-
1
-
-
84936994389
-
Metabolic engineering of yeast to produce fatty acid-derived biofuels: Bottlenecks and solutions
-
Sheng, J.; Feng, X. Metabolic engineering of yeast to produce fatty acid-derived biofuels: Bottlenecks and solutions. Front. Microbiol. 2015, 6, 554. [CrossRef] [PubMed]
-
(2015)
Front. Microbiol.
, vol.6
, pp. 554
-
-
Sheng, J.1
Feng, X.2
-
2
-
-
84883001788
-
Production of bulk chemicals via novel metabolic pathways in microorganisms
-
Shin, J.H.; Kim, H.U.; Kim, D.I.; Lee, S.Y. Production of bulk chemicals via novel metabolic pathways in microorganisms. Biotechnol. Adv. 2013, 31, 925–935. [CrossRef] [PubMed]
-
(2013)
Biotechnol. Adv.
, vol.31
, pp. 925-935
-
-
Shin, J.H.1
Kim, H.U.2
Kim, D.I.3
Lee, S.Y.4
-
3
-
-
79952705331
-
Microbial production of bulk chemicals: Development of anaerobic processes
-
Weusthuis, R.A.; Lamot, I.; van der Oost, J.; Sanders, J.P.M. Microbial production of bulk chemicals: Development of anaerobic processes. Trends Biotechnol. 2011, 29, 153–158. [CrossRef] [PubMed]
-
(2011)
Trends Biotechnol
, vol.29
, pp. 153-158
-
-
Weusthuis, R.A.1
Lamot, I.2
van der Oost, J.3
Sanders, J.P.M.4
-
4
-
-
36248991352
-
Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change
-
Hermann, B.G.; Blok, K.; Patel, M.K. Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change. Environ. Sci. Technol. 2007, 41, 7915–7921. [CrossRef] [PubMed]
-
(2007)
Environ. Sci. Technol.
, vol.41
, pp. 7915-7921
-
-
Hermann, B.G.1
Blok, K.2
Patel, M.K.3
-
5
-
-
33846950348
-
Challenges in engineering microbes for biofuels production
-
Stephanopoulos, G. Challenges in engineering microbes for biofuels production. Science 2007, 315, 801–804. [CrossRef] [PubMed]
-
(2007)
Science
, vol.315
, pp. 801-804
-
-
Stephanopoulos, G.1
-
6
-
-
76649111044
-
Advanced biofuel production in microbes
-
Peralta-Yahya, P.P.; Keasling, J.D. Advanced biofuel production in microbes. Biotechnol. J. 2010, 5, 147–162. [CrossRef] [PubMed]
-
(2010)
Biotechnol. J.
, vol.5
, pp. 147-162
-
-
Peralta-Yahya, P.P.1
Keasling, J.D.2
-
7
-
-
84865142847
-
Microbial engineering for the production of advanced biofuels
-
Peralta-Yahya, P.P.; Zhang, F.; del Cardayre, S.B.; Keasling, J.D. Microbial engineering for the production of advanced biofuels. Nature 2012, 488, 320–328. [CrossRef] [PubMed]
-
(2012)
Nature
, vol.488
, pp. 320-328
-
-
Peralta-Yahya, P.P.1
Zhang, F.2
Del Cardayre, S.B.3
Keasling, J.D.4
-
8
-
-
57049098094
-
Metabolic engineering of microorganisms for biofuels production: From bugs to synthetic biology to fuels
-
Lee, S.K.; Chou, H.; Ham, T.S.; Lee, T.S.; Keasling, J.D. Metabolic engineering of microorganisms for biofuels production: From bugs to synthetic biology to fuels. Curr. Opin. Biotechnol. 2008, 19, 556–563. [CrossRef] [PubMed]
-
(2008)
Curr. Opin. Biotechnol.
, vol.19
, pp. 556-563
-
-
Lee, S.K.1
Chou, H.2
Ham, T.S.3
Lee, T.S.4
Keasling, J.D.5
-
9
-
-
57049185838
-
Metabolic engineering: Enabling technology for biofuels production
-
Stephanopoulos, G. Metabolic engineering: Enabling technology for biofuels production. Metab. Eng. 2008, 10, 293–294. [CrossRef] [PubMed]
-
(2008)
Metab. Eng.
, vol.10
, pp. 293-294
-
-
Stephanopoulos, G.1
-
10
-
-
77957329119
-
Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli
-
Ajikumar, P.K.; Xiao, W.-H.; Tyo, K.E.J.; Wang, Y.; Simeon, F.; Leonard, E.; Mucha, O.; Phon, T.H.; Pfeifer, B.; Stephanopoulos, G. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 2010, 330, 70–74. [CrossRef] [PubMed]
-
(2010)
Science
, vol.330
, pp. 70-74
-
-
Ajikumar, P.K.1
Xiao, W.-H.2
Tyo, K.E.J.3
Wang, Y.4
Simeon, F.5
Leonard, E.6
Mucha, O.7
Phon, T.H.8
Pfeifer, B.9
Stephanopoulos, G.10
-
11
-
-
58149190072
-
Metabolic engineering of microorganisms: General strategies and drug production
-
Lee, S.Y.; Kim, H.U.; Park, J.H.; Park, J.M.; Kim, T.Y. Metabolic engineering of microorganisms: General strategies and drug production. Drug Discov. Today 2009, 14, 78–88. [CrossRef] [PubMed]
-
(2009)
Drug Discov. Today
, vol.14
, pp. 78-88
-
-
Lee, S.Y.1
Kim, H.U.2
Park, J.H.3
Park, J.M.4
Kim, T.Y.5
-
12
-
-
0038391517
-
Engineering a mevalonate pathway in Escherichia coli for production of terpenoids
-
Martin, V.J.J.; Pitera, D.J.; Withers, S.T.; Newman, J.D.; Keasling, J.D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotech. 2003, 21, 796–802. [CrossRef] [PubMed]
-
(2003)
Nat. Biotech.
, vol.21
, pp. 796-802
-
-
Martin, V.J.J.1
Pitera, D.J.2
Withers, S.T.3
Newman, J.D.4
Keasling, J.D.5
-
13
-
-
33751120932
-
Production of isoprenoid pharmaceuticals by engineered microbes
-
Chang, M.C.Y.; Keasling, J.D. Production of isoprenoid pharmaceuticals by engineered microbes. Nat. Chem. Biol. 2006, 2, 674–681. [CrossRef] [PubMed]
-
(2006)
Nat. Chem. Biol.
, vol.2
, pp. 674-681
-
-
Chang, M.C.Y.1
Keasling, J.D.2
-
14
-
-
62449089680
-
Microbial drug discovery: 80 Years of progress
-
Demain, A.L.; Sanchez, S. Microbial drug discovery: 80 Years of progress. J. Antibiot. 2009, 62, 5–16. [CrossRef] [PubMed]
-
(2009)
J. Antibiot.
, vol.62
, pp. 5-16
-
-
Demain, A.L.1
Sanchez, S.2
-
15
-
-
65349147983
-
Microbial factories for recombinant pharmaceuticals
-
Ferrer-Miralles, N.; Domingo-Espín, J.; Corchero, J.L.; Vázquez, E.; Villaverde, A. Microbial factories for recombinant pharmaceuticals. Microb. Cell Fact. 2009, 8, 1–8. [CrossRef] [PubMed]
-
(2009)
Microb. Cell Fact.
, vol.8
, pp. 1-8
-
-
Ferrer-Miralles, N.1
Domingo-Espín, J.2
Corchero, J.L.3
Vázquez, E.4
Villaverde, A.5
-
16
-
-
78649716727
-
Manufacturing molecules through metabolic engineering
-
Keasling, J.D. Manufacturing molecules through metabolic engineering. Science 2010, 330, 1355–1358. [CrossRef] [PubMed]
-
(2010)
Science
, vol.330
, pp. 1355-1358
-
-
Keasling, J.D.1
-
17
-
-
53049097710
-
Metabolic engineering of Escherichia coli for 1-butanol production
-
Atsumi, S.; Cann, A.F.; Connor, M.R.; Shen, C.R.; Smith, K.M.; Brynildsen, M.P.; Chou, K.J.Y.; Hanai, T.; Liao, J.C. Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng. 2008, 10, 305–311. [CrossRef] [PubMed]
-
(2008)
Metab. Eng.
