메뉴 건너뛰기




Volumn 2018, Issue , 2018, Pages

Viruses seen by our cells: The role of viral RNA sensors

Author keywords

[No Author keywords available]

Indexed keywords

CHEMOKINE; CYTOKINE; INTERFERON; INTERFERON INDUCED HELICASE C DOMAIN CONTAINING PROTEIN 1; LIGAND; PATHOGEN ASSOCIATED MOLECULAR PATTERN; PATTERN RECOGNITION RECEPTOR; RNA HELICASE; SMALL CYTOPLASMIC RNA; TOLL LIKE RECEPTOR; TOLL LIKE RECEPTOR 3; TOLL LIKE RECEPTOR 7; TOLL LIKE RECEPTOR 8; VIRUS RNA; VIRUS VACCINE; AUTACOID;

EID: 85054764548     PISSN: 23148861     EISSN: 23147156     Source Type: Journal    
DOI: 10.1155/2018/9480497     Document Type: Review
Times cited : (48)

References (156)
  • 1
    • 0035909372 scopus 로고    scopus 로고
    • Recognition of double-stranded RNA and activation of NF-κB by toll-like receptor 3
    • L. Alexopoulou, A. C. Holt, R. Medzhitov, and R. A. Flavell, “Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3,” Nature, vol. 413, no. 6857, pp. 732–738, 2001.
    • (2001) Nature , vol.413 , Issue.6857 , pp. 732-738
    • Alexopoulou, L.1    Holt, A.C.2    Medzhitov, R.3    Flavell, R.A.4
  • 2
    • 0042307304 scopus 로고    scopus 로고
    • Viral infection switches non-plasmacytoid dendritic cells into high interferon producers
    • S. S. Diebold, M. Montoya, H. Unger et al., “Viral infection switches non-plasmacytoid dendritic cells into high interferon producers,” Nature, vol. 424, no. 6946, pp. 324–328, 2003.
    • (2003) Nature , vol.424 , Issue.6946 , pp. 324-328
    • Diebold, S.S.1    Montoya, M.2    Unger, H.3
  • 3
    • 3242813113 scopus 로고    scopus 로고
    • The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses
    • M. Yoneyama, M. Kikuchi, T. Natsukawa et al., “The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses,” Nature Immunology, vol. 5, no. 7, pp. 730–737, 2004.
    • (2004) Nature Immunology , vol.5 , Issue.7 , pp. 730-737
    • Yoneyama, M.1    Kikuchi, M.2    Natsukawa, T.3
  • 5
    • 84872604349 scopus 로고    scopus 로고
    • Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5
    • B. Wu, A. Peisley, C. Richards et al., “Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5,” Cell, vol. 152, no. 1-2, pp. 276–289, 2013.
    • (2013) Cell , vol.152 , Issue.1-2 , pp. 276-289
    • Wu, B.1    Peisley, A.2    Richards, C.3
  • 6
    • 84990855979 scopus 로고    scopus 로고
    • Post-translational modification control of innate immunity
    • J. Liu, C. Qian, and X. Cao, “Post-translational modification control of innate immunity,” Immunity, vol. 45, no. 1, pp. 15–30, 2016.
    • (2016) Immunity , vol.45 , Issue.1 , pp. 15-30
    • Liu, J.1    Qian, C.2    Cao, X.3
  • 7
    • 85028946659 scopus 로고    scopus 로고
    • Post-translational regulation of antiviral innate signaling
    • Y. Zhou, C. He, L. Wang, and B. Ge, “Post-translational regulation of antiviral innate signaling,” European Journal of Immunology, vol. 47, no. 9, pp. 1414–1426, 2017.
    • (2017) European Journal of Immunology , vol.47 , Issue.9 , pp. 1414-1426
    • Zhou, Y.1    He, C.2    Wang, L.3    Ge, B.4
  • 8
    • 84857073450 scopus 로고    scopus 로고
    • Conventional protein kinase c-α (PKC-α) and PKC-β negatively regulate RIG-I antiviral signal transduction
    • N. P. Maharaj, E. Wies, A. Stoll, and M. U. Gack, “Conventional protein kinase C-α (PKC-α) and PKC-β negatively regulate RIG-I antiviral signal transduction,” Journal of Virology, vol. 86, no. 3, pp. 1358–1371, 2012.
    • (2012) Journal of Virology , vol.86 , Issue.3 , pp. 1358-1371
    • Maharaj, N.P.1    Wies, E.2    Stoll, A.3    Gack, M.U.4
  • 9
    • 84875542059 scopus 로고    scopus 로고
    • Dephosphorylation of the RNA sensors RIG-I and MDA5 by the phosphatase PP1 is essential for innate immune signaling
    • E. Wies, M. K. Wang, N. P. Maharaj et al., “Dephosphorylation of the RNA sensors RIG-I and MDA5 by the phosphatase PP1 is essential for innate immune signaling,” Immunity, vol. 38, no. 3, pp. 437–449, 2013.
    • (2013) Immunity , vol.38 , Issue.3 , pp. 437-449
    • Wies, E.1    Wang, M.K.2    Maharaj, N.P.3
  • 10
    • 34247341367 scopus 로고    scopus 로고
    • TRIM25 RING-finger e3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity
    • M. U. Gack, Y. C. Shin, C. H. Joo et al., “TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity,” Nature, vol. 446, no. 7138, pp. 916–920, 2007.
    • (2007) Nature , vol.446 , Issue.7138 , pp. 916-920
    • Gack, M.U.1    Shin, Y.C.2    Joo, C.H.3
  • 12
    • 84964247470 scopus 로고    scopus 로고
    • Comparative analysis of viral RNA signatures on different RIG-I-like receptors
    • R. Y. Sanchez David, C. Combredet, O. Sismeiro et al., “Comparative analysis of viral RNA signatures on different RIG-I-like receptors,” eLife, vol. 5, 2016.
    • (2016) eLife , vol.5
    • Sanchez David, R.Y.1    Combredet, C.2    Sismeiro, O.3
  • 13
    • 78650189572 scopus 로고    scopus 로고
    • The ubiquitin ligase riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection
    • H. Oshiumi, M. Miyashita, N. Inoue, M. Okabe, M. Matsumoto, and T. Seya, “The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection,” Cell Host & Microbe, vol. 8, no. 6, pp. 496–509, 2010.
    • (2010) Cell Host & Microbe , vol.8 , Issue.6 , pp. 496-509
    • Oshiumi, H.1    Miyashita, M.2    Inoue, N.3    Okabe, M.4    Matsumoto, M.5    Seya, T.6
  • 14
    • 59449091450 scopus 로고    scopus 로고
    • Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-β induction during the early phase of viral infection
    • H. Oshiumi, M. Matsumoto, S. Hatakeyama, and T. Seya, “Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-β induction during the early phase of viral infection,” The Journal of Biological Chemistry, vol. 284, no. 2, pp. 807–817, 2009.
    • (2009) The Journal of Biological Chemistry , vol.284 , Issue.2 , pp. 807-817
    • Oshiumi, H.1    Matsumoto, M.2    Hatakeyama, S.3    Seya, T.4
  • 15
    • 84899698672 scopus 로고    scopus 로고
    • TRIM4 modulates type I interferon induction and cellular antiviral response by targeting RIG-I for k63-linked ubiquitination
    • J. Yan, Q. Li, A. P. Mao, M. M. Hu, and H. B. Shu, “TRIM4 modulates type I interferon induction and cellular antiviral response by targeting RIG-I for K63-linked ubiquitination,” Journal of Molecular Cell Biology, vol. 6, no. 2, pp. 154–163, 2014.
    • (2014) Journal of Molecular Cell Biology , vol.6 , Issue.2 , pp. 154-163
    • Yan, J.1    Li, Q.2    Mao, A.P.3    Hu, M.M.4    Shu, H.B.5
  • 17
    • 77951708374 scopus 로고    scopus 로고
    • Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity
    • W. Zeng, L. Sun, X. Jiang et al., “Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity,” Cell, vol. 141, no. 2, pp. 315–330, 2010.
    • (2010) Cell , vol.141 , Issue.2 , pp. 315-330
    • Zeng, W.1    Sun, L.2    Jiang, X.3
  • 18
    • 84862994793 scopus 로고    scopus 로고
    • Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response
    • X. Jiang, L. N. Kinch, C. A. Brautigam et al., “Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response,” Immunity, vol. 36, no. 6, pp. 959–973, 2012.
    • (2012) Immunity , vol.36 , Issue.6 , pp. 959-973
    • Jiang, X.1    Kinch, L.N.2    Brautigam, C.A.3
  • 19
    • 51049106824 scopus 로고    scopus 로고
    • The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response
    • C. S. Friedman, M. A. O’Donnell, D. Legarda-Addison et al., “The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response,” EMBO Reports, vol. 9, no. 9, pp. 930–936, 2008.
    • (2008) EMBO Reports , vol.9 , Issue.9 , pp. 930-936
    • Friedman, C.S.1    O’Donnell, M.A.2    Legarda-Addison, D.3
  • 20
    • 84893721948 scopus 로고    scopus 로고
    • USP21 negatively regulates antiviral response by acting as a RIG-I deubiquitinase
    • Y. Fan, R. Mao, Y. Yu et al., “USP21 negatively regulates antiviral response by acting as a RIG-I deubiquitinase,” The Journal of Experimental Medicine, vol. 211, no. 2, pp. 313–328, 2014.
    • (2014) The Journal of Experimental Medicine , vol.211 , Issue.2 , pp. 313-328
    • Fan, Y.1    Mao, R.2    Yu, Y.3
  • 21
    • 84898040489 scopus 로고    scopus 로고
    • USP3 inhibits type I interferon signaling by deubiquitinating RIG-I-like receptors
    • J. Cui, Y. Song, Y. Li et al., “USP3 inhibits type I interferon signaling by deubiquitinating RIG-I-like receptors,” Cell Research, vol. 24, no. 4, pp. 400–416, 2014.
    • (2014) Cell Research , vol.24 , Issue.4 , pp. 400-416
    • Cui, J.1    Song, Y.2    Li, Y.3
  • 23
    • 84983604685 scopus 로고    scopus 로고
    • RNF122 suppresses antiviral type I interferon production by targeting RIG-I CARDs to mediate RIG-I degradation
    • W. Wang, M. Jiang, S. Liu et al., “RNF122 suppresses antiviral type I interferon production by targeting RIG-I CARDs to mediate RIG-I degradation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 113, no. 34, pp. 9581–9586, 2016.
