycin-sensitive signaling. Science 1999, 284:1161-1164.
    • (1999) Science , vol.284 , pp. 1161-1164
    • Sabatini, D.M.1
  • 126
    • 18244362311 scopus 로고    scopus 로고
    • Novel role of the small GTPase Rheb: its implication in endocytic pathway independent of the activation of mammalian target of rapamycin
    • Saito K., et al. Novel role of the small GTPase Rheb: its implication in endocytic pathway independent of the activation of mammalian target of rapamycin. J. Biochem. 2005, 137:423-430.
    • (2005) J. Biochem. , vol.137 , pp. 423-430
    • Saito, K.1
  • 127
    • 45849105156 scopus 로고    scopus 로고
    • The Rag GTPases bind Raptor and mediate amino acid signaling to mTORC1
    • Sancak Y., et al. The Rag GTPases bind Raptor and mediate amino acid signaling to mTORC1. Science 2008, 320:1496-1501.
    • (2008) Science , vol.320 , pp. 1496-1501
    • Sancak, Y.1
  • 128
    • 84926418992 scopus 로고    scopus 로고
    • MCRS1 binds and couples Rheb to amino acid-dependent mTORC1 activation
    • Fawal M-A., et al. MCRS1 binds and couples Rheb to amino acid-dependent mTORC1 activation. Dev. Cell 2015, 33:67-81.
    • (2015) Dev. Cell , vol.33 , pp. 67-81
    • Fawal, M.-A.1
  • 129
    • 84894212463 scopus 로고    scopus 로고
    • Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2
    • Demetriades C., et al. Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell 2014, 156:786-799.
    • (2014) Cell , vol.156 , pp. 786-799
    • Demetriades, C.1
  • 130
    • 0030879277 scopus 로고    scopus 로고
    • Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34
    • van Slegtenhorst M., et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 1997, 277:805-808.
    • (1997) Science , vol.277 , pp. 805-808
    • van Slegtenhorst, M.1
  • 131
    • 0037102523 scopus 로고    scopus 로고
    • Multicompartmental distribution of the tuberous sclerosis gene products, hamartin and tuberin
    • Yamamoto Y., et al. Multicompartmental distribution of the tuberous sclerosis gene products, hamartin and tuberin. Arch. Biochem. Biophys. 2002, 404:210-217.
    • (2002) Arch. Biochem. Biophys. , vol.404 , pp. 210-217
    • Yamamoto, Y.1
  • 132
    • 77951768486 scopus 로고    scopus 로고
    • Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
    • Sancak Y., et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010, 141:290-303.
    • (2010) Cell , vol.141 , pp. 290-303
    • Sancak, Y.1
  • 133
    • 84896702221 scopus 로고    scopus 로고
    • Mammalian target of rapamycin complex I (mTORC1) activity in Ras Homologue enriched in brain (Rheb)-deficient mouse embryonic fibroblasts
    • Groenewoud M.J., et al. Mammalian target of rapamycin complex I (mTORC1) activity in Ras Homologue enriched in brain (Rheb)-deficient mouse embryonic fibroblasts. PLoS ONE 2013, 8:e81649.
    • (2013) PLoS ONE , vol.8 , pp. e81649
    • Groenewoud, M.J.1
  • 134
    • 84878357685 scopus 로고    scopus 로고
    • A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1
    • Bar-Peled L., et al. A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 2013, 340:1100-1106.
    • (2013) Science , vol.340 , pp. 1100-1106
    • Bar-Peled, L.1
  • 135
    • 79955389182 scopus 로고    scopus 로고
    • Cell-type-dependent regulation of mTORC1 by REDD1 and the tumor suppressors TSC1/TSC2 and LKB1 in response to hypoxia
    • Wolff N.C., et al. Cell-type-dependent regulation of mTORC1 by REDD1 and the tumor suppressors TSC1/TSC2 and LKB1 in response to hypoxia. Mol. Cell. Biol. 2011, 31:1870-1884.
    • (2011) Mol. Cell. Biol. , vol.31 , pp. 1870-1884
    • Wolff, N.C.1
  • 136
    • 33749076673 scopus 로고    scopus 로고
    • SIN1/MIP1 maintains Rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity
    • Jacinto E., et al. SIN1/MIP1 maintains Rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 2006, 127:125-137.
    • (2006) Cell , vol.127 , pp. 125-137
    • Jacinto, E.1
  • 137
    • 33751348056 scopus 로고    scopus 로고
    • Ablation in mice of the mTORC components Raptor, Rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCα, but not S6K1
    • Guertin D.A., et al. Ablation in mice of the mTORC components Raptor, Rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCα, but not S6K1. Dev. Cell 2006, 11:859-871.
    • (2006) Dev. Cell , vol.11 , pp. 859-871
    • Guertin, D.A.1
  • 138
    • 58649114084 scopus 로고    scopus 로고
    • MTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice
    • Guertin D.A., et al. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell 2009, 15:148-159.
    • (2009) Cancer Cell , vol.15 , pp. 148-159
    • Guertin, D.A.1
  • 139
    • 61349141302 scopus 로고    scopus 로고
    • Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2
    • Feldman M.E., et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 2009, 7:e38.