, vol.10
, pp. 305-311
-
-
Atsumi, S.1
Cann, A.F.2
Connor, M.R.3
Shen, C.R.4
Smith, K.M.5
Brynildsen, M.P.6
Chou, K.J.Y.7
Hanai, T.8
Liao, J.C.9
-
18
-
-
15444350252
-
The complete genome sequence of Escherichia coli k-12
-
Blattner, F.R.; Plunkett, G.; Bloch, C.A.; Perna, N.T.; Burland, V.; Riley, M.; Collado-Vides, J.; Glasner, J.D.; Rode, C.K.; Mayhew, G.F.; et al. The complete genome sequence of Escherichia coli k-12. Science 1997, 277, 1453–1462. [CrossRef] [PubMed]
-
(1997)
Science
, vol.277
, pp. 1453-1462
-
-
Blattner, F.R.1
Plunkett, G.2
Bloch, C.A.3
Perna, N.T.4
Burland, V.5
Riley, M.6
Collado-Vides, J.7
Glasner, J.D.8
Rode, C.K.9
Mayhew, G.F.10
-
19
-
-
84863303532
-
Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements
-
Huang, C., Jr.; Lin, H.; Yang, X. Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J. Ind. Microbiol. Biotechnol. 2012, 39, 383–399. [CrossRef] [PubMed]
-
(2012)
J. Ind. Microbiol. Biotechnol.
, vol.39
, pp. 383-399
-
-
Huang, C.1
Lin, H.2
Yang, X.3
-
20
-
-
22844452835
-
Construction of lycopene-overproducing E. Coli strains by combining systematic and combinatorial gene knockout targets
-
Alper, H.; Miyaoku, K.; Stephanopoulos, G. Construction of lycopene-overproducing E. Coli strains by combining systematic and combinatorial gene knockout targets. Nat. Biotech. 2005, 23, 612–616. [CrossRef] [PubMed]
-
(2005)
Nat. Biotech.
, vol.23
, pp. 612-616
-
-
Alper, H.1
Miyaoku, K.2
Stephanopoulos, G.3
-
21
-
-
0034024497
-
Improving lycopene production in Escherichia coli by engineering metabolic control
-
Farmer, W.R.; Liao, J.C. Improving lycopene production in Escherichia coli by engineering metabolic control. Nat. Biotech. 2000, 18, 533–537.
-
(2000)
Nat. Biotech.
, vol.18
, pp. 533-537
-
-
Farmer, W.R.1
Liao, J.C.2
-
22
-
-
77249149861
-
Biofuel production in Escherichia coli: The role of metabolic engineering and synthetic biology
-
Clomburg, J.; Gonzalez, R. Biofuel production in Escherichia coli: The role of metabolic engineering and synthetic biology. Appl. Microbiol. Biotechnol. 2010, 86, 419–434. [CrossRef] [PubMed]
-
(2010)
Appl. Microbiol. Biotechnol.
, vol.86
, pp. 419-434
-
-
Clomburg, J.1
Gonzalez, R.2
-
23
-
-
79952262678
-
Whole-genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae
-
Borneman, A.R.; Desany, B.A.; Riches, D.; Affourtit, J.P.; Forgan, A.H.; Pretorius, I.S.; Egholm, M.; Chambers, P.J. Whole-genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae. PLoS Genet. 2011, 7, e1001287. [CrossRef] [PubMed]
-
(2011)
Plos Genet
, vol.7
-
-
Borneman, A.R.1
Desany, B.A.2
Riches, D.3
Affourtit, J.P.4
Forgan, A.H.5
Pretorius, I.S.6
Egholm, M.7
Chambers, P.J.8
-
24
-
-
0034053842
-
Metabolic engineering of saccharomyces cerevisiae
-
Ostergaard, S.; Olsson, L.; Nielsen, J. Metabolic engineering of saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 2000, 64, 34–50. [CrossRef] [PubMed]
-
(2000)
Microbiol. Mol. Biol. Rev.
, vol.64
, pp. 34-50
-
-
Ostergaard, S.1
Olsson, L.2
Nielsen, J.3
-
25
-
-
0037173615
-
Functional profiling of the saccharomyces cerevisiae genome
-
Giaever, G.; Chu, A.M.; Ni, L.; Connelly, C.; Riles, L.; Veronneau, S.; Dow, S.; Lucau-Danila, A.; Anderson, K.; Andre, B.; et al. Functional profiling of the saccharomyces cerevisiae genome. Nature 2002, 418, 387–391. [CrossRef] [PubMed]
-
(2002)
Nature
, vol.418
, pp. 387-391
-
-
Giaever, G.1
Chu, A.M.2
Ni, L.3
Connelly, C.4
Riles, L.5
Veronneau, S.6
Dow, S.7
Lucau-Danila, A.8
Anderson, K.9
Andre, B.10
-
26
-
-
38349164135
-
Impact of Systems Biology on Metabolic Engineering of Saccharomyces cerevisiae
-
Nielsen, J.; Jewett, M.C. Impact of Systems Biology on Metabolic Engineering of Saccharomyces cerevisiae. FEMS Yeast Res. 2008, 8, 122–131. [CrossRef] [PubMed]
-
(2008)
FEMS Yeast Res
, vol.8
, pp. 122-131
-
-
Nielsen, J.1
Jewett, M.C.2
-
27
-
-
84865060983
-
New challenges and opportunities for industrial biotechnology
-
Chen, G.-Q. New challenges and opportunities for industrial biotechnology. Microb. Cell Fact. 2012, 11, 111. [CrossRef] [PubMed]
-
(2012)
Microb. Cell Fact.
, vol.11
, pp. 111
-
-
Chen, G.-Q.1
-
28
-
-
75149167486
-
Five hard truths for synthetic biology
-
Kwok, R. Five hard truths for synthetic biology. Nature 2010, 463, 288. [CrossRef] [PubMed]
-
(2010)
Nature
, vol.463
, pp. 288
-
-
Kwok, R.1
-
29
-
-
84922448166
-
Methods and advances in metabolic flux analysis: A mini-review
-
Antoniewicz, M. Methods and advances in metabolic flux analysis: A mini-review. J. Ind. Microbiol. Biotechnol. 2015, 42, 317–325. [CrossRef] [PubMed]
-
(2015)
J. Ind. Microbiol. Biotechnol.
, vol.42
, pp. 317-325
-
-
Antoniewicz, M.1
-
30
-
-
84910058077
-
13c metabolic flux analysis of recombinant expression hosts
-
Young, J.D. 13c metabolic flux analysis of recombinant expression hosts. Curr. Opin. Biotechnol. 2014, 30, 238–245. [CrossRef] [PubMed]
-
(2014)
Curr. Opin. Biotechnol.
, vol.30
, pp. 238-245
-
-
Young, J.D.1
-
31
-
-
84887626598
-
Cofactor engineering for advancing chemical biotechnology
-
Wang, Y.; San, K.-Y.; Bennett, G.N. Cofactor engineering for advancing chemical biotechnology. Curr. Opin. Biotechnol. 2013, 24, 994–999. [CrossRef] [PubMed]
-
(2013)
Curr. Opin. Biotechnol
, vol.24
, pp. 994-999
-
-
Wang, Y.1
San, K.-Y.2
Bennett, G.N.3
-
32
-
-
84929314719
-
The oxidative pentose phosphate pathway is the primary source of nadph for lipid overproduction from glucose in Yarrowia lipolytica
-
Wasylenko, T.M.; Ahn, W.S.; Stephanopoulos, G. The oxidative pentose phosphate pathway is the primary source of nadph for lipid overproduction from glucose in Yarrowia lipolytica. Metab. Eng. 2015, 30, 27–39. [CrossRef] [PubMed]
-
(2015)
Metab. Eng.
, vol.30
, pp. 27-39
-
-
Wasylenko, T.M.1
Ahn, W.S.2
Stephanopoulos, G.3
-
33
-
-
84947967425
-
Rapid metabolic analysis of rhodococcus opacus pd630 via parallel 13c-metabolite fingerprinting
-
Hollinshead, W.D.; Henson, W.R.; Abernathy, M.; Moon, T.S.; Tang, Y.J. Rapid metabolic analysis of rhodococcus opacus pd630 via parallel 13c-metabolite fingerprinting. Biotechnol. Bioeng. 2015, 113, 91–100. [CrossRef] [PubMed]
-
(2015)
Biotechnol. Bioeng.
, vol.113
, pp. 91-100
-
-
Hollinshead, W.D.1
Henson, W.R.2
Abernathy, M.3
Moon, T.S.4
Tang, Y.J.5
-
34
-
-
84940111166
-
13c-metabolic flux analysis in s-adenosyl-l-methionine production by saccharomyces cerevisiae
-
Hayakawa, K.; Kajihata, S.; Matsuda, F.; Shimizu, H. 13c-metabolic flux analysis in s-adenosyl-l-methionine production by saccharomyces cerevisiae. J. Biosci. Bioeng. 2015. [CrossRef] [PubMed]
-
(2015)
J. Biosci. Bioeng.
-
-
Hayakawa, K.1
Kajihata, S.2
Matsuda, F.3
Shimizu, H.4
-
35
-
-
84887769375
-
Investigating xylose metabolism in recombinant saccharomyces cerevisiae via 13c metabolic flux analysis
-
Feng, X.; Zhao, H. Investigating xylose metabolism in recombinant saccharomyces cerevisiae via 13c metabolic flux analysis. Microb. Cell Fact. 2013, 12, 114. [CrossRef] [PubMed]
-
(2013)
Microb. Cell Fact.