    • (2016) Proceedings of the National Academy of Sciences of the United States of America , vol.113 , Issue.34 , pp. 9581-9586
    • Wang, W.1    Jiang, M.2    Liu, S.3
  • 24
    • 77951902675 scopus 로고    scopus 로고
    • NLRC5 negatively regulates the NF-κB and type I interferon signaling pathways
    • J. Cui, L. Zhu, X. Xia et al., “NLRC5 negatively regulates the NF-κB and type I interferon signaling pathways,” Cell, vol. 141, no. 3, pp. 483–496, 2010.
    • (2010) Cell , vol.141 , Issue.3 , pp. 483-496
    • Cui, J.1    Zhu, L.2    Xia, X.3
  • 25
    • 38749097018 scopus 로고    scopus 로고
    • NLRX1 is a regulator of mitochondrial antiviral immunity
    • C. B. Moore, D. T. Bergstralh, J. A. Duncan et al., “NLRX1 is a regulator of mitochondrial antiviral immunity,” Nature, vol. 451, no. 7178, pp. 573–577, 2008.
    • (2008) Nature , vol.451 , Issue.7178 , pp. 573-577
    • Moore, C.B.1    Bergstralh, D.T.2    Duncan, J.A.3
  • 26
    • 84958662906 scopus 로고    scopus 로고
    • HDAC6 regulates cellular viral RNA sensing by deacetylation of RIG-I
    • S. J. Choi, H. C. Lee, J. H. Kim et al., “HDAC6 regulates cellular viral RNA sensing by deacetylation of RIG-I,” The EMBO Journal, vol. 35, no. 4, pp. 429–442, 2016.
    • (2016) The EMBO Journal , vol.35 , Issue.4 , pp. 429-442
    • Choi, S.J.1    Lee, H.C.2    Kim, J.H.3
  • 27
    • 85021917244 scopus 로고    scopus 로고
    • Innate immunity to RNA virus is regulated by temporal and reversible sumoylation of RIG-I and MDA5
    • M. M. Hu, C. Y. Liao, Q. Yang, X. Q. Xie, and H. B. Shu, “Innate immunity to RNA virus is regulated by temporal and reversible sumoylation of RIG-I and MDA5,” The Journal of Experimental Medicine, vol. 214, no. 4, pp. 973–989, 2017.
    • (2017) The Journal of Experimental Medicine , vol.214 , Issue.4 , pp. 973-989
    • Hu, M.M.1    Liao, C.Y.2    Yang, Q.3    Xie, X.Q.4    Shu, H.B.5
  • 28
    • 79953162495 scopus 로고    scopus 로고
    • SUMOylation of RIG-I positively regulates the type I interferon signaling
    • Z. Mi, J. Fu, Y. Xiong, and H. Tang, “SUMOylation of RIG-I positively regulates the type I interferon signaling,” Protein & Cell, vol. 1, no. 3, pp. 275–283, 2010.
    • (2010) Protein & Cell , vol.1 , Issue.3 , pp. 275-283
    • Mi, Z.1    Fu, J.2    Xiong, Y.3    Tang, H.4
  • 29
    • 79961133270 scopus 로고    scopus 로고
    • MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response
    • F. Hou, L. Sun, H. Zheng, B. Skaug, Q. X. Jiang, and Z. J. Chen, “MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response,” Cell, vol. 146, no. 3, pp. 448–461, 2011.
    • (2011) Cell , vol.146 , Issue.3 , pp. 448-461
    • Hou, F.1    Sun, L.2    Zheng, H.3    Skaug, B.4    Jiang, Q.X.5    Chen, Z.J.6
  • 30
    • 27144440523 scopus 로고    scopus 로고
    • IPS-1, an adaptor triggering RIG-I- and mda5-mediated type I interferon induction
    • T. Kawai, K. Takahashi, S. Sato et al., “IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction,” Nature Immunology, vol. 6, no. 10, pp. 981–988, 2005.
    • (2005) Nature Immunology , vol.6 , Issue.10 , pp. 981-988
    • Kawai, T.1    Takahashi, K.2    Sato, S.3
  • 31
    • 27144440476 scopus 로고    scopus 로고
    • Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis c virus
    • E. Meylan, J. Curran, K. Hofmann et al., “Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus,” Nature, vol. 437, no. 7062, pp. 1167–1172, 2005.
    • (2005) Nature , vol.437 , Issue.7062 , pp. 1167-1172
    • Meylan, E.1    Curran, J.2    Hofmann, K.3
  • 32
    • 24144461689 scopus 로고    scopus 로고
    • Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3
    • R. B. Seth, L. Sun, C.-K. Ea, and Z. J. Chen, “Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3,” Cell, vol. 122, no. 5, pp. 669–682, 2005.
    • (2005) Cell , vol.122 , Issue.5 , pp. 669-682
    • Seth, R.B.1    Sun, L.2    Ea, C.-K.3    Chen, Z.J.4
  • 33
    • 85067077138 scopus 로고    scopus 로고
    • Structural basis for the prion-like MAVS filaments in antiviral innate immunity
    • article
    • H. Xu, X. He, H. Zheng et al., “Structural basis for the prion-like MAVS filaments in antiviral innate immunity,” Biophysical Journal, vol. 106, no. 2, article 684a, 2014.
    • (2014) Biophysical Journal , vol.106 , Issue.2
    • Xu, H.1    He, X.2    Zheng, H.3
  • 34
    • 24944538819 scopus 로고    scopus 로고
    • VISA is an adapter protein required for virus-triggered IFN-β signaling
    • L.-G. Xu, Y.-Y. Wang, K.-J. Han, L.-Y. Li, Z. Zhai, and H.-B. Shu, “VISA is an adapter protein required for virus-triggered IFN-β signaling,” Molecular Cell, vol. 19, no. 6, pp. 727–740, 2005.
    • (2005) Molecular Cell , vol.19 , Issue.6 , pp. 727-740
    • Xu, L.-G.1    Wang, Y.-Y.2    Han, K.-J.3    Li, L.-Y.4    Zhai, Z.5    Shu, H.-B.6
  • 35
    • 33750976374 scopus 로고    scopus 로고
    • 5′-Triphosphate RNA is the ligand for RIG-I
    • V. Hornung, J. Ellegast, S. Kim et al., “5′-Triphosphate RNA is the ligand for RIG-I,” Science, vol. 314, no. 5801, pp. 994–997, 2006.
    • (2006) Science , vol.314 , Issue.5801 , pp. 994-997
    • Hornung, V.1    Ellegast, J.2    Kim, S.3
  • 36
    • 33750984771 scopus 로고    scopus 로고
    • RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phos-phates
    • A. Pichlmair, O. Schulz, C. P. Tan et al., “RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phos-phates,” Science, vol. 314, no. 5801, pp. 997–1001, 2006.
    • (2006) Science , vol.314 , Issue.5801 , pp. 997-1001
    • Pichlmair, A.1    Schulz, O.2    Tan, C.P.3
  • 38
    • 46949097299 scopus 로고    scopus 로고
    • Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-i and melanoma differentiation-associated gene 5
    • H. Kato, O. Takeuchi, E. Mikamo-Satoh et al., “Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5,” The Journal of Experimental Medicine, vol. 205, no. 7, pp. 1601–1610, 2008.
    • (2008) The Journal of Experimental Medicine , vol.205 , Issue.7 , pp. 1601-1610
    • Kato, H.1    Takeuchi, O.2    Mikamo-Satoh, E.3
  • 39
    • 84863421511 scopus 로고    scopus 로고
    • The 3′ untranslated regions of influenza genomic sequences are 5′PPP-independent ligands for RIG-I
    • article
    • W. G. Davis, J. B. Bowzard, S. D. Sharma et al., “The 3′ untranslated regions of influenza genomic sequences are 5′PPP-independent ligands for RIG-I,” PLoS One, vol. 7, no. 3, article e32661, 2012.
    • (2012) PLoS One , vol.7 , Issue.3
    • Davis, W.G.1    Bowzard, J.B.2    Sharma, S.D.3
  • 40
    • 84884157315 scopus 로고    scopus 로고
    • Master sensors of pathogenic RNA—RIG-I like receptors
    • M. Schlee, “Master sensors of pathogenic RNA—RIG-I like receptors,” Immunobiology, vol. 218, no. 11, pp. 1322–1335, 2013.
    • (2013) Immunobiology , vol.218 , Issue.11 , pp. 1322-1335
    • Schlee, M.1
  • 41
    • 84886731532 scopus 로고    scopus 로고
    • Strategies of highly pathogenic RNA viruses to block dsRNA detection by RIG-I-like receptors: Hide, mask, hit
    • L. Zinzula and E. Tramontano, “Strategies of highly pathogenic RNA viruses to block dsRNA detection by RIG-I-like receptors: hide, mask, hit,” Antiviral Research, vol. 100, no. 3, pp. 615–635, 2013.
    • (2013) Antiviral Research , vol.100 , Issue.3 , pp. 615-635
    • Zinzula, L.1    Tramontano, E.2
  • 42
    • 85051887103 scopus 로고    scopus 로고
    • Correction: ATP hydrolysis by the viral RNA sensor RIG-I prevents unintentional recognition of self-RNA
    • C. Lässig, S. Matheisl, K. M. J. Sparrer et al., “Correction: ATP hydrolysis by the viral RNA sensor RIG-I prevents unintentional recognition of self-RNA,” eLife, vol. 5, 2016.
    • (2016) eLife , vol.5
    • Lässig, C.1    Matheisl, S.2    Sparrer, K.M.J.3
  • 43
    • 84868553355 scopus 로고    scopus 로고
    • Visualizing the determinants of viral RNA recognition by innate immune sensor RIG-I
    • D. Luo, A. Kohlway, A. Vela, and A. M. Pyle, “Visualizing the determinants of viral RNA recognition by innate immune sensor RIG-I,” Structure, vol. 20, no. 11, pp. 1983–1988, 2012.