    • (2009) PLoS Biol. , vol.7 , pp. e38
    • Feldman, M.E.1
  • 140
    • 67650312583 scopus 로고    scopus 로고
    • Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR)
    • García-Martínez J.M., et al. Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem. J. 2009, 421:29-42.
    • (2009) Biochem. J. , vol.421 , pp. 29-42
    • García-Martínez, J.M.1
  • 141
    • 0029804116 scopus 로고    scopus 로고
    • Mechanism of activation of protein kinase B by insulin and IGF-1
    • Alessi D.R., et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 1996, 15:6541-6551.
    • (1996) EMBO J. , vol.15 , pp. 6541-6551
    • Alessi, D.R.1
  • 142
    • 0036295728 scopus 로고    scopus 로고
    • Molecular mechanism for the regulation of protein kinase B/Akt by hydrophobic motif phosphorylation
    • Yang J., et al. Molecular mechanism for the regulation of protein kinase B/Akt by hydrophobic motif phosphorylation. Mol. Cell 2002, 9:1227-1240.
    • (2002) Mol. Cell , vol.9 , pp. 1227-1240
    • Yang, J.1
  • 143
    • 47949125486 scopus 로고    scopus 로고
    • The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C
    • Facchinetti V., et al. The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J. 2008, 27:1932-1943.
    • (2008) EMBO J. , vol.27 , pp. 1932-1943
    • Facchinetti, V.1
  • 144
    • 0034718540 scopus 로고    scopus 로고
    • Modulation of Akt kinase activity by binding to Hsp90
    • Sato S., et al. Modulation of Akt kinase activity by binding to Hsp90. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:10832-10837.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 10832-10837
    • Sato, S.1
  • 145
    • 84923277043 scopus 로고    scopus 로고
    • Making sense of amino acid sensing
    • Abraham R.T. Making sense of amino acid sensing. Science 2015, 347:128-129.
    • (2015) Science , vol.347 , pp. 128-129
    • Abraham, R.T.1
  • 146
    • 84873665112 scopus 로고    scopus 로고
    • Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival
    • Efeyan A., et al. Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature 2013, 493:679-683.
    • (2013) Nature , vol.493 , pp. 679-683
    • Efeyan, A.1
  • 147
    • 84866431363 scopus 로고    scopus 로고
    • Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1
    • Bar-Peled L., et al. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 2012, 150:1196-1208.
    • (2012) Cell , vol.150 , pp. 1196-1208
    • Bar-Peled, L.1
  • 148
    • 84856453804 scopus 로고    scopus 로고
    • Regulation of TOR by small GTPases
    • Durán R.V., Hall M.N. Regulation of TOR by small GTPases. EMBO Rep. 2012, 13:121-128.
    • (2012) EMBO Rep. , vol.13 , pp. 121-128
    • Durán, R.V.1    Hall, M.N.2
  • 149
    • 21244480367 scopus 로고    scopus 로고
    • The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses
    • Smith E.M., et al. The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses. J. Biol. Chem. 2005, 280:18717-18727.
    • (2005) J. Biol. Chem. , vol.280 , pp. 18717-18727
    • Smith, E.M.1
  • 150
    • 26444575415 scopus 로고    scopus 로고
    • Amino acids mediate mTOR/Raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase
    • Nobukuni T., et al. Amino acids mediate mTOR/Raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:14238-14243.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 14238-14243
    • Nobukuni, T.1
  • 151
    • 79953211540 scopus 로고    scopus 로고
    • Amino acids activate mammalian target of rapamycin complex 2 (mTORC2) via PI3K/Akt signaling
    • Tato I., et al. Amino acids activate mammalian target of rapamycin complex 2 (mTORC2) via PI3K/Akt signaling. J. Biol. Chem. 2011, 286:6128-6142.
    • (2011) J. Biol. Chem. , vol.286 , pp. 6128-6142
    • Tato, I.1
  • 152
    • 84912068759 scopus 로고    scopus 로고
    • Rab1A is an mTORC1 activator and a colorectal oncogene
    • Thomas J.D., et al. Rab1A is an mTORC1 activator and a colorectal oncogene. Cancer Cell 2014, 26:754-769.
    • (2014) Cancer Cell , vol.26 , pp. 754-769
    • Thomas, J.D.1
  • 153
    • 69249227502 scopus 로고    scopus 로고
    • Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function
    • Saftig P., Klumperman J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat. Rev. Mol. Cell Biol. 2009, 10:623-635.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 623-635
    • Saftig, P.1    Klumperman, J.2
  • 154
    • 18344394166 scopus 로고    scopus 로고
    • Post-prenylation-processing enzymes as new targets in oncogenesis
    • Winter-Vann A.M., Casey P.J. Post-prenylation-processing enzymes as new targets in oncogenesis. Nat. Rev. Cancer 2005, 5:405-412.
    • (2005) Nat. Rev. Cancer , vol.5 , pp. 405-412
    • Winter-Vann, A.M.1    Casey, P.J.2
  • 155
    • 84870175363 scopus 로고    scopus 로고
    • Rab proteins of the endoplasmic reticulum: functions and interactors
    • Sandoval C.O., Simmen T. Rab proteins of the endoplasmic reticulum: functions and interactors. Biochem. Soc. Trans. 2012, 40:1426-1432.
    • (2012) Biochem. Soc. Trans. , vol.40 , pp. 1426-1432
    • Sandoval, C.O.1    Simmen, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.