, vol.12
, pp. 114
-
-
Feng, X.1
Zhao, H.2
-
36
-
-
84907518524
-
Engineering alcohol tolerance in yeast
-
Lam, F.H.; Ghaderi, A.; Fink, G.R.; Stephanopoulos, G. Engineering alcohol tolerance in yeast. Science 2014, 346, 71–75. [CrossRef] [PubMed]
-
(2014)
Science
, vol.346
, pp. 71-75
-
-
Lam, F.H.1
Ghaderi, A.2
Fink, G.R.3
Stephanopoulos, G.4
-
37
-
-
84939969557
-
Metabolic flux analysis of Escherichia coli mg1655 under octanoic acid (C8) stress
-
Fu, Y.; Yoon, J.; Jarboe, L.; Shanks, J. Metabolic flux analysis of Escherichia coli mg1655 under octanoic acid (c8) stress. Appl. Microbiol. Biotechnol. 2015, 99, 4397–4408. [CrossRef] [PubMed]
-
(2015)
Appl. Microbiol. Biotechnol.
, vol.99
, pp. 4397-4408
-
-
Fu, Y.1
Yoon, J.2
Jarboe, L.3
Shanks, J.4
-
38
-
-
73249132552
-
Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on nadph-dependent reduction by at least two oxireductases
-
Heer, D.; Heine, D.; Sauer, U. Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on nadph-dependent reduction by at least two oxireductases. Appl. Environ. Microbiol. 2009, 75, 7631–7638. [CrossRef] [PubMed]
-
(2009)
Appl. Environ. Microbiol.
, vol.75
, pp. 7631-7638
-
-
Heer, D.1
Heine, D.2
Sauer, U.3
-
39
-
-
15044340553
-
Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae
-
Çakar, Z.P.; Seker, U.O.S.; Tamerler, C.; Sonderegger, M.; Sauer, U. Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae. FEMS Yeast Res. 2005, 5, 569–578. [CrossRef] [PubMed]
-
(2005)
FEMS Yeast Res.
, vol.5
, pp. 569-578
-
-
Çakar, Z.P.1
Seker, U.O.S.2
Tamerler, C.3
Sonderegger, M.4
Sauer, U.5
-
40
-
-
0033586461
-
Mass spectrometry for metabolic flux analysis
-
Wittmann, C.; Heinzle, E. Mass spectrometry for metabolic flux analysis. Biotechnol. Bioeng. 1999, 62, 739–750. [CrossRef]
-
(1999)
Biotechnol. Bioeng.
, vol.62
, pp. 739-750
-
-
Wittmann, C.1
Heinzle, E.2
-
41
-
-
0034741983
-
13c metabolic flux analysis
-
Wiechert, W. 13c metabolic flux analysis. Metab. Eng. 2001, 3, 195–206. [CrossRef] [PubMed]
-
(2001)
Metab. Eng.
, vol.3
, pp. 195-206
-
-
Wiechert, W.1
-
42
-
-
0034233268
-
Gc-ms analysis of amino acids rapidly provides rich information for isotopomer balancing
-
Dauner, M.; Sauer, U. Gc-ms analysis of amino acids rapidly provides rich information for isotopomer balancing. Biotechnol. Prog. 2000, 16, 642–649. [CrossRef] [PubMed]
-
(2000)
Biotechnol. Prog.
, vol.16
, pp. 642-649
-
-
Dauner, M.1
Sauer, U.2
-
43
-
-
0001790385
-
13 c labelling and nmr spectroscopy in metabolic flux analysis
-
Barbotin, J.N., Portais, J.C., Eds.; Horizon Scientific Press: Norwich, UK, Chapter 4
-
13 c labelling and nmr spectroscopy in metabolic flux analysis. In Nmr in Biotechnology: Theory and Applications; Barbotin, J.N., Portais, J.C., Eds.; Horizon Scientific Press: Norwich, UK, 2000; Chapter 4.
-
(2000)
Nmr in Biotechnology: Theory and Applications
-
-
de Graaf, A.A.1
-
44
-
-
0033205580
-
Isotopomer analysis using gc-ms
-
Christensen, B.; Nielsen, J. Isotopomer analysis using gc-ms. Metab. Eng. 1999, 1, 282–290. [CrossRef] [PubMed]
-
(1999)
Metab. Eng.
, vol.1
, pp. 282-290
-
-
Christensen, B.1
Nielsen, J.2
-
45
-
-
0031594984
-
13c-nmr, ms and metabolic flux balancing in biotechnology research
-
SZYPERSKI, T. 13c-nmr, ms and metabolic flux balancing in biotechnology research. Q. Rev. Biophys. 1998, 31, 41–106. [CrossRef] [PubMed]
-
(1998)
Q. Rev. Biophys.
, vol.31
, pp. 41-106
-
-
Szyperski, T.1
-
46
-
-
84866467932
-
Metabolic pathway determination and flux analysis in nonmodel microorganisms through 13c-isotope labeling
-
Navid, A., Ed.; Humana Press: New York, NY, USA
-
Feng, X.; Zhuang, W.-Q.; Colletti, P.; Tang, Y. Metabolic pathway determination and flux analysis in nonmodel microorganisms through 13c-isotope labeling. In Microbial Systems Biology; Navid, A., Ed.; Humana Press: New York, NY, USA, 2012; Volume 881, pp. 309–330.
-
(2012)
Microbial Systems Biology
, vol.881
, pp. 309-330
-
-
Feng, X.1
Zhuang, W.-Q.2
Colletti, P.3
Tang, Y.4
-
47
-
-
84857010419
-
Metabolic pathway confirmation and discovery through (13)c-labeling of proteinogenic amino acids
-
e3583. [CrossRef] [PubMed
-
You, L.; Page, L.; Feng, X.; Berla, B.; Pakrasi, H.B.; Tang, Y.J. Metabolic pathway confirmation and discovery through (13)c-labeling of proteinogenic amino acids. J. Vis. Exp. 2012, 59, e3583. [CrossRef] [PubMed]
-
(2012)
J. Vis. Exp.
, vol.59
-
-
You, L.1
Page, L.2
Feng, X.3
Berla, B.4
Pakrasi, H.B.5
Tang, Y.J.6
-
48
-
-
33846061120
-
Metabolic Networks in Motion: 13c-Based Flux Analysis
-
Sauer, U. Metabolic Networks in Motion: 13c-Based Flux Analysis. Mol. Syst. Biol. 2006, 2, 62–72. [CrossRef] [PubMed]
-
(2006)
Mol. Syst. Biol.
, vol.2
, pp. 62-72
-
-
Sauer, U.1
-
49
-
-
65549087156
-
Advances in analysis of microbial metabolic fluxes via 13c isotopic labeling
-
Tang, Y.J.; Martin, H.G.; Myers, S.; Rodriguez, S.; Baidoo, E.E.K.; Keasling, J.D. Advances in analysis of microbial metabolic fluxes via 13c isotopic labeling. Mass Spectrom. Rev. 2009, 28, 362–375. [CrossRef] [PubMed]
-
(2009)
Mass Spectrom. Rev.
, vol.28
, pp. 362-375
-
-
Tang, Y.J.1
Martin, H.G.2
Myers, S.3
Rodriguez, S.4
Baidoo, E.E.K.5
Keasling, J.D.6
-
50
-
-
84901808659
-
Design and construction of acetyl-coa overproducing saccharomyces cerevisiae strains
-
Lian, J.; Si, T.; Nair, N.U.; Zhao, H. Design and construction of acetyl-coa overproducing saccharomyces cerevisiae strains. Metab. Eng. 2014, 24, 139–149. [CrossRef] [PubMed]
-
(2014)
Metab. Eng.
, vol.24
, pp. 139-149
-
-
Lian, J.1
Si, T.2
Nair, N.U.3
Zhao, H.4
-
51
-
-
84864580802
-
Physiological characterization of recombinant saccharomyces cerevisiae expressing the aspergillus nidulans phosphoketolase pathway: Validation of activity through 13c-based metabolic flux analysis
-
Papini, M.; Nookaew, I.; Siewers, V.; Nielsen, J. Physiological characterization of recombinant saccharomyces cerevisiae expressing the aspergillus nidulans phosphoketolase pathway: Validation of activity through 13c-based metabolic flux analysis. Appl. Microbiol. Biotechnol. 2012, 95, 1001–1010. [CrossRef] [PubMed]
-
(2012)
Appl. Microbiol. Biotechnol.