    • (2012) Structure , vol.20 , Issue.11 , pp. 1983-1988
    • Luo, D.1    Kohlway, A.2    Vela, A.3    Pyle, A.M.4
  • 44
    • 84945927411 scopus 로고    scopus 로고
    • Establishing the role of ATP for the function of the RIG-I innate immune sensor
    • D. C. Rawling, M. E. Fitzgerald, and A. M. Pyle, “Establishing the role of ATP for the function of the RIG-I innate immune sensor,” eLife, vol. 4, 2015.
    • (2015) eLife , vol.4
    • Rawling, D.C.1    Fitzgerald, M.E.2    Pyle, A.M.3
  • 45
    • 84908275360 scopus 로고    scopus 로고
    • Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways
    • M. C. Boelens, T. J. Wu, B. Y. Nabet et al., “Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways,” Cell, vol. 159, no. 3, pp. 499–513, 2014.
    • (2014) Cell , vol.159 , Issue.3 , pp. 499-513
    • Boelens, M.C.1    Wu, T.J.2    Nabet, B.Y.3
  • 46
    • 85020240331 scopus 로고    scopus 로고
    • Discrimination of cytosolic self and non-self RNA by RIG-I-like receptors
    • C. Lassig and K. P. Hopfner, “Discrimination of cytosolic self and non-self RNA by RIG-I-like receptors,” The Journal of Biological Chemistry, vol. 292, no. 22, pp. 9000–9009, 2017.
    • (2017) The Journal of Biological Chemistry , vol.292 , Issue.22 , pp. 9000-9009
    • Lassig, C.1    Hopfner, K.P.2
  • 47
    • 84925137606 scopus 로고    scopus 로고
    • Mutations in DDX58, which encodes RIG-I, cause atypical Singleton-Merten syndrome
    • M. A. Jang, E. K. Kim, H. Now et al., “Mutations in DDX58, which encodes RIG-I, cause atypical Singleton-Merten syndrome,” The American Journal of Human Genetics, vol. 96, no. 2, pp. 266–274, 2015.
    • (2015) The American Journal of Human Genetics , vol.96 , Issue.2 , pp. 266-274
    • Jang, M.A.1    Kim, E.K.2    Now, H.3
  • 48
    • 84904004005 scopus 로고    scopus 로고
    • Aicardi-Goutières syndrome is caused by IFIH1 mutations
    • H. Oda, K. Nakagawa, J. Abe et al., “Aicardi-Goutières syndrome is caused by IFIH1 mutations,” The American Journal of Human Genetics, vol. 95, no. 1, pp. 121–125, 2014.
    • (2014) The American Journal of Human Genetics , vol.95 , Issue.1 , pp. 121-125
    • Oda, H.1    Nakagawa, K.2    Abe, J.3
  • 49
    • 84899495767 scopus 로고    scopus 로고
    • Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling
    • G. I. Rice, Y. Del Toro Duany, E. M. Jenkinson et al., “Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling,” Nature Genetics, vol. 46, no. 5, pp. 503–509, 2014.
    • (2014) Nature Genetics , vol.46 , Issue.5 , pp. 503-509
    • Rice, G.I.1    Del Toro Duany, Y.2    Jenkinson, E.M.3
  • 50
    • 84924164221 scopus 로고    scopus 로고
    • A specific IFIH1 gain-of-function mutation causes Singleton-Merten syndrome
    • F. Rutsch, M. MacDougall, C. Lu et al., “A specific IFIH1 gain-of-function mutation causes Singleton-Merten syndrome,” The American Journal of Human Genetics, vol. 96, no. 2, pp. 275–282, 2015.
    • (2015) The American Journal of Human Genetics , vol.96 , Issue.2 , pp. 275-282
    • Rutsch, F.1    MacDougall, M.2    Lu, C.3
  • 51
    • 26844503987 scopus 로고    scopus 로고
    • The RNA helicase lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-i
    • S. Rothenfusser, N. Goutagny, G. DiPerna et al., “The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I,” The Journal of Immunology, vol. 175, no. 8, pp. 5260–5268, 2005.
    • (2005) The Journal of Immunology , vol.175 , Issue.8 , pp. 5260-5268
    • Rothenfusser, S.1    Goutagny, N.2    DiPerna, G.3
  • 52
    • 33845431988 scopus 로고    scopus 로고
    • RNA- and virus-independent inhibition of antiviral signaling by RNA helicase LGP2
    • A. Komuro and C. M. Horvath, “RNA- and virus-independent inhibition of antiviral signaling by RNA helicase LGP2,” Journal of Virology, vol. 80, no. 24, pp. 12332–12342, 2006.
    • (2006) Journal of Virology , vol.80 , Issue.24 , pp. 12332-12342
    • Komuro, A.1    Horvath, C.M.2
  • 53
    • 46949102571 scopus 로고    scopus 로고
    • Structure and function of LGP2, a DEX(D/H) helicase that regulates the innate immunity response
    • A. Murali, X. Li, C. T. Ranjith-Kumar et al., “Structure and function of LGP2, a DEX(D/H) helicase that regulates the innate immunity response,” Journal of Biological Chemistry, vol. 283, no. 23, pp. 15825–15833, 2008.
    • (2008) Journal of Biological Chemistry , vol.283 , Issue.23 , pp. 15825-15833
    • Murali, A.1    Li, X.2    Ranjith-Kumar, C.T.3
  • 54
    • 85014501728 scopus 로고    scopus 로고
    • Systems-based analysis of RIG-I-dependent signalling identifies KHSRP as an inhibitor of RIG-I receptor activation
    • article
    • S. Soonthornvacharin, A. Rodriguez-Frandsen, Y. Zhou et al., “Systems-based analysis of RIG-I-dependent signalling identifies KHSRP as an inhibitor of RIG-I receptor activation,” Nature Microbiology, vol. 2, article 17022, 2017.
    • (2017) Nature Microbiology , vol.2
    • Soonthornvacharin, S.1    Rodriguez-Frandsen, A.2    Zhou, Y.3
  • 55
    • 84926104091 scopus 로고    scopus 로고
    • The innate immune sensor LGP2 activates antiviral signaling by regulating MDA5-RNA interaction and filament assembly
    • A. M. Bruns, G. P. Leser, R. A. Lamb, and C. M. Horvath, “The innate immune sensor LGP2 activates antiviral signaling by regulating MDA5-RNA interaction and filament assembly,” Molecular Cell, vol. 55, no. 5, pp. 771–781, 2014.
    • (2014) Molecular Cell , vol.55 , Issue.5 , pp. 771-781
    • Bruns, A.M.1    Leser, G.P.2    Lamb, R.A.3    Horvath, C.M.4
  • 56
    • 84872348735 scopus 로고    scopus 로고
    • ATP hydrolysis enhances RNA recognition and antiviral signal transduction by the innate immune sensor, laboratory of genetics and physiology 2 (LGP2)
    • A. M. Bruns, D. Pollpeter, N. Hadizadeh, S. Myong, J. F. Marko, and C. M. Horvath, “ATP hydrolysis enhances RNA recognition and antiviral signal transduction by the innate immune sensor, Laboratory of Genetics and Physiology 2 (LGP2),” Journal of Biological Chemistry, vol. 288, no. 2, pp. 938–946, 2013.
    • (2013) Journal of Biological Chemistry , vol.288 , Issue.2 , pp. 938-946
    • Bruns, A.M.1    Pollpeter, D.2    Hadizadeh, N.3    Myong, S.4    Marko, J.F.5    Horvath, C.M.6
  • 57
    • 84903954356 scopus 로고    scopus 로고
    • Protective role of LGP2 in influenza virus pathogenesis
    • M. Si-Tahar, F. Blanc, L. Furio et al., “Protective role of LGP2 in influenza virus pathogenesis,” The Journal of Infectious Diseases, vol. 210, no. 2, pp. 214–223, 2014.
    • (2014) The Journal of Infectious Diseases , vol.210 , Issue.2 , pp. 214-223
    • Si-Tahar, M.1    Blanc, F.2    Furio, L.3
  • 58
    • 85040744563 scopus 로고    scopus 로고
    • The RIG-I-like receptor LGP2 inhibits dicer-dependent processing of long double-stranded RNA and blocks RNA interference in mammalian cells
    • article
    • A. G. van der Veen, P. V. Maillard, J. M. Schmidt et al., “The RIG-I-like receptor LGP2 inhibits Dicer-dependent processing of long double-stranded RNA and blocks RNA interference in mammalian cells,” The EMBO Journal, vol. 37, no. 4, article e97479, 2018.
    • (2018) The EMBO Journal , vol.37 , Issue.4
    • van der Veen, A.G.1    Maillard, P.V.2    Schmidt, J.M.3
  • 59
    • 85019600017 scopus 로고    scopus 로고
    • Questioning antiviral RNAi in mammals
    • article
    • B. R. tenOever, “Questioning antiviral RNAi in mammals,” Nature Microbiology, vol. 2, no. 5, article 17052, 2017.
    • (2017) Nature Microbiology , vol.2 , Issue.5
    • tenOever, B.R.1
  • 60
    • 84878108881 scopus 로고    scopus 로고
    • DExD/H-box RNA helicases as mediators of anti-viral innate immunity and essential host factors for viral replication
    • A. Fullam and M. Schröder, “DExD/H-box RNA helicases as mediators of anti-viral innate immunity and essential host factors for viral replication,” Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, vol. 1829, no. 8, pp. 854–865, 2013.
    • (2013) Biochimica Et Biophysica Acta (BBA) - Gene Regulatory Mechanisms , vol.1829 , Issue.8 , pp. 854-865
    • Fullam, A.1    Schröder, M.2
  • 61
    • 84973568972 scopus 로고    scopus 로고
    • Accessory factors of cytoplasmic viral RNA sensors required for antiviral innate immune response
    • H. Oshiumi, T. Kouwaki, and T. Seya, “Accessory factors of cytoplasmic viral RNA sensors required for antiviral innate immune response,” Frontiers in Immunology, vol. 7, 2016.
    • (2016) Frontiers in Immunology , vol.7
    • Oshiumi, H.1    Kouwaki, T.2    Seya, T.3
  • 62
    • 84906230645 scopus 로고    scopus 로고
    • The SKIV2L RNA exosome limits activation of the RIG-I-like receptors
    • S. C. Eckard, G. I. Rice, A. Fabre et al., “The SKIV2L RNA exosome limits activation of the RIG-I-like receptors,” Nature Immunology, vol. 15, no. 9, pp. 839–845, 2014.