, vol.95
, pp. 1001-1010
-
-
Papini, M.1
Nookaew, I.2
Siewers, V.3
Nielsen, J.4
-
52
-
-
84892831820
-
Improvement of nadph bioavailability in Escherichia coli by replacing nad+-dependent glyceraldehyde-3-phosphate dehydrogenase gapa with nadp+-dependent gapb from bacillus subtilis and addition of nad kinase
-
Wang, Y.; San, K.-Y.; Bennett, G. Improvement of nadph bioavailability in Escherichia coli by replacing nad+-dependent glyceraldehyde-3-phosphate dehydrogenase gapa with nadp+-dependent gapb from bacillus subtilis and addition of nad kinase. J. Ind. Microbiol. Biotechnol. 2013, 40, 1449–1460. [CrossRef] [PubMed]
-
(2013)
J. Ind. Microbiol. Biotechnol.
, vol.40
, pp. 1449-1460
-
-
Wang, Y.1
San, K.-Y.2
Bennett, G.3
-
53
-
-
80052802581
-
Comparative 13c metabolic flux analysis of pyruvate dehydrogenase complex-deficient, l-valine-producing corynebacterium glutamicum
-
Bartek, T.; Blombach, B.; Lang, S.; Eikmanns, B.J.; Wiechert, W.; Oldiges, M.; Nöh, K.; Noack, S. Comparative 13c metabolic flux analysis of pyruvate dehydrogenase complex-deficient, l-valine-producing corynebacterium glutamicum. Appl. Environ. Microbiol. 2011, 77, 6644–6652. [CrossRef] [PubMed]
-
(2011)
Appl. Environ. Microbiol.
, vol.77
, pp. 6644-6652
-
-
Bartek, T.1
Blombach, B.2
Lang, S.3
Eikmanns, B.J.4
Wiechert, W.5
Oldiges, M.6
Nöh, K.7
Noack, S.8
-
54
-
-
62949084480
-
Impact of overexpressing nadh kinase on glucose and xylose metabolism in recombinant xylose-utilizing saccharomyces cerevisiae
-
Hou, J.; Vemuri, G.; Bao, X.; Olsson, L. Impact of overexpressing nadh kinase on glucose and xylose metabolism in recombinant xylose-utilizing saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2009, 82, 909–919. [PubMed]
-
(2009)
Appl. Microbiol. Biotechnol.
, vol.82
, pp. 909-919
-
-
Hou, J.1
Vemuri, G.2
Bao, X.3
Olsson, L.4
-
55
-
-
0036663710
-
Metabolic engineering of Escherichia coli: Increase of nadh availability by overexpressing an nad+-dependent formate dehydrogenase
-
Berríos-Rivera, S.J.; Bennett, G.N.; San, K.-Y. Metabolic engineering of Escherichia coli: Increase of nadh availability by overexpressing an nad+-dependent formate dehydrogenase. Metab. Eng. 2002, 4, 217–229.
-
(2002)
Metab. Eng.
, vol.4
, pp. 217-229
-
-
Berríos-Rivera, S.J.1
Bennett, G.N.2
San, K.-Y.3
-
56
-
-
84892799105
-
Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13c-metabolic flux analysis
-
He, L.; Xiao, Y.; Gebreselassie, N.; Zhang, F.; Antoniewicz, M.R.; Tang, Y.J.; Peng, L. Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13c-metabolic flux analysis. Biotechnol. Bioeng. 2014, 111, 575–585. [CrossRef] [PubMed]
-
(2014)
Biotechnol. Bioeng.
, vol.111
, pp. 575-585
-
-
He, L.1
Xiao, Y.2
Gebreselassie, N.3
Zhang, F.4
Antoniewicz, M.R.5
Tang, Y.J.6
Peng, L.7
-
57
-
-
84869027982
-
An integrated computational and experimental study for overproducing fatty acids in Escherichia coli
-
Ranganathan, S.; Tee, T.W.; Chowdhury, A.; Zomorrodi, A.R.; Yoon, J.M.; Fu, Y.; Shanks, J.V.; Maranas, C.D. An integrated computational and experimental study for overproducing fatty acids in Escherichia coli. Metab. Eng. 2012, 14, 687–704. [CrossRef] [PubMed]
-
(2012)
Metab. Eng.
, vol.14
, pp. 687-704
-
-
Ranganathan, S.1
Tee, T.W.2
Chowdhury, A.3
Zomorrodi, A.R.4
Yoon, J.M.5
Fu, Y.6
Shanks, J.V.7
Maranas, C.D.8
-
58
-
-
66749182798
-
13c-based metabolic flux analysis
-
Zamboni, N.; Fendt, S.-M.; Ruhl, M.; Sauer, U. 13c-based metabolic flux analysis. Nat. Protocols 2009, 4, 878–892. [CrossRef] [PubMed]
-
(2009)
Nat. Protocols
, vol.4
, pp. 878-892
-
-
Zamboni, N.1
Fendt, S.-M.2
Ruhl, M.3
Sauer, U.4
-
59
-
-
33947431021
-
Analysis of amino acid isotopomers using ft-icr ms
-
Pingitore, F.; Tang, Y.; Kruppa, G.H.; Keasling, J.D. Analysis of amino acid isotopomers using ft-icr ms. Anal. Chem. 2007, 79, 2483–2490. [CrossRef] [PubMed]
-
(2007)
Anal. Chem.
, vol.79
, pp. 2483-2490
-
-
Pingitore, F.1
Tang, Y.2
Kruppa, G.H.3
Keasling, J.D.4
-
60
-
-
84928964332
-
13c pathway analysis of biofilm metabolism of shewanella oneidensis mr-1
-
Guo, W.; Luo, S.; He, Z.; Feng, X. 13c pathway analysis of biofilm metabolism of shewanella oneidensis mr-1. RSC Adv. 2015, 5, 39840–39843. [CrossRef]
-
(2015)
RSC Adv
, vol.5
, pp. 39840-39843
-
-
Guo, W.1
Luo, S.2
He, Z.3
Feng, X.4
-
61
-
-
33845675054
-
Determination of metabolic flux changes during fed-batch cultivation from measurements of intracellular amino acids by lc-ms/ms
-
Iwatani, S.; Van Dien, S.; Shimbo, K.; Kubota, K.; Kageyama, N.; Iwahata, D.; Miyano, H.; Hirayama, K.; Usuda, Y.; Shimizu, K.; et al. Determination of metabolic flux changes during fed-batch cultivation from measurements of intracellular amino acids by lc-ms/ms. J. Biotechnol. 2007, 128, 93–111. [CrossRef] [PubMed]
-
(2007)
J. Biotechnol.
, vol.128
, pp. 93-111
-
-
Iwatani, S.1
van Dien, S.2
Shimbo, K.3
Kubota, K.4
Kageyama, N.5
Iwahata, D.6
Miyano, H.7
Hirayama, K.8
Usuda, Y.9
Shimizu, K.10
-
62
-
-
84860498026
-
Isocor: Correcting ms data in isotope labeling experiments
-
Millard, P.; Letisse, F.; Sokol, S.; Portais, J.-C. Isocor: Correcting ms data in isotope labeling experiments. Bioinformatics 2012, 28, 1294–1296. [CrossRef] [PubMed]
-
(2012)
Bioinformatics
, vol.28
, pp. 1294-1296
-
-
Millard, P.1
Letisse, F.2
Sokol, S.3
Portais, J.-C.4
-
63
-
-
0842343470
-
New tools for mass isotopomer data evaluation in 13c flux analysis: Mass isotope correction, data consistency checking, and precursor relationships
-
Wahl, S.A.; Dauner, M.; Wiechert, W. New tools for mass isotopomer data evaluation in 13c flux analysis: Mass isotope correction, data consistency checking, and precursor relationships. Biotechnol. Bioeng. 2004, 85, 259–268. [CrossRef] [PubMed]
-
(2004)
Biotechnol. Bioeng.
, vol.85
, pp. 259-268
-
-
Wahl, S.A.1
Dauner, M.2
Wiechert, W.3
-
64
-
-
84941279254
-
Cecafdb: A curated database for the documentation, visualization and comparative analysis of central carbon metabolic flux distributions explored by 13c-fluxomics
-
Zhang, Z.; Shen, T.; Rui, B.; Zhou, W.; Zhou, X.; Shang, C.; Xin, C.; Liu, X.; Li, G.; Jiang, J.; et al. Cecafdb: A curated database for the documentation, visualization and comparative analysis of central carbon metabolic flux distributions explored by 13c-fluxomics. Nucleic Acids Res. 2014. [CrossRef] [PubMed]
-
(2014)
Nucleic Acids Res
-
-
Zhang, Z.1
Shen, T.2
Rui, B.3
Zhou, W.4
Zhou, X.5
Shang, C.6
Xin, C.7
Liu, X.8
Li, G.9
-
65
-
-
84925811673
-
(13) c-mfa modeling software package adjusted for the comprehensive analysis of single and parallel labeling experiments
-
(13) c-mfa modeling software package adjusted for the comprehensive analysis of single and parallel labeling experiments. Microb. Cell Fact. 2014, 13, 152. [CrossRef] [PubMed]
-
(2014)
Microb. Cell Fact.
, vol.13
, pp. 152
-
-
Shupletsov, M.S.1
Golubeva, L.I.2
Rubina, S.S.3
Podvyaznikov, D.A.4
Iwatani, S.5
Mashko, S.V.6
-
66
-
-
84871768724
-
13cflux2—high-performance software suite for 13c-metabolic flux analysis
-
Weitzel, M.; Nöh, K.; Dalman, T.; Niedenführ, S.; Stute, B.; Wiechert, W. 13cflux2—high-performance software suite for 13c-metabolic flux analysis. Bioinformatics 2013, 29, 143–145. [CrossRef] [PubMed]
-
(2013)
Bioinformatics
, vol.29
, pp. 143-145
-
-
Weitzel, M.1
Nöh, K.2
Dalman, T.3
Niedenführ, S.4
Stute, B.5
Wiechert, W.6
-
67
-
-
33845679072
-
Elementary metabolite units (Emu): A novel framework for modeling isotopic distributions
-
Antoniewicz, M.R.; Kelleher, J.K.; Stephanopoulos, G. Elementary metabolite units (emu): A novel framework for modeling isotopic distributions. Metab. Eng. 2007, 9, 68–86. [CrossRef] [PubMed]
-
(2007)
Metab. Eng.
, vol.9
, pp. 68-86
-
-
Antoniewicz, M.R.1
Kelleher, J.K.2
Stephanopoulos, G.3
-
68
-
-
84899511589
-
Inca: A computational platform for isotopically non-stationary metabolic flux analysis
-
Young, J.D. Inca: A computational platform for isotopically non-stationary metabolic flux analysis. Bioinformatics 2014, 30, 1333–1335. [CrossRef] [PubMed]
-
(2014)
Bioinformatics
, vol.30
, pp. 1333-1335
-
-
Young, J.D.1
-
69
-
-
25444489844
-
Fiatflux—A software for metabolic flux analysis from (13)c-glucose experiments
-
Zamboni, N.; Fischer, E.; Sauer, U. Fiatflux—A software for metabolic flux analysis from (13)c-glucose experiments. BMC Bioinf. 2005, 6, 209. [CrossRef] [PubMed]
-
(2005)
BMC Bioinf.
, vol.6
, pp. 209
-
-
Zamboni, N.1
Fischer, E.2
Sauer, U.3
-
70
-
-
84904804537
-
Biomet toolbox 2.0: Genome-wide analysis of metabolism and omics data
-
Garcia-Albornoz, M.; Thankaswamy-Kosalai, S.; Nilsson, A.; Väremo, L.; Nookaew, I.; Nielsen, J. Biomet toolbox 2.0: Genome-wide analysis of metabolism and omics data. Nucleic Acids Res. 2014, 42, W175–W181. [CrossRef] [PubMed]
-
(2014)
Nucleic Acids Res
, vol.42
, pp. W175-W181
-
-
Garcia-Albornoz, M.1
Thankaswamy-Kosalai, S.2
Nilsson, A.3
Väremo, L.4
Nookaew, I.5
Nielsen, J.6
-
71
-
-
38449111120
-
An elementary metabolite unit (Emu) based method of isotopically nonstationary flux analysis
-
Young, J.D.; Walther, J.L.; Antoniewicz, M.R.; Yoo, H.; Stephanopoulos, G. An elementary metabolite unit (emu) based method of isotopically nonstationary flux analysis. Biotechnol. Bioeng. 2008, 99, 686–699. [CrossRef] [PubMed]
-
(2008)
Biotechnol. Bioeng.
, vol.99
, pp. 686-699
-
-
Young, J.D.1
Walther, J.L.2
Antoniewicz, M.R.3
Yoo, H.4
Stephanopoulos, G.5
-
72
-
-
33845262706
-
Engineering life through synthetic biology
-
Chopra, P.; Kamma, A. Engineering life through synthetic biology. Silico Biol. 2006, 6, 401–410.
-
(2006)
Silico Biol
, vol.6
, pp. 401-410
-
-
Chopra, P.1
Kamma, A.2
-
73
-
-
84864186953
-
Metabolic engineering of saccharomyces cerevisiae: A key cell factory platform for future biorefineries
-
Hong, K.-K.; Nielsen, J. Metabolic engineering of saccharomyces cerevisiae: A key cell factory platform for future biorefineries. Cell. Mol. Life Sci. 2012, 69, 2671–2690. [CrossRef] [PubMed]
-
(2012)
Cell. Mol. Life Sci.
, vol.69
, pp. 2671-2690
-
-
Hong, K.-K.1
Nielsen, J.2
-
74
-
-
38349164135
-
Impact of systems biology on metabolic engineering of saccharomyces cerevisiae
-
Nielsen, J.; Jewett, M.C. Impact of systems biology on metabolic engineering of saccharomyces cerevisiae. FEMS Yeast Res. 2008, 8, 122–131. [CrossRef] [PubMed]
-
(2008)
FEMS Yeast Res
, vol.8
, pp. 122-131
-
-
Nielsen, J.1
Jewett, M.C.2
-
75
-
-
33644832381
-
In silico aided metabolic engineering of saccharomyces cerevisiae for improved bioethanol production
-
Bro, C.; Regenberg, B.; Förster, J.; Nielsen, J. In silico aided metabolic engineering of saccharomyces cerevisiae for improved bioethanol production. Metab. Eng. 2006, 8, 102–111. [CrossRef] [PubMed]
-
(2006)
Metab. Eng.
, vol.8
, pp. 102-111
-
-
Bro, C.1
Regenberg, B.2
Förster, J.3
Nielsen, J.4
-
76
-
-
0036276258
-
Metabolic engineering of glycerol production in saccharomyces cerevisiae
-
Overkamp, K.M.; Bakker, B.M.; Kötter, P.; Luttik, M.A.H.; van Dijken, J.P.; Pronk, J.T. Metabolic engineering of glycerol production in saccharomyces cerevisiae. Appl. Environ. Microbiol. 2002, 68, 2814–2821. [CrossRef] [PubMed]
-
(2002)
Appl. Environ. Microbiol.
, vol.68
, pp. 2814-2821
-
-
Overkamp, K.M.1
Bakker, B.M.2
Kötter, P.3
Luttik, M.A.H.4
van Dijken, J.P.5
Pronk, J.T.6
-
77
-
-
84909594452
-
Metabolic engineering of saccharomyces cerevisiae to improve 1-hexadecanol production
-
Feng, X.; Lian, J.; Zhao, H. Metabolic engineering of saccharomyces cerevisiae to improve 1-hexadecanol production. Metab. Eng. 2015, 27, 10–19. [CrossRef] [PubMed]
-
(2015)
Metab. Eng.
, vol.27
, pp. 10-19
-
-
Feng, X.1
Lian, J.2
Zhao, H.3
-
78
-
-
84891829362
-
Metabolic engineering of saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals
-
Runguphan, W.; Keasling, J.D. Metabolic engineering of saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab. Eng. 2014, 21, 103–113. [CrossRef] [PubMed]
-
(2014)
Metab. Eng.
, vol.21
, pp. 103-113
-
-
Runguphan, W.1
Keasling, J.D.2
-
79
-
-
33645573250
-
Genetic engineering of taxol biosynthetic genes in saccharomyces cerevisiae
-
DeJong, J.M.; Liu, Y.; Bollon, A.P.; Long, R.M.; Jennewein, S.; Williams, D.; Croteau, R.B. Genetic engineering of taxol biosynthetic genes in saccharomyces cerevisiae. Biotechnol. Bioeng. 2006, 93, 212–224. [CrossRef] [PubMed]
-
(2006)
Biotechnol. Bioeng.