    • (2014) Nature Immunology , vol.15 , Issue.9 , pp. 839-845
    • Eckard, S.C.1    Rice, G.I.2    Fabre, A.3
  • 63
    • 80052603804 scopus 로고    scopus 로고
    • DDX60, a DEXD/H box helicase, is a novel antiviral factor promoting RIG-I-like receptor-mediated signaling
    • M. Miyashita, H. Oshiumi, M. Matsumoto, and T. Seya, “DDX60, a DEXD/H box helicase, is a novel antiviral factor promoting RIG-I-like receptor-mediated signaling,” Molecular and Cellular Biology, vol. 31, no. 18, pp. 3802–3819, 2011.
    • (2011) Molecular and Cellular Biology , vol.31 , Issue.18 , pp. 3802-3819
    • Miyashita, M.1    Oshiumi, H.2    Matsumoto, M.3    Seya, T.4
  • 64
    • 84929960168 scopus 로고    scopus 로고
    • DDX60 is involved in RIG-I-dependent and independent antiviral responses, and its function is attenuated by virus-induced EGFR activation
    • H. Oshiumi, M. Miyashita, M. Okamoto et al., “DDX60 is involved in RIG-I-dependent and independent antiviral responses, and its function is attenuated by virus-induced EGFR activation,” Cell Reports, vol. 11, no. 8, pp. 1193–1207, 2015.
    • (2015) Cell Reports , vol.11 , Issue.8 , pp. 1193-1207
    • Oshiumi, H.1    Miyashita, M.2    Okamoto, M.3
  • 65
    • 84982949470 scopus 로고    scopus 로고
    • Spliceosome SNRNP200 promotes viral RNA sensing and IRF3 activation of antiviral response
    • article
    • N. Tremblay, M. Baril, L. Chatel-Chaix et al., “Spliceosome SNRNP200 promotes viral RNA sensing and IRF3 activation of antiviral response,” PLoS Pathogens, vol. 12, no. 7, article e1005772, 2016.
    • (2016) PLoS Pathogens , vol.12 , Issue.7
    • Tremblay, N.1    Baril, M.2    Chatel-Chaix, L.3
  • 66
    • 0025336899 scopus 로고
    • Domains of yeast u4 spliceosomal RNA required for PRP4 protein binding, snRNP-snRNP interactions, and pre-mRNA splicing in vivo
    • R. Bordonne, J. Banroques, J. Abelson, and C. Guthrie, “Domains of yeast U4 spliceosomal RNA required for PRP4 protein binding, snRNP-snRNP interactions, and pre-mRNA splicing in vivo,” Genes & Development, vol. 4, no. 7, pp. 1185–1196, 1990.
    • (1990) Genes & Development , vol.4 , Issue.7 , pp. 1185-1196
    • Bordonne, R.1    Banroques, J.2    Abelson, J.3    Guthrie, C.4
  • 67
    • 0029854007 scopus 로고    scopus 로고
    • Identification and characterization of yeast mutants that overcome an experimentally introduced block to splicing at the 3′ splice site
    • J. Lin and J. J. Rossi, “Identification and characterization of yeast mutants that overcome an experimentally introduced block to splicing at the 3′ splice site,” RNA, vol. 2, no. 8, pp. 835–848, 1996.
    • (1996) RNA , vol.2 , Issue.8 , pp. 835-848
    • Lin, J.1    Rossi, J.J.2
  • 68
    • 0029888811 scopus 로고    scopus 로고
    • An RNA-dependent ATPase associated with U2/U6 snRNAs in pre-mRNA splicing
    • D. Xu, S. Nouraini, D. Field, S.-J. Tang, and J. D. Friesen, “An RNA-dependent ATPase associated with U2/U6 snRNAs in pre-mRNA splicing,” Nature, vol. 381, no. 6584, pp. 709–713, 1996.
    • (1996) Nature , vol.381 , Issue.6584 , pp. 709-713
    • Xu, D.1    Nouraini, S.2    Field, D.3    Tang, S.-J.4    Friesen, J.D.5
  • 69
    • 0030976931 scopus 로고    scopus 로고
    • An evolutionarily conserved u5 snRNP-specific protein is a GTP-binding factor closely related to the ribosomal translocase EF-2
    • P. Fabrizio, B. Laggerbauer, J. Lauber, W. S. Lane, and R. Lührmann, “An evolutionarily conserved U5 snRNP-specific protein is a GTP-binding factor closely related to the ribosomal translocase EF-2,” The EMBO Journal, vol. 16, no. 13, pp. 4092–4106, 1997.
    • (1997) The EMBO Journal , vol.16 , Issue.13 , pp. 4092-4106
    • Fabrizio, P.1    Laggerbauer, B.2    Lauber, J.3    Lane, W.S.4    Lührmann, R.5
  • 70
    • 0032489021 scopus 로고    scopus 로고
    • Mechanical devices of the spliceosome: Motors, clocks, springs, and things
    • J. P. Staley and C. Guthrie, “Mechanical devices of the spliceosome: motors, clocks, springs, and things,” Cell, vol. 92, no. 3, pp. 315–326, 1998.
    • (1998) Cell , vol.92 , Issue.3 , pp. 315-326
    • Staley, J.P.1    Guthrie, C.2
  • 71
    • 85063707104 scopus 로고    scopus 로고
    • Correction: Spliceosome SNRNP200 promotes viral RNA sensing and IRF3 activation of antiviral response
    • article
    • N. Tremblay, M. Baril, L. Chatel-Chaix et al., “Correction: spliceosome SNRNP200 promotes viral RNA sensing and IRF3 activation of antiviral response,” PLoS Pathogens, vol. 13, no. 1, article e1006174, 2017.
    • (2017) PLoS Pathogens , vol.13 , Issue.1
    • Tremblay, N.1    Baril, M.2    Chatel-Chaix, L.3
  • 72
    • 79960724199 scopus 로고    scopus 로고
    • From unwinding to clamping — the DEAD box RNA helicase family
    • P. Linder and E. Jankowsky, “From unwinding to clamping — the DEAD box RNA helicase family,” Nature Reviews Molecular Cell Biology, vol. 12, no. 8, pp. 505–516, 2011.
    • (2011) Nature Reviews Molecular Cell Biology , vol.12 , Issue.8 , pp. 505-516
    • Linder, P.1    Jankowsky, E.2
  • 74
    • 84857969026 scopus 로고    scopus 로고
    • Sensing of RNA viruses: A review of innate immune receptors involved in recognizing RNA virus invasion
    • S. Jensen and A. R. Thomsen, “Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion,” Journal of Virology, vol. 86, no. 6, pp. 2900–2910, 2012.
    • (2012) Journal of Virology , vol.86 , Issue.6 , pp. 2900-2910
    • Jensen, S.1    Thomsen, A.R.2
  • 75
    • 0037080024 scopus 로고    scopus 로고
    • Tissue expression of human toll-like receptors and differential regulation of toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines
    • K. A. Zarember and P. J. Godowski, “Tissue expression of human toll-like receptors and differential regulation of toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines,” Journal of Immunology, vol. 168, no. 2, pp. 554–561, 2002.
    • (2002) Journal of Immunology , vol.168 , Issue.2 , pp. 554-561
    • Zarember, K.A.1    Godowski, P.J.2
  • 76
    • 84878563100 scopus 로고    scopus 로고
    • Toll-like receptor 3 recognizes incomplete stem structures in single-stranded viral RNA
    • M. Tatematsu, F. Nishikawa, T. Seya, and M. Matsumoto, “Toll-like receptor 3 recognizes incomplete stem structures in single-stranded viral RNA,” Nature Communications, vol. 4, p. 1833, 2013.
    • (2013) Nature Communications , vol.4 , pp. 1833
    • Tatematsu, M.1    Nishikawa, F.2    Seya, T.3    Matsumoto, M.4
  • 77
    • 85017425228 scopus 로고    scopus 로고
    • RNA sensors of the innate immune system and their detection of pathogens
    • N. H. Chen, P. P. Xia, S. J. Li, T. J. Zhang, T. T. Wang, and J. Z. Zhu, “RNA sensors of the innate immune system and their detection of pathogens,” IUBMB Life, vol. 69, no. 5, pp. 297–304, 2017.
    • (2017) IUBMB Life , vol.69 , Issue.5 , pp. 297-304
    • Chen, N.H.1    Xia, P.P.2    Li, S.J.3    Zhang, T.J.4    Wang, T.T.5    Zhu, J.Z.6
  • 78
    • 78449250992 scopus 로고    scopus 로고
    • Dimerization of toll-like receptor 3 (TLR3) is required for ligand binding
    • Y. Wang, L. Liu, D. R. Davies, and D. M. Segal, “Dimerization of Toll-like receptor 3 (TLR3) is required for ligand binding,” Journal of Biological Chemistry, vol. 285, no. 47, pp. 36836–36841, 2010.
    • (2010) Journal of Biological Chemistry , vol.285 , Issue.47 , pp. 36836-36841
    • Wang, Y.1    Liu, L.2    Davies, D.R.3    Segal, D.M.4
  • 79
    • 85018501547 scopus 로고    scopus 로고
    • Integrative modelling of TIR domain-containing adaptor molecule inducing interferon-β (TRIF) provides insights into its autoinhibited state
    • J. Mahita and R. Sowdhamini, “Integrative modelling of TIR domain-containing adaptor molecule inducing interferon-β (TRIF) provides insights into its autoinhibited state,” Biology Direct, vol. 12, no. 1, p. 9, 2017.
    • (2017) Biology Direct , vol.12 , Issue.1 , pp. 9
    • Mahita, J.1    Sowdhamini, R.2
  • 80
    • 85021254122 scopus 로고    scopus 로고
    • STRAP positively regulates TLR3-triggered signaling pathway
    • H. D. Huh, E. Lee, J. Shin, B. Park, and S. Lee, “STRAP positively regulates TLR3-triggered signaling pathway,” Cellular Immunology, vol. 318, pp. 55–60, 2017.
    • (2017) Cellular Immunology , vol.318 , pp. 55-60
    • Huh, H.D.1    Lee, E.2    Shin, J.3    Park, B.4    Lee, S.5
  • 83
    • 84945156937 scopus 로고    scopus 로고
    • Regulation of TLR3 activation by S100A9
    • S. Y. Tsai, J. A. Segovia, T. H. Chang et al., “Regulation of TLR3 activation by S100A9,” Journal of Immunology, vol. 195, no. 9, pp. 4426–4437, 2015.