, vol.93
, pp. 212-224
-
-
Dejong, J.M.1
Liu, Y.2
Bollon, A.P.3
Long, R.M.4
Jennewein, S.5
Williams, D.6
Croteau, R.B.7
-
80
-
-
33645870422
-
Production of the antimalarial drug precursor artemisinic acid in engineered yeast
-
Ro, D.-K.; Paradise, E.M.; Ouellet, M.; Fisher, K.J.; Newman, K.L.; Ndungu, J.M.; Ho, K.A.; Eachus, R.A.; Ham, T.S.; Kirby, J.; et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 2006, 440, 940–943. [CrossRef] [PubMed]
-
(2006)
Nature
, vol.440
, pp. 940-943
-
-
Ro, D.-K.1
Paradise, E.M.2
Ouellet, M.3
Fisher, K.J.4
Newman, K.L.5
Ndungu, J.M.6
Ho, K.A.7
Eachus, R.A.8
Ham, T.S.9
Kirby, J.10
-
81
-
-
85007940083
-
Metabolic engineering for production of β-carotene and lycopene in saccharomyces cerevisiae
-
Yamano, S.; Ishii, T.; Nakagawa, M.; Ikenaga, H.; Misawa, N. Metabolic engineering for production of β-carotene and lycopene in saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 1994, 58, 1112–1114. [CrossRef] [PubMed]
-
(1994)
Biosci. Biotechnol. Biochem.
, vol.58
, pp. 1112-1114
-
-
Yamano, S.1
Ishii, T.2
Nakagawa, M.3
Ikenaga, H.4
Misawa, N.5
-
82
-
-
84875265625
-
Metabolic engineering of muconic acid production in saccharomyces cerevisiae
-
Curran, K.A.; Leavitt, J.M.; Karim, A.S.; Alper, H.S. Metabolic engineering of muconic acid production in saccharomyces cerevisiae. Metab. Eng. 2013, 15, 55–66. [CrossRef] [PubMed]
-
(2013)
Metab. Eng.
, vol.15
, pp. 55-66
-
-
Curran, K.A.1
Leavitt, J.M.2
Karim, A.S.3
Alper, H.S.4
-
83
-
-
20444422841
-
Metabolic engineering of the phenylpropanoid pathway in saccharomyces cerevisiae
-
Jiang, H.; Wood, K.V.; Morgan, J.A. Metabolic engineering of the phenylpropanoid pathway in saccharomyces cerevisiae. Appl. Environ. Microbiol. 2005, 71, 2962–2969. [CrossRef] [PubMed]
-
(2005)
Appl. Environ. Microbiol.
, vol.71
, pp. 2962-2969
-
-
Jiang, H.1
Wood, K.V.2
Morgan, J.A.3
-
84
-
-
27744491124
-
Characterization of the metabolic shift between oxidative and fermentative growth in saccharomyces cerevisiae by comparative 13c flux analysis
-
Frick, O.; Wittmann, C. Characterization of the metabolic shift between oxidative and fermentative growth in saccharomyces cerevisiae by comparative 13c flux analysis. Microb. Cell Fact. 2005, 4, 30. [CrossRef] [PubMed]
-
(2005)
Microb. Cell Fact.
, vol.4
, pp. 30
-
-
Frick, O.1
Wittmann, C.2
-
85
-
-
84864858864
-
Atp-citrate lyase: A key player in cancer metabolism
-
Zaidi, N.; Swinnen, J.V.; Smans, K. Atp-citrate lyase: A key player in cancer metabolism. Cancer Res. 2012, 72, 3709–3714. [CrossRef] [PubMed]
-
(2012)
Cancer Res
, vol.72
, pp. 3709-3714
-
-
Zaidi, N.1
Swinnen, J.V.2
Smans, K.3
-
86
-
-
0035048559
-
Characterization of the d-xylulose 5-phosphate/d-fructose 6-phosphate phosphoketolase gene (Xfp) from bifidobacterium lactis
-
Meile, L.; Rohr, L.M.; Geissmann, T.A.; Herensperger, M.; Teuber, M. Characterization of the d-xylulose 5-phosphate/d-fructose 6-phosphate phosphoketolase gene (xfp) from bifidobacterium lactis. J. Bacteriol. 2001, 183, 2929–2936. [CrossRef] [PubMed]
-
(2001)
J. Bacteriol.
, vol.183
, pp. 2929-2936
-
-
Meile, L.1
Rohr, L.M.2
Geissmann, T.A.3
Herensperger, M.4
Teuber, M.5
-
87
-
-
57349128941
-
Systems analysis unfolds the relationship between the phosphoketolase pathway and growth in Aspergillus nidulans
-
Panagiotou, G.; Andersen, M.R.; Grotkjaer, T.; Regueira, T.B.; Hofmann, G.; Nielsen, J.; Olsson, L. Systems analysis unfolds the relationship between the phosphoketolase pathway and growth in Aspergillus nidulans. PLoS ONE 2008, 3, e3847. [CrossRef] [PubMed]
-
(2008)
Plos ONE
, vol.3
-
-
Panagiotou, G.1
Andersen, M.R.2
Grotkjaer, T.3
Regueira, T.B.4
Hofmann, G.5
Nielsen, J.6
Olsson, L.7
-
88
-
-
84899154669
-
Improved production of fatty acid ethyl esters in saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway
-
de Jong, B.W.; Shi, S.; Siewers, V.; Nielsen, J. Improved production of fatty acid ethyl esters in saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway. Microb. Cell Fact. 2014, 13, 39. [CrossRef] [PubMed]
-
(2014)
Microb. Cell Fact.
, vol.13
, pp. 39
-
-
de Jong, B.W.1
Shi, S.2
Siewers, V.3
Nielsen, J.4
-
89
-
-
0036208491
-
Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing saccharomyces cerevisiae strains improves the ethanol yield from xylose
-
Jeppsson, M.; Johansson, B.; Hahn-Hägerdal, B.; Gorwa-Grauslund, M.F. Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl. Environ. Microbiol. 2002, 68, 1604–1609. [CrossRef] [PubMed]
-
(2002)
Appl. Environ. Microbiol.
, vol.68
, pp. 1604-1609
-
-
Jeppsson, M.1
Johansson, B.2
Hahn-Hägerdal, B.3
Gorwa-Grauslund, M.F.4
-
90
-
-
34948882785
-
Ethanol production from xylose by recombinant saccharomyces cerevisiae expressing protein-engineered nadh-preferring xylose reductase from pichia stipitis
-
Watanabe, S.; Abu Saleh, A.; Pack, S.P.; Annaluru, N.; Kodaki, T.; Makino, K. Ethanol production from xylose by recombinant saccharomyces cerevisiae expressing protein-engineered nadh-preferring xylose reductase from pichia stipitis. Microbiology 2007, 153, 3044–3054. [CrossRef] [PubMed]
-
(2007)
Microbiology
, vol.153
, pp. 3044-3054
-
-
Watanabe, S.1
Abu Saleh, A.2
Pack, S.P.3
Annaluru, N.4
Kodaki, T.5
Makino, K.6
-
91
-
-
33644879465
-
The expression of a pichia stipitis xylose reductase mutant with higher km for nadph increases ethanol production from xylose in recombinant saccharomyces cerevisiae
-
Jeppsson, M.; Bengtsson, O.; Franke, K.; Lee, H.; Hahn-Hägerdal, B.; Gorwa-Grauslund, M.F. The expression of a pichia stipitis xylose reductase mutant with higher km for nadph increases ethanol production from xylose in recombinant saccharomyces cerevisiae. Biotechnol. Bioeng. 2006, 93, 665–673. [CrossRef] [PubMed]
-
(2006)
Biotechnol. Bioeng.
, vol.93
, pp. 665-673
-
-
Jeppsson, M.1
Bengtsson, O.2
Franke, K.3
Lee, H.4
Hahn-Hägerdal, B.5
Gorwa-Grauslund, M.F.6
-
92
-
-
34347390887
-
The positive effect of the decreased nadph-preferring activity of xylose reductase from pichia stipitis on ethanol production using xylose-fermenting recombinant saccharomyces cerevisiae
-
Watanabe, S.; Pack, S.P.; Saleh, A.A.; Annaluru, N.; Kodaki, T.; Makino, K. The positive effect of the decreased nadph-preferring activity of xylose reductase from pichia stipitis on ethanol production using xylose-fermenting recombinant saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 2007, 71, 1365–1369. [CrossRef] [PubMed]
-
(2007)
Biosci. Biotechnol. Biochem.
, vol.71
, pp. 1365-1369
-
-
Watanabe, S.1
Pack, S.P.2
Saleh, A.A.3
Annaluru, N.4
Kodaki, T.5
Makino, K.6
-
93
-
-
70449428931
-
Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing saccharomyces cerevisiae
-
Runquist, D.; Hahn-Hägerdal, B.; Bettiga, M. Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing saccharomyces cerevisiae. Microb. Cell Fact. 2009, 8, 49. [CrossRef] [PubMed]
-
(2009)
Microb. Cell Fact.
, vol.8
, pp. 49
-
-
Runquist, D.1
Hahn-Hägerdal, B.2
Bettiga, M.3
-
94
-
-
42449145157
-
Altering the coenzyme preference of xylose reductase to favor utilization of nadh enhances ethanol yield from xylose in a metabolically engineered strain of saccharomyces cerevisiae
-
Petschacher, B.; Nidetzky, B. Altering the coenzyme preference of xylose reductase to favor utilization of nadh enhances ethanol yield from xylose in a metabolically engineered strain of saccharomyces cerevisiae. Microb. Cell Fact. 2008, 7, 9. [CrossRef] [PubMed]
-
(2008)
Microb. Cell Fact.
, vol.7
, pp. 9
-
-
Petschacher, B.1
Nidetzky, B.2
-
95
-
-
66749091546
-
Xylose reductase from pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant saccharomyces cerevisiae
-
Bengtsson, O.; Hahn-Hägerdal, B.; Gorwa-Grauslund, M.F. Xylose reductase from pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant saccharomyces cerevisiae. Biotechnol. Biofuels 2009, 2, 9. [CrossRef] [PubMed]
-
(2009)
Biotechnol. Biofuels
, vol.2
, pp. 9
-
-
Bengtsson, O.1
Hahn-Hägerdal, B.2
Gorwa-Grauslund, M.F.3
-
96
-
-
78650327471
-
Increased ethanol productivity in xylose-utilizing saccharomyces cerevisiae via a randomly mutagenized xylose reductase
-
Runquist, D.; Hahn-Hägerdal, B.; Bettiga, M. Increased ethanol productivity in xylose-utilizing saccharomyces cerevisiae via a randomly mutagenized xylose reductase. Appl. Environ. Microbiol. 2010, 76, 7796–7802. [CrossRef] [PubMed]
-
(2010)
Appl. Environ. Microbiol.
, vol.76
, pp. 7796-7802
-
-
Runquist, D.1
Hahn-Hägerdal, B.2
Bettiga, M.3
-
97
-
-
34250361036
-
Ethanol production from xylose by recombinant saccharomyces cerevisiae expressing protein engineered nadp+-dependent xylitol dehydrogenase
-
Watanabe, S.; Saleh, A.A.; Pack, S.P.; Annaluru, N.; Kodaki, T.; Makino, K. Ethanol production from xylose by recombinant saccharomyces cerevisiae expressing protein engineered nadp+-dependent xylitol dehydrogenase. J. Biotechnol. 2007, 130, 316–319. [CrossRef] [PubMed]
-
(2007)
J. Biotechnol.
, vol.130
, pp. 316-319
-
-
Watanabe, S.1
Saleh, A.A.2
Pack, S.P.3
Annaluru, N.4
Kodaki, T.5
Makino, K.6
-
98
-
-
55649111344
-
Expression of protein engineered nadp+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant saccharomyces cerevisiae
-
Matsushika, A.; Watanabe, S.; Kodaki, T.; Makino, K.; Inoue, H.; Murakami, K.; Takimura, O.; Sawayama, S. Expression of protein engineered nadp+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2008, 81, 243–255. [CrossRef] [PubMed]
-
(2008)
Appl. Microbiol. Biotechnol.
, vol.81
, pp. 243-255
-
-
Matsushika, A.1
Watanabe, S.2
Kodaki, T.3
Makino, K.4
Inoue, H.5
Murakami, K.6
Takimura, O.7
Sawayama, S.8
-
99
-
-
68049091805
-
Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by saccharomyces cerevisiae
-
Krahulec, S.; Klimacek, M.; Nidetzky, B. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by saccharomyces cerevisiae. Biotechnol. J. 2009, 4, 684–694. [CrossRef] [PubMed]
-
(2009)
Biotechnol. J.
, vol.4
, pp. 684-694
-
-
Krahulec, S.1
Klimacek, M.2
Nidetzky, B.3
-
100
-
-
66249146380
-
Efficient bioethanol production by a recombinant flocculent saccharomyces cerevisiae strain with a genome-integrated nadp(+)-dependent xylitol dehydrogenase gene
-
Matsushika, A.; Inoue, H.; Watanabe, S.; Kodaki, T.; Makino, K.; Sawayama, S. Efficient bioethanol production by a recombinant flocculent saccharomyces cerevisiae strain with a genome-integrated nadp(+)-dependent xylitol dehydrogenase gene. Appl. Environ. Microbiol. 2009, 75, 3818–3822. [CrossRef] [PubMed]
-
(2009)
Appl. Environ. Microbiol.
, vol.75
, pp. 3818-3822
-
-
Matsushika, A.1
Inoue, H.2
Watanabe, S.3
Kodaki, T.4
Makino, K.5
Sawayama, S.6
-
101
-
-
0142136153
-
Engineering redox cofactor regeneration for improved pentose fermentation in saccharomyces cerevisiae
-
Verho, R.; Londesborough, J.; Penttilä, M.; Richard, P. Engineering redox cofactor regeneration for improved pentose fermentation in saccharomyces cerevisiae. Appl. Environ. Microbiol. 2003, 69, 5892–5897. [CrossRef] [PubMed]
-
(2003)
Appl. Environ. Microbiol.
, vol.69
, pp. 5892-5897
-
-
Verho, R.1
Londesborough, J.2
Penttilä, M.3
Richard, P.4
-
102
-
-
84863182778
-
Decreased xylitol formation during xylose fermentation in saccharomyces cerevisiae due to overexpression of water-forming nadh oxidase
-
Zhang, G.-C.; Liu, J.-J.; Ding, W.-T. Decreased xylitol formation during xylose fermentation in saccharomyces cerevisiae due to overexpression of water-forming nadh oxidase. Appl. Environ. Microbiol. 2012, 78, 1081–1086. [CrossRef] [PubMed]
-
(2012)
Appl. Environ. Microbiol.
, vol.78
, pp. 1081-1086
-
-
Zhang, G.-C.1
Liu, J.-J.2
Ding, W.-T.3
-
103
-
-
84922782676
-
Metabolomic and 13c-metabolic flux analysis of a xylose-consuming saccharomyces cerevisiae strain expressing xylose isomerase
-
Wasylenko, T.M.; Stephanopoulos, G. Metabolomic and 13c-metabolic flux analysis of a xylose-consuming saccharomyces cerevisiae strain expressing xylose isomerase. Biotechnol. Bioeng. 2015, 112, 470–483. [CrossRef] [PubMed]
-
(2015)
Biotechnol. Bioeng.
, vol.112
, pp. 470-483
-
-
Wasylenko, T.M.1
Stephanopoulos, G.2
-
104
-
-
0026416683
-
Plasmid presence changes the relative levels of many host cell proteins and ribosome components in recombinant Escherichia coli
-
Birnbaum, S.; Bailey, J.E. Plasmid presence changes the relative levels of many host cell proteins and ribosome components in recombinant Escherichia coli. Biotechnol. Bioeng. 1991, 37, 736–745. [CrossRef] [PubMed]
-
(1991)
Biotechnol. Bioeng.
, vol.37
, pp. 736-745
-
-
Birnbaum, S.1
Bailey, J.E.2
-
105
-
-
84939271039
-
Surviving the heat: Heterogeneity of response in saccharomyces cerevisiae provides insight into thermal damage to the membrane
-
Guyot, S.; Gervais, P.; Young, M.; Winckler, P.; Dumont, J.; Davey, H.M. Surviving the heat: Heterogeneity of response in saccharomyces cerevisiae provides insight into thermal damage to the membrane. Environ. Microbiol. 2015, 17, 2982–2992. [CrossRef] [PubMed]
-
(2015)
Environ. Microbiol.
, vol.17
, pp. 2982-2992
-
-
Guyot, S.1
Gervais, P.2
Young, M.3
Winckler, P.4
Dumont, J.5
Davey, H.M.6
-
106
-
-
84940898261
-
Metabolomic analysis of acid stress response in saccharomyces cerevisiae
-
Nugroho, R.H.; Yoshikawa, K.; Shimizu, H. Metabolomic analysis of acid stress response in saccharomyces cerevisiae. J. Biosci. Bioeng. 2015, 120, 396–404. [CrossRef] [PubMed]
-
(2015)
J. Biosci. Bioeng.
, vol.120
, pp. 396-404
-
-
Nugroho, R.H.1
Yoshikawa, K.2
Shimizu, H.3
-
107
-
-
79951843066
-
Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: Review
-
Parawira, W.; Tekere, M. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: Review. Crit. Rev. Biotechnol. 2011, 31, 20–31. [CrossRef] [PubMed]
-
(2011)
Crit. Rev. Biotechnol.