    • (2015) Journal of Immunology , vol.195 , Issue.9 , pp. 4426-4437
    • Tsai, S.Y.1    Segovia, J.A.2    Chang, T.H.3
  • 84
    • 65849172450 scopus 로고    scopus 로고
    • Rho proteins are negative regulators of TLR2, TLR3, and TLR4 signaling in astrocytes
    • E. Borysiewicz, D. Fil, and G. W. Konat, “Rho proteins are negative regulators of TLR2, TLR3, and TLR4 signaling in astrocytes,” Journal of Neuroscience Research, vol. 87, no. 7, pp. 1565–1572, 2009.
    • (2009) Journal of Neuroscience Research , vol.87 , Issue.7 , pp. 1565-1572
    • Borysiewicz, E.1    Fil, D.2    Konat, G.W.3
  • 85
    • 84879546850 scopus 로고    scopus 로고
    • Negative regulation of TLR inflammatory signaling by the SUMO-deconjugating enzyme SENP6
    • article
    • X. Liu, W. Chen, Q. Wang, L. Li, and C. Wang, “Negative regulation of TLR inflammatory signaling by the SUMO-deconjugating enzyme SENP6,” PLoS Pathogens, vol. 9, no. 6, article e1003480, 2013.
    • (2013) PLoS Pathogens , vol.9 , Issue.6
    • Liu, X.1    Chen, W.2    Wang, Q.3    Li, L.4    Wang, C.5
  • 86
    • 84929120971 scopus 로고    scopus 로고
    • Both microRNA-155 and virus-encoded MiR-155 ortholog regulate TLR3 expression
    • article
    • X. M. Hu, J. Q. Ye, A. J. Qin, H. T. Zou, H. X. Shao, and K. Qian, “Both microRNA-155 and virus-encoded MiR-155 ortholog regulate TLR3 expression,” PLoS One, vol. 10, no. 5, article e0126012, 2015.
    • (2015) PLoS One , vol.10 , Issue.5
    • Hu, X.M.1    Ye, J.Q.2    Qin, A.J.3    Zou, H.T.4    Shao, H.X.5    Qian, K.6
  • 87
    • 85031117872 scopus 로고    scopus 로고
    • Down regulation of TRIF, TLR3, and MAVS in HCV infected liver correlates with the outcome of infection
    • P. Kar, D. Kumar, P. K. Gumma, S. J. Chowdhury, and V. K. Karra, “Down regulation of TRIF, TLR3, and MAVS in HCV infected liver correlates with the outcome of infection,” Journal of Medical Virology, vol. 89, no. 12, pp. 2165–2172, 2017.
    • (2017) Journal of Medical Virology , vol.89 , Issue.12 , pp. 2165-2172
    • Kar, P.1    Kumar, D.2    Gumma, P.K.3    Chowdhury, S.J.4    Karra, V.K.5
  • 88
    • 85010469600 scopus 로고    scopus 로고
    • Association of toll-like receptor 3 single-nucleotide polymorphisms and hepatitis c virus infection
    • M. R. Al-Anazi, S. Matou-Nasri, A. A. Abdo et al., “Association of Toll-like receptor 3 single-nucleotide polymorphisms and hepatitis C virus infection,” Journal of Immunology Research, vol. 2017, Article ID 1590653, 11 pages, 2017.
    • (2017) Journal of Immunology Research , vol.2017
    • Al-Anazi, M.R.1    Matou-Nasri, S.2    Abdo, A.A.3
  • 89
    • 84870292016 scopus 로고    scopus 로고
    • Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells
    • F. G. Lafaille, I. M. Pessach, S. Y. Zhang et al., “Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells,” Nature, vol. 491, no. 7426, pp. 769–773, 2012.
    • (2012) Nature , vol.491 , Issue.7426 , pp. 769-773
    • Lafaille, F.G.1    Pessach, I.M.2    Zhang, S.Y.3
  • 90
    • 80555144890 scopus 로고    scopus 로고
    • Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity
    • Y. Q. Guo, M. Audry, M. Ciancanelli et al., “Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity,” Journal of Experimental Medicine, vol. 208, no. 10, pp. 2083–2098, 2011.
    • (2011) Journal of Experimental Medicine , vol.208 , Issue.10 , pp. 2083-2098
    • Guo, Y.Q.1    Audry, M.2    Ciancanelli, M.3
  • 91
    • 77956395564 scopus 로고    scopus 로고
    • Age-dependent mendelian predisposition to herpes simplex virus type 1 encephalitis in childhood
    • L. Abel, S. Plancoulaine, E. Jouanguy et al., “Age-dependent Mendelian predisposition to herpes simplex virus type 1 encephalitis in childhood,” The Journal of Pediatrics, vol. 157, no. 4, pp. 623–629.e1, 2010.
    • (2010) The Journal of Pediatrics , vol.157 , Issue.4 , pp. 623-629.e1
    • Abel, L.1    Plancoulaine, S.2    Jouanguy, E.3
  • 92
    • 34548699323 scopus 로고    scopus 로고
    • TLR3 deficiency in patients with herpes simplex encephalitis
    • S. Y. Zhang, E. Jouanguy, S. Ugolini et al., “TLR3 deficiency in patients with herpes simplex encephalitis,” Science, vol. 317, no. 5844, pp. 1522–1527, 2007.
    • (2007) Science , vol.317 , Issue.5844 , pp. 1522-1527
    • Zhang, S.Y.1    Jouanguy, E.2    Ugolini, S.3
  • 93
    • 85022032134 scopus 로고    scopus 로고
    • TLR3 mutations in adult patients with herpes simplex virus and varicella-zoster virus encephalitis
    • M. Sironi, A. M. Peri, R. Cagliani et al., “TLR3 mutations in adult patients with herpes simplex virus and varicella-zoster virus encephalitis,” The Journal of Infectious Diseases, vol. 215, no. 9, pp. 1430–1434, 2017.
    • (2017) The Journal of Infectious Diseases , vol.215 , Issue.9 , pp. 1430-1434
    • Sironi, M.1    Peri, A.M.2    Cagliani, R.3
  • 94
    • 84949087898 scopus 로고    scopus 로고
    • Mutations in the TLR3 signaling pathway and beyond in adult patients with herpes simplex encephalitis
    • N. Mork, E. Kofod-Olsen, K. B. Sorensen et al., “Mutations in the TLR3 signaling pathway and beyond in adult patients with herpes simplex encephalitis,” Genes & Immunity, vol. 16, no. 8, pp. 552–566, 2015.
    • (2015) Genes & Immunity , vol.16 , Issue.8 , pp. 552-566
    • Mork, N.1    Kofod-Olsen, E.2    Sorensen, K.B.3
  • 95
    • 85026385795 scopus 로고    scopus 로고
    • Downregulation of interferon-β and inhibition of TLR3 expression are associated with fatal outcome of severe fever with thrombocytopenia syndrome
    • P. X. Song, N. Zheng, L. Zhang et al., “Downregulation of interferon-β and Inhibition of TLR3 expression are associated with fatal outcome of severe fever with thrombocytopenia syndrome,” Scientific Reports, vol. 7, no. 1, p. 6532, 2017.
    • (2017) Scientific Reports , vol.7 , Issue.1 , pp. 6532
    • Song, P.X.1    Zheng, N.2    Zhang, L.3
  • 96
    • 84973454878 scopus 로고    scopus 로고
    • Toll-like receptor 3 is associated with the risk of HCV infection and HBV-related diseases
    • article
    • P. L. Geng, L. X. Song, H. J. An, J. Y. Huang, S. Li, and X. T. Zeng, “Toll-like receptor 3 is associated with the risk of HCV infection and HBV-related diseases,” Medicine, vol. 95, no. 21, article e2302, 2016.
    • (2016) Medicine , vol.95 , Issue.21
    • Geng, P.L.1    Song, L.X.2    An, H.J.3    Huang, J.Y.4    Li, S.5    Zeng, X.T.6
  • 97
    • 85038619898 scopus 로고    scopus 로고
    • Association of respiratory syncytial virus toll-like receptor 3-mediated immune response with COPD exacerbation frequency
    • D. Liu, Q. Chen, H. Zhu et al., “Association of respiratory syncytial virus toll-like receptor 3-mediated immune response with COPD exacerbation frequency,” Inflammation, vol. 41, no. 2, 2017.
    • (2017) Inflammation , vol.41 , Issue.2
    • Liu, D.1    Chen, Q.2    Zhu, H.3
  • 98
    • 85030463658 scopus 로고    scopus 로고
    • TLR3 is required for survival following coxsackievirus b3 infection by driving t lymphocyte activation and polarization: The role of dendritic cells
    • article
    • R. Sesti-Costa, M. C. S. Francozo, G. K. Silva, J. L. Proenca-Modena, and J. S. Silva, “TLR3 is required for survival following Coxsackievirus B3 infection by driving T lymphocyte activation and polarization: the role of dendritic cells,” PLoS One, vol. 12, no. 10, article e0185819, 2017.
    • (2017) PLoS One , vol.12 , Issue.10
    • Sesti-Costa, R.1    Francozo, M.C.S.2    Silva, G.K.3    Proenca-Modena, J.L.4    Silva, J.S.5
  • 99
    • 85012149781 scopus 로고    scopus 로고
    • Association of toll-like receptor 3 gene polymorphism with the severity of enterovirus 71 infection in chinese children
    • H. F. He, S. H. Liu, P. P. Liu et al., “Association of Toll-like receptor 3 gene polymorphism with the severity of enterovirus 71 infection in Chinese children,” Archives of Virology, vol. 162, no. 6, pp. 1717–1723, 2017.
    • (2017) Archives of Virology , vol.162 , Issue.6 , pp. 1717-1723
    • He, H.F.1    Liu, S.H.2    Liu, P.P.3
  • 100
    • 85011681596 scopus 로고    scopus 로고
    • Toll-like receptor 3 activation selectively reverses HIV latency in microglial cells
    • D. Alvarez-Carbonell, Y. Garcia-Mesa, S. Milne et al., “Toll-like receptor 3 activation selectively reverses HIV latency in microglial cells,” Retrovirology, vol. 14, no. 1, p. 9, 2017.
    • (2017) Retrovirology , vol.14 , Issue.1 , pp. 9
    • Alvarez-Carbonell, D.1    Garcia-Mesa, Y.2    Milne, S.3
  • 101
    • 85017433911 scopus 로고    scopus 로고
    • Triggering of TLR-3, -4, NOD2, and DC-SIGN reduces viral replication and increases t-cell activation capacity of HIV-infected human dendritic cells
    • S. Cardinaud, A. Urrutia, A. Rouers et al., “Triggering of TLR-3, -4, NOD2, and DC-SIGN reduces viral replication and increases T-cell activation capacity of HIV-infected human dendritic cells,” European Journal of Immunology, vol. 47, no. 5, pp. 818–829, 2017.
    • (2017) European Journal of Immunology , vol.47 , Issue.5 , pp. 818-829
    • Cardinaud, S.1    Urrutia, A.2    Rouers, A.3
  • 102
    • 85065699055 scopus 로고    scopus 로고
    • Toll-like receptors: The swiss army knife of immunity and vaccine development
    • article
    • J. K. Dowling and A. Mansell, “Toll-like receptors: the Swiss army knife of immunity and vaccine development,” Clinical & Translational Immunology, vol. 5, no. 5, article e85, 2016.
    • (2016) Clinical & Translational Immunology , vol.5 , Issue.5
    • Dowling, J.K.1    Mansell, A.2
  • 103
    • 85031786877 scopus 로고    scopus 로고
    • Intradermal immunisation using the TLR3-ligand poly (i: C) as adjuvant induces mucosal antibody responses and protects against genital HSV-2 infection
    • article
    • E. Bardel, R. Doucet-Ladeveze, C. Mathieu, A. M. Harandi, B. Dubois, and D. Kaiserlian, “Intradermal immunisation using the TLR3-ligand poly (I: C) as adjuvant induces mucosal antibody responses and protects against genital HSV-2 infection,” Npj Vaccines, vol. 1, no. 1, article 16010, 2016.
    • (2016) Npj Vaccines , vol.1 , Issue.1
    • Bardel, E.1    Doucet-Ladeveze, R.2    Mathieu, C.3    Harandi, A.M.4    Dubois, B.5    Kaiserlian, D.6
  • 104
    • 84994642934 scopus 로고    scopus 로고
    • Toll-like receptor 3 adjuvant in combination with virus-like particles elicit a humoral response against HIV
    • E. Poteet, P. Lewis, C. Y. Chen et al., “Toll-like receptor 3 adjuvant in combination with virus-like particles elicit a humoral response against HIV,” Vaccine, vol. 34, no. 48, pp. 5886–5894, 2016.
    • (2016) Vaccine , vol.34 , Issue.48 , pp. 5886-5894
    • Poteet, E.1    Lewis, P.2    Chen, C.Y.3
  • 107
    • 63749099833 scopus 로고    scopus 로고
    • Regulatory t cells and toll-like receptors: What is the missing link?
    • J. Dai, B. Liu, and Z. H. Li, “Regulatory T cells and Toll-like receptors: what is the missing link?,” International Immunopharmacology, vol. 9, no. 5, pp. 528–533, 2009.
    • (2009) International Immunopharmacology , vol.9 , Issue.5 , pp. 528-533
    • Dai, J.1    Liu, B.2    Li, Z.H.3
  • 108
    • 84873589349 scopus 로고    scopus 로고
    • TLR signaling in mast cells: Common and unique features
    • H. Sandig and S. Bulfone-Paus, “TLR signaling in mast cells: common and unique features,” Frontiers in Immunology, vol. 3, 2012.
    • (2012) Frontiers in Immunology , vol.3
    • Sandig, H.1    Bulfone-Paus, S.2
  • 109
    • 43149123808 scopus 로고    scopus 로고
    • Human skin endothelial cells can express all 10 TLR genes and respond to respective ligands
    • N. Fitzner, S. Clauberg, F. Essmann, J. Liebmann, and V. Kolb-Bachofen, “Human skin endothelial cells can express all 10 TLR genes and respond to respective ligands,” Clinical and Vaccine Immunology, vol. 15, no. 1, pp. 138–146, 2008.
    • (2008) Clinical and Vaccine Immunology , vol.15 , Issue.1 , pp. 138-146
    • Fitzner, N.1    Clauberg, S.2    Essmann, F.3    Liebmann, J.4    Kolb-Bachofen, V.5
  • 110
    • 84907756116 scopus 로고    scopus 로고
    • The impact of single and pairwise toll-like receptor activation on neuroinflammation and neurodegeneration
    • K. Rosenberger, K. Derkow, P. Dembny, C. Kruger, E. Schott, and S. Lehnardt, “The impact of single and pairwise Toll-like receptor activation on neuroinflammation and neurodegeneration,” Journal of Neuroinflammation, vol. 11, no. 1, p. 166, 2014.
    • (2014) Journal of Neuroinflammation , vol.11 , Issue.1 , pp. 166
    • Rosenberger, K.1    Derkow, K.2    Dembny, P.3    Kruger, C.4    Schott, E.5    Lehnardt, S.6
  • 111
    • 75649093343 scopus 로고    scopus 로고
    • Toll-like receptor signalling in the intestinal epithelium: How bacterial recognition shapes intestinal function
    • M. T. Abreu, “Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function,” Nature Reviews Immunology, vol. 10, no. 2, pp. 131–144, 2010.
    • (2010) Nature Reviews Immunology , vol.10 , Issue.2 , pp. 131-144
    • Abreu, M.T.1
  • 112
    • 85014343281 scopus 로고    scopus 로고
    • TLR7 deficiency leads to TLR8 compensative regulation of immune response against JEV in mice
    • M. Awais, K. Wang, X. W. Lin et al., “TLR7 deficiency leads to TLR8 compensative regulation of immune response against JEV in mice,” Frontiers in Immunology, vol. 8, 2017.
    • (2017) Frontiers in Immunology , vol.8
    • Awais, M.1    Wang, K.2    Lin, X.W.3
  • 113
    • 1542317578 scopus 로고    scopus 로고
    • Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8
    • F. Heil, H. Hemmi, H. Hochrein et al., “Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8,” Science, vol. 303, no. 5663, pp. 1526–1529, 2004.
    • (2004) Science , vol.303 , Issue.5663 , pp. 1526-1529
    • Heil, F.1    Hemmi, H.2    Hochrein, H.3
  • 114
    • 1542317550 scopus 로고    scopus 로고
    • Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA
    • S. S. Diebold, T. Kaisho, H. Hemmi, S. Akira, and C. R. Sousa, “Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA,” Science, vol. 303, no. 5663, pp. 1529–1531, 2004.
    • (2004) Science , vol.303 , Issue.5663 , pp. 1529-1531
    • Diebold, S.S.1    Kaisho, T.2    Hemmi, H.3    Akira, S.4    Sousa, C.R.5
  • 115
    • 84978116776 scopus 로고    scopus 로고
    • HCV RNA activates APCs via TLR7/TLR8 while virus selectively stimulates macrophages without inducing antiviral responses
    • Y. W. Zhang, M. El-Far, F. P. Dupuy et al., “HCV RNA activates APCs via TLR7/TLR8 while virus selectively stimulates macrophages without inducing antiviral responses,” Scientific Reports, vol. 6, no. 1, 2016.
    • (2016) Scientific Reports , vol.6 , Issue.1
    • Zhang, Y.W.1    El-Far, M.2    Dupuy, F.P.3
  • 116
    • 84891710752 scopus 로고    scopus 로고
    • Inosine-mediated modulation of RNA sensing by toll-like receptor 7 (TLR7) and TLR8
    • S. T. Sarvestani, M. D. Tate, J. M. Moffat et al., “Inosine-mediated modulation of RNA sensing by Toll-like receptor 7 (TLR7) and TLR8,” Journal of Virology, vol. 88, no. 2, pp. 799–810, 2013.
    • (2013) Journal of Virology , vol.88 , Issue.2 , pp. 799-810
    • Sarvestani, S.T.1    Tate, M.D.2    Moffat, J.M.3
  • 117
    • 85027547981 scopus 로고    scopus 로고
    • Identification of an optimized 2′-o-methylated trinucleotide RNA motif inhibiting toll-like receptors 7 and 8
    • F. C. F. Schmitt, I. Freund, M. A. Weigand, M. Helm, A. H. Dalpke, and T. Eigenbrod, “Identification of an optimized 2′-O-methylated trinucleotide RNA motif inhibiting Toll-like receptors 7 and 8,” RNA, vol. 23, no. 9, pp. 1344–1351, 2017.
    • (2017) RNA , vol.23 , Issue.9 , pp. 1344-1351
    • Schmitt, F.C.F.1    Freund, I.2    Weigand, M.A.3    Helm, M.4    Dalpke, A.H.5    Eigenbrod, T.6
  • 118
    • 84925436673 scopus 로고    scopus 로고
    • A single naturally occurring 2′-o-methylation converts a TLR7- and TLR8-activating RNA into a TLR8-specific ligand
    • article
    • S. Jung, T. von Thulen, V. Laukemper et al., “A single naturally occurring 2′-O-methylation converts a TLR7- and TLR8-activating RNA into a TLR8-specific ligand,” PLoS One, vol. 10, no. 3, article e0120498, 2015.
    • (2015) PLoS One , vol.10 , Issue.3
    • Jung, S.1    von Thulen, T.2    Laukemper, V.3
  • 119
    • 35748985310 scopus 로고    scopus 로고
    • Characterization of conserved viral leader RNA sequences that stimulate innate immunity through TLRs
    • A. Forsbach, J. G. Nemorin, K. Volp et al., “Characterization of conserved viral leader RNA sequences that stimulate innate immunity through TLRs,” Oligonucleotides, vol. 17, no. 4, pp. 405–418, 2007.
    • (2007) Oligonucleotides , vol.17 , Issue.4 , pp. 405-418
    • Forsbach, A.1    Nemorin, J.G.2    Volp, K.3
  • 120
    • 32944455665 scopus 로고    scopus 로고
    • Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity
    • T. Querec, S. Bennouna, S. K. Alkan et al., “Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity,” Journal of Experimental Medicine, vol. 203, no. 2, pp. 413–424, 2006.
    • (2006) Journal of Experimental Medicine , vol.203 , Issue.2 , pp. 413-424
    • Querec, T.1    Bennouna, S.2    Alkan, S.K.3
  • 121
    • 79951494075 scopus 로고    scopus 로고
    • Human rhinovirus recognition in non-immune cells is mediated by toll-like receptors and MDA-5, which trigger a synergetic pro-inflammatory immune response
    • K. Triantafilou, E. Vakakis, E. A. J. Richer, G. L. Evans, J. P. Villiers, and M. Triantafilou, “Human rhinovirus recognition in non-immune cells is mediated by Toll-like receptors and MDA-5, which trigger a synergetic pro-inflammatory immune response,” Virulence, vol. 2, no. 1, pp. 22–29, 2014.
    • (2014) Virulence , vol.2 , Issue.1 , pp. 22-29
    • Triantafilou, K.1    Vakakis, E.2    Richer, E.A.J.3    Evans, G.L.4    Villiers, J.P.5    Triantafilou, M.6
  • 122
    • 84938919218 scopus 로고    scopus 로고
    • Biology of zika virus infection in human skin cells
    • R. Hamel, O. Dejarnac, S. Wichit et al., “Biology of Zika virus infection in human skin cells,” Journal of Virology, vol. 89, no. 17, pp. 8880–8896, 2015.
    • (2015) Journal of Virology , vol.89 , Issue.17 , pp. 8880-8896
    • Hamel, R.1    Dejarnac, O.2    Wichit, S.3
  • 123
    • 84976902554 scopus 로고    scopus 로고
    • Bioinformatic analysis reveals the expression of unique transcriptomic signatures in zika virus infected human neural stem cells
    • A. J. Rolfe, D. B. Bosco, J. Y. Wang, R. S. Nowakowski, J. Q. Fan, and Y. Ren, “Bioinformatic analysis reveals the expression of unique transcriptomic signatures in Zika virus infected human neural stem cells,” Cell & Bioscience, vol. 6, no. 1, p. 42, 2016.
    • (2016) Cell & Bioscience , vol.6 , Issue.1 , pp. 42
    • Rolfe, A.J.1    Bosco, D.B.2    Wang, J.Y.3    Nowakowski, R.S.4    Fan, J.Q.5    Ren, Y.6
  • 124
    • 77950450365 scopus 로고    scopus 로고
    • Free HTLV-1 induces TLR7-dependent innate immune response and TRAIL relocalization in killer plasmacytoid dendritic cells
    • R. Colisson, L. Barblu, C. Gras et al., “Free HTLV-1 induces TLR7-dependent innate immune response and TRAIL relocalization in killer plasmacytoid dendritic cells,” Blood, vol. 115, no. 11, pp. 2177–2185, 2010.
    • (2010) Blood , vol.115 , Issue.11 , pp. 2177-2185
    • Colisson, R.1    Barblu, L.2    Gras, C.3
  • 125
    • 84857373784 scopus 로고    scopus 로고
    • Toll-like receptor 7 and 8 polymorphisms: Associations with functional effects and cellular and antibody responses to measles virus and vaccine
    • H. D. Clifford, S. T. Yerkovich, S. K. Khoo et al., “Toll-like receptor 7 and 8 polymorphisms: associations with functional effects and cellular and antibody responses to measles virus and vaccine,” Immunogenetics, vol. 64, no. 3, pp. 219–228, 2012.
    • (2012) Immunogenetics , vol.64 , Issue.3 , pp. 219-228
    • Clifford, H.D.1    Yerkovich, S.T.2    Khoo, S.K.3
  • 126
    • 34247566510 scopus 로고    scopus 로고
    • The family of five: TIR-domain-containing adaptors in toll-like receptor signalling
    • L. A. J. O’Neill and A. G. Bowie, “The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling,” Nature Reviews Immunology, vol. 7, no. 5, pp. 353–364, 2007.
    • (2007) Nature Reviews Immunology , vol.7 , Issue.5 , pp. 353-364
    • O’Neill, L.A.J.1    Bowie, A.G.2
  • 127
    • 61349086647 scopus 로고    scopus 로고
    • Variation matters: TLR structure and species-specific pathogen recognition
    • D. Werling, O. C. Jann, V. Offord, E. J. Glass, and T. J. Coffey, “Variation matters: TLR structure and species-specific pathogen recognition,” Trends in Immunology, vol. 30, no. 3, pp. 124–130, 2009.
    • (2009) Trends in Immunology , vol.30 , Issue.3 , pp. 124-130
    • Werling, D.1    Jann, O.C.2    Offord, V.3    Glass, E.J.4    Coffey, T.J.5
  • 128
    • 85026729109 scopus 로고    scopus 로고
    • Conservation and divergence of ligand recognition and signal transduction mechanisms in toll-like receptors
    • U. Ohto, “Conservation and divergence of ligand recognition and signal transduction mechanisms in Toll-like receptors,” Chemical and Pharmaceutical Bulletin, vol. 65, no. 8, pp. 697–705, 2017.
    • (2017) Chemical and Pharmaceutical Bulletin , vol.65 , Issue.8 , pp. 697-705
    • Ohto, U.1
  • 129
    • 84899491380 scopus 로고    scopus 로고
    • Structure and function of toll-like receptor 8
    • U. Ohto, H. Tanji, and T. Shimizu, “Structure and function of toll-like receptor 8,” Microbes and Infection, vol. 16, no. 4, pp. 273–282, 2014.
    • (2014) Microbes and Infection , vol.16 , Issue.4 , pp. 273-282
    • Ohto, U.1    Tanji, H.2    Shimizu, T.3
  • 130
    • 84994908842 scopus 로고    scopus 로고
    • Structural analysis reveals that toll-like receptor 7 is a dual receptor for guano-sine and single-stranded RNA
    • Z. K. Zhang, U. Ohto, T. Shibata et al., “Structural analysis reveals that Toll-like receptor 7 is a dual receptor for guano-sine and single-stranded RNA,” Immunity, vol. 45, no. 4, pp. 737–748, 2016.
    • (2016) Immunity , vol.45 , Issue.4 , pp. 737-748
    • Zhang, Z.K.1    Ohto, U.2    Shibata, T.3
  • 131
    • 84926395729 scopus 로고    scopus 로고
    • Toll-like receptor 8 senses degradation products of single-stranded RNA
    • H. Tanji, U. Ohto, T. Shibata et al., “Toll-like receptor 8 senses degradation products of single-stranded RNA,” Nature Structural & Molecular Biology, vol. 22, no. 2, pp. 109–115, 2015.
    • (2015) Nature Structural & Molecular Biology , vol.22 , Issue.2 , pp. 109-115
    • Tanji, H.1    Ohto, U.2    Shibata, T.3
  • 133
    • 82555187209 scopus 로고    scopus 로고
    • UNC93B1 physically associates with human TLR8 and regulates TLR8-mediated signaling
    • article
    • H. Itoh, M. Tatematsu, A. Watanabe et al., “UNC93B1 physically associates with human TLR8 and regulates TLR8-mediated signaling,” PLoS One, vol. 6, no. 12, article e28500, 2011.
    • (2011) PLoS One , vol.6 , Issue.12
    • Itoh, H.1    Tatematsu, M.2    Watanabe, A.3
  • 134
    • 84863392295 scopus 로고    scopus 로고
    • Cofactors required for TLR7-and TLR9-dependent innate immune responses
    • C. Y. Chiang, A. Engel, A. M. Opaluch et al., “Cofactors required for TLR7-and TLR9-dependent innate immune responses,” Cell Host & Microbe, vol. 11, no. 3, pp. 306–318, 2012.
    • (2012) Cell Host & Microbe , vol.11 , Issue.3 , pp. 306-318
    • Chiang, C.Y.1    Engel, A.2    Opaluch, A.M.3
  • 135
    • 78049384783 scopus 로고    scopus 로고
    • C/EBPδ and STAT-1 are required for TLR8 transcriptional activity
    • C. Zannetti, F. Bonnay, F. Takeshita et al., “C/EBPδ and STAT-1 are required for TLR8 transcriptional activity,” Journal of Biological Chemistry, vol. 285, no. 45, pp. 34773–34780, 2010.
    • (2010) Journal of Biological Chemistry , vol.285 , Issue.45 , pp. 34773-34780
    • Zannetti, C.1    Bonnay, F.2    Takeshita, F.3
  • 136
    • 84928543526 scopus 로고    scopus 로고
    • The receptor TREML4 amplifies TLR7-mediated signaling during antiviral responses and autoimmunity
    • Z. G. Ramirez-Ortiz, A. Prasad, J. W. Griffith et al., “The receptor TREML4 amplifies TLR7-mediated signaling during antiviral responses and autoimmunity,” Nature Immunology, vol. 16, no. 5, pp. 495–504, 2015.
    • (2015) Nature Immunology , vol.16 , Issue.5 , pp. 495-504
    • Ramirez-Ortiz, Z.G.1    Prasad, A.2    Griffith, J.W.3
  • 137
    • 84975142592 scopus 로고    scopus 로고
    • Dual role of the tyrosine kinase syk in regulation of toll-like receptor signaling in plasmacytoid dendritic cells
    • article
    • B. Aouar, D. Kovarova, S. Letard et al., “Dual role of the tyrosine kinase Syk in regulation of Toll-like receptor signaling in plasmacytoid dendritic cells,” PLoS One, vol. 11, no. 6, article e0156063, 2016.
    • (2016) PLoS One , vol.11 , Issue.6
    • Aouar, B.1    Kovarova, D.2    Letard, S.3
  • 138
    • 84937758011 scopus 로고    scopus 로고
    • TRIM35 negatively regulates TLR7- and TLR9-mediated type I interferon production by targeting IRF7
    • Y. M. Wang, S. S. Yan, B. Yang et al., “TRIM35 negatively regulates TLR7- and TLR9-mediated type I interferon production by targeting IRF7,” FEBS Letters, vol. 589, no. 12, pp. 1322–1330, 2015.
    • (2015) FEBS Letters , vol.589 , Issue.12 , pp. 1322-1330
    • Wang, Y.M.1    Yan, S.S.2    Yang, B.3
  • 139
    • 84878540475 scopus 로고    scopus 로고
    • Sustained hyperresponsiveness of dendritic cells is associated with spontaneous resolution of acute hepatitis c
    • S. Pelletier, N. Bedard, E. Said, P. Ancuta, J. Bruneau, and N. H. Shoukry, “Sustained hyperresponsiveness of dendritic cells is associated with spontaneous resolution of acute hepatitis C,” Journal of Virology, vol. 87, no. 12, pp. 6769–6781, 2013.
    • (2013) Journal of Virology , vol.87 , Issue.12 , pp. 6769-6781
    • Pelletier, S.1    Bedard, N.2    Said, E.3    Ancuta, P.4    Bruneau, J.5    Shoukry, N.H.6
  • 140
    • 85042375553 scopus 로고    scopus 로고
    • Genetic variations in toll-like receptors 7 and 8 modulate natural hepatitis c outcomes and liver disease progression
    • F. Z. Fakhir, M. Lkhider, W. Badre et al., “Genetic variations in toll-like receptors 7 and 8 modulate natural hepatitis C outcomes and liver disease progression,” Liver International, vol. 38, no. 3, pp. 432–442, 2018.
    • (2018) Liver International , vol.38 , Issue.3 , pp. 432-442
    • Fakhir, F.Z.1    Lkhider, M.2    Badre, W.3
  • 141
    • 84857188827 scopus 로고    scopus 로고
    • A comparative study of human TLR 7/8 stimulatory trimer compositions in influenza a viral genomes
    • article
    • C. W. Yang and S. M. Chen, “A comparative study of human TLR 7/8 stimulatory trimer compositions in influenza A viral genomes,” PLoS One, vol. 7, no. 2, article e30751, 2012.
    • (2012) PLoS One , vol.7 , Issue.2
    • Yang, C.W.1    Chen, S.M.2
  • 142
    • 84899699338 scopus 로고    scopus 로고
    • Association of single-nucleotide polymorphisms in TLR7 (Gln11Leu) and TLR9 (1635A/G) with a higher CD4T cell count during HIV infection
    • E. A. Said, F. Al-Yafei, F. Zadjali et al., “Association of single-nucleotide polymorphisms in TLR7 (Gln11Leu) and TLR9 (1635A/G) with a higher CD4T cell count during HIV infection,” Immunology Letters, vol. 160, no. 1, pp. 58–64, 2014.
    • (2014) Immunology Letters , vol.160 , Issue.1 , pp. 58-64
    • Said, E.A.1    Al-Yafei, F.2    Zadjali, F.3
  • 143
    • 84908136873 scopus 로고    scopus 로고
    • Study of toll-like receptor 7 expression and interferon α in egyptian patients with chronic hepatitis c infection and hepatocellular carcinoma
    • T. A. Abdel-Raouf, A. Ahmed, W. K. Zaki, H. M. Abdella, and M. A. Zid, “Study of toll-like receptor 7 expression and interferon α in Egyptian patients with chronic hepatitis C infection and hepatocellular carcinoma,” Egyptian Journal of Medical Human Genetics, vol. 15, no. 4, pp. 387–392, 2014.
    • (2014) Egyptian Journal of Medical Human Genetics , vol.15 , Issue.4 , pp. 387-392
    • Abdel-Raouf, T.A.1    Ahmed, A.2    Zaki, W.K.3    Abdella, H.M.4    Zid, M.A.5
  • 144
    • 80054073999 scopus 로고    scopus 로고
    • TLR7 and TLR8 gene variations and susceptibility to hepatitis c virus infection
    • article
    • C. H. Wang, H. L. Eng, K. H. Lin et al., “TLR7 and TLR8 gene variations and susceptibility to hepatitis C virus infection,” PLoS One, vol. 6, no. 10, article e26235, 2011.
    • (2011) PLoS One , vol.6 , Issue.10
    • Wang, C.H.1    Eng, H.L.2    Lin, K.H.3
  • 145
    • 85014905177 scopus 로고    scopus 로고
    • Association between TLR7 copy number variations and hepatitis b virus infection outcome in chinese
    • F. Li, X. Li, G. Z. Zou, Y. F. Gao, and J. Ye, “Association between TLR7 copy number variations and hepatitis B virus infection outcome in Chinese,” World Journal of Gastroenterology, vol. 23, no. 9, pp. 1602–1607, 2017.
    • (2017) World Journal of Gastroenterology , vol.23 , Issue.9 , pp. 1602-1607
    • Li, F.1    Li, X.2    Zou, G.Z.3    Gao, Y.F.4    Ye, J.5
  • 146
    • 34250662666 scopus 로고    scopus 로고
    • Programmed death 1: A critical regulator of t-cell function and a strong target for immunotherapies for chronic viral infections
    • L. Trautmann, E. A. Said, R. Halwani et al., “Programmed death 1: a critical regulator of T-cell function and a strong target for immunotherapies for chronic viral infections,” Current Opinion in HIV and AIDS, vol. 2, no. 3, pp. 219–227, 2007.
    • (2007) Current Opinion in HIV and AIDS , vol.2 , Issue.3 , pp. 219-227
    • Trautmann, L.1    Said, E.A.2    Halwani, R.3
  • 148
    • 85031507109 scopus 로고    scopus 로고
    • Snapin promotes HIV-1 transmission from dendritic cells by dampening TLR8 signaling
    • E. Khatamzas, M. M. Hipp, D. Gaughan et al., “Snapin promotes HIV-1 transmission from dendritic cells by dampening TLR8 signaling,” EMBO Journal, vol. 36, no. 20, pp. 2998–3011, 2017.
    • (2017) EMBO Journal , vol.36 , Issue.20 , pp. 2998-3011
    • Khatamzas, E.1    Hipp, M.M.2    Gaughan, D.3
  • 149
    • 85009288370 scopus 로고    scopus 로고
    • TLR7 agonist GS-9620 is a potent inhibitor of acute HIV-1 infection in human peripheral blood mononuclear cells
    • R. A. Bam, D. Hansen, A. Irrinki et al., “TLR7 agonist GS-9620 is a potent inhibitor of acute HIV-1 infection in human peripheral blood mononuclear cells,” Antimicrobial Agents and Chemotherapy, vol. 61, no. 1, pp. e01369–e01316, 2016.
    • (2016) Antimicrobial Agents and Chemotherapy , vol.61 , Issue.1 , pp. e01369-e101316
    • Bam, R.A.1    Hansen, D.2    Irrinki, A.3
  • 151
    • 85038829094 scopus 로고    scopus 로고
    • A formulated TLR7/8 agonist is a flexible, highly potent and effective adjuvant for pandemic influenza vaccines
    • article
    • N. Van Hoeven, C. B. Fox, B. Granger et al., “A formulated TLR7/8 agonist is a flexible, highly potent and effective adjuvant for pandemic influenza vaccines,” Scientific Reports, vol. 7, article 46426, 2017.
    • (2017) Scientific Reports , vol.7
    • Van Hoeven, N.1    Fox, C.B.2    Granger, B.3
  • 152
    • 85037718799 scopus 로고    scopus 로고
    • Small-molecule inhibition of TLR8 through stabilization of its resting state
    • S. T. Zhang, Z. Hu, H. Tanji et al., “Small-molecule inhibition of TLR8 through stabilization of its resting state,” Nature Chemical Biology, vol. 14, no. 1, pp. 58–64, 2018.
    • (2018) Nature Chemical Biology , vol.14 , Issue.1 , pp. 58-64
    • Zhang, S.T.1    Hu, Z.2    Tanji, H.3
  • 153
    • 84991665836 scopus 로고    scopus 로고
    • Contrasting expression pattern of RNA-sensing receptors TLR7, RIG-I and MDA5 in interferon-positive and interferon-negative patients with primary sjögren’s syndrome
    • N. I. Maria, E. C. Steenwijk, A. S. IJpma et al., “Contrasting expression pattern of RNA-sensing receptors TLR7, RIG-I and MDA5 in interferon-positive and interferon-negative patients with primary Sjögren’s syndrome,” Annals of the Rheumatic Diseases, vol. 76, no. 4, pp. 721–730, 2017.
    • (2017) Annals of the Rheumatic Diseases , vol.76 , Issue.4 , pp. 721-730
    • Maria, N.I.1    Steenwijk, E.C.2    IJpma, A.S.3
  • 154
    • 84927557287 scopus 로고    scopus 로고
    • RIG-I and TLR3 are both required for maximum interferon induction by influenza virus in human lung alveolar epithelial cells
    • W. X. Wu, W. Zhang, E. S. Duggan, J. L. Booth, M. H. Zou, and J. P. Metcalf, “RIG-I and TLR3 are both required for maximum interferon induction by influenza virus in human lung alveolar epithelial cells,” Virology, vol. 482, pp. 181–188, 2015.
    • (2015) Virology , vol.482 , pp. 181-188
    • Wu, W.X.1    Zhang, W.2    Duggan, E.S.3    Booth, J.L.4    Zou, M.H.5    Metcalf, J.P.6
  • 155
    • 85071413272 scopus 로고    scopus 로고
    • Nucleic acid sensing receptors TLR7, RIG-I and MDA5 collaborate in driving the systemic IFN signature and amplify the pathogenic loop: Potential new targets for therapy in primary sjogrens syndrome
    • N. I. Maria, C. G. van Helden-Meeuwsen, E. C. Steenwijk et al., “Nucleic acid sensing receptors TLR7, RIG-I and MDA5 collaborate in driving the systemic IFN signature and amplify the pathogenic loop: potential new targets for therapy in primary Sjogrens syndrome,” Arthritis & Rhematology, vol. 66, pp. S1302–S1302, 2014.
    • (2014) Arthritis & Rhematology , vol.66 , pp. S1302
    • Maria, N.I.1    van Helden-Meeuwsen, C.G.2    Steenwijk, E.C.3
  • 156
    • 79251492014 scopus 로고    scopus 로고
    • Co-ordinated role of TLR3, RIG-I and MDA5 in the innate response to rhinovirus in bronchial epithelium
    • article
    • L. Slater, N. W. Bartlett, J. J. Haas et al., “Co-ordinated role of TLR3, RIG-I and MDA5 in the innate response to rhinovirus in bronchial epithelium,” PLoS Pathogens, vol. 6, no. 11, article e1001178, 2010.
    • (2010) PLoS Pathogens , vol.6 , Issue.11
    • Slater, L.1    Bartlett, N.W.2    Haas, J.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.