, vol.31
, pp. 20-31
-
-
Parawira, W.1
Tekere, M.2
-
108
-
-
84944281669
-
Fatty alcohols production by oleaginous yeast
-
Fillet, S.; Gibert, J.; Suárez, B.; Lara, A.; Ronchel, C.; Adrio, J. Fatty alcohols production by oleaginous yeast. J. Ind. Microbiol. Biotechnol. 2015, 42, 1463–1472. [CrossRef] [PubMed]
-
(2015)
J. Ind. Microbiol. Biotechnol.
, vol.42
, pp. 1463-1472
-
-
Fillet, S.1
Gibert, J.2
Suárez, B.3
Lara, A.4
Ronchel, C.5
Adrio, J.6
-
109
-
-
70350376747
-
Escherichia coli unsaturated fatty acid synthesis: Complex transcription of the faba gene and in vivo identification of the essential reaction catalyzed by fabb
-
Feng, Y.; Cronan, J.E. Escherichia coli unsaturated fatty acid synthesis: Complex transcription of the faba gene and in vivo identification of the essential reaction catalyzed by fabb. J. Biol. Chem. 2009, 284, 29526–29535. [CrossRef] [PubMed]
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 29526-29535
-
-
Feng, Y.1
Cronan, J.E.2
-
110
-
-
0034666431
-
Overproduction of acetyl-coa carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli
-
Davis, M.S.; Solbiati, J.; Cronan, J.E., Jr. Overproduction of acetyl-coa carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J. Biol. Chem. 2000, 275, 28593–28598. [CrossRef] [PubMed]
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 28593-28598
-
-
Davis, M.S.1
Solbiati, J.2
Cronan, J.E.3
-
111
-
-
57049105699
-
Overproduction of free fatty acids in E. Coli: Implications for biodiesel production
-
Lu, X.; Vora, H.; Khosla, C. Overproduction of free fatty acids in E. Coli: Implications for biodiesel production. Metab. Eng. 2008, 10, 333–339. [CrossRef] [PubMed]
-
(2008)
Metab. Eng.
, vol.10
, pp. 333-339
-
-
Lu, X.1
Vora, H.2
Khosla, C.3
-
112
-
-
84869039746
-
Enhancing fatty acid production by the expression of the regulatory transcription factor fadr
-
Zhang, F.; Ouellet, M.; Batth, T.S.; Adams, P.D.; Petzold, C.J.; Mukhopadhyay, A.; Keasling, J.D. Enhancing fatty acid production by the expression of the regulatory transcription factor fadr. Metab. Eng. 2012, 14, 653–660. [CrossRef] [PubMed]
-
(2012)
Metab. Eng.
, vol.14
, pp. 653-660
-
-
Zhang, F.1
Ouellet, M.2
Batth, T.S.3
Adams, P.D.4
Petzold, C.J.5
Mukhopadhyay, A.6
Keasling, J.D.7
-
113
-
-
0031783528
-
Overproduction of a functional fatty acid biosynthetic enzyme blocks fatty acid synthesis in Escherichia coli
-
Subrahmanyam, S.; Cronan, J.E., Jr. Overproduction of a functional fatty acid biosynthetic enzyme blocks fatty acid synthesis in Escherichia coli. J. Bacteriol. 1998, 180, 4596–4602. [PubMed]
-
(1998)
J. Bacteriol.
, vol.180
, pp. 4596-4602
-
-
Subrahmanyam, S.1
Cronan, J.E.2
-
114
-
-
80054018281
-
Engineering the pentose phosphate pathway to improve hydrogen yield in recombinant Escherichia coli
-
Kim, Y.M.; Cho, H.-S.; Jung, G.Y.; Park, J.M. Engineering the pentose phosphate pathway to improve hydrogen yield in recombinant Escherichia coli. Biotechnol. Bioeng. 2011, 108, 2941–2946. [CrossRef] [PubMed]
-
(2011)
Biotechnol. Bioeng.
, vol.108
, pp. 2941-2946
-
-
Kim, Y.M.1
Cho, H.-S.2
Jung, G.Y.3
Park, J.M.4
-
115
-
-
34547114478
-
Enhanced production of ε-caprolactone by overexpression of nadph-regenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone monooxygenase gene
-
Lee, W.-H.; Park, J.-B.; Park, K.; Kim, M.-D.; Seo, J.-H. Enhanced production of ε-caprolactone by overexpression of nadph-regenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone monooxygenase gene. Appl. Microbiol. Biotechnol. 2007, 76, 329–338. [CrossRef] [PubMed]
-
(2007)
Appl. Microbiol. Biotechnol.
, vol.76
, pp. 329-338
-
-
Lee, W.-H.1
Park, J.-B.2
Park, K.3
Kim, M.-D.4
Seo, J.-H.5
-
116
-
-
79954423939
-
Improved nadph supply for xylitol production by engineered Escherichia coli with glycolytic mutations
-
Chin, J.W.; Cirino, P.C. Improved nadph supply for xylitol production by engineered Escherichia coli with glycolytic mutations. Biotechnol. Prog. 2011, 27, 333–341. [CrossRef] [PubMed]
-
(2011)
Biotechnol. Prog.
, vol.27
, pp. 333-341
-
-
Chin, J.W.1
Cirino, P.C.2
-
117
-
-
84880510233
-
Improvement of nadph bioavailability in Escherichia coli through the use of phosphofructokinase deficient strains
-
Wang, Y.; San, K.-Y.; Bennett, G. Improvement of nadph bioavailability in Escherichia coli through the use of phosphofructokinase deficient strains. Appl. Microbiol. Biotechnol. 2013, 97, 6883–6893. [CrossRef] [PubMed]
-
(2013)
Appl. Microbiol. Biotechnol.
, vol.97
, pp. 6883-6893
-
-
Wang, Y.1
San, K.-Y.2
Bennett, G.3
-
118
-
-
76749151341
-
Improving nadph availability for natural product biosynthesis in Escherichia coli by metabolic engineering
-
Chemler, J.A.; Fowler, Z.L.; McHugh, K.P.; Koffas, M.A.G. Improving nadph availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metab. Eng. 2010, 12, 96–104. [CrossRef] [PubMed]
-
(2010)
Metab. Eng.
, vol.12
, pp. 96-104
-
-
Chemler, J.A.1
Fowler, Z.L.2
McHugh, K.P.3
Koffas, M.A.G.4
-
119
-
-
79953735971
-
Alteration of reducing powers in an isogenic phosphoglucose isomerase (Pgi)-disrupted Escherichia coli expressing nad(p)-dependent malic enzymes and nadp-dependent glyceraldehyde 3-phosphate dehydrogenase
-
Kim, S.; Lee, C.H.; Nam, S.W.; Kim, P. Alteration of reducing powers in an isogenic phosphoglucose isomerase (pgi)-disrupted Escherichia coli expressing nad(p)-dependent malic enzymes and nadp-dependent glyceraldehyde 3-phosphate dehydrogenase. Lett. Appl. Microbiol. 2011, 52, 433–440. [CrossRef] [PubMed]
-
(2011)
Lett. Appl. Microbiol.
, vol.52
, pp. 433-440
-
-
Kim, S.1
Lee, C.H.2
Nam, S.W.3
Kim, P.4
-
120
-
-
33646045867
-
Effect of overexpression of a soluble pyridine nucleotide transhydrogenase (Udha) on the production of poly(3-hydroxybutyrate) in Escherichia coli
-
Sánchez, A.M.; Andrews, J.; Hussein, I.; Bennett, G.N.; San, K.-Y. Effect of overexpression of a soluble pyridine nucleotide transhydrogenase (udha) on the production of poly(3-hydroxybutyrate) in Escherichia coli. Biotechnol. Prog. 2006, 22, 420–425. [CrossRef] [PubMed]
-
(2006)
Biotechnol. Prog.
, vol.22
, pp. 420-425
-
-
Sánchez, A.M.1
Andrews, J.2
Hussein, I.3
Bennett, G.N.4
San, K.-Y.5
-
121
-
-
84924408551
-
Transhydrogenase promotes the robustness and evolvability of E. Coli deficient in nadph production
-
Chou, H.-H.; Marx, C.J.; Sauer, U. Transhydrogenase promotes the robustness and evolvability of E. Coli deficient in nadph production. PLoS Genet. 2015, 11, e1005007. [CrossRef] [PubMed]
-
(2015)
Plos Genet
, vol.11
-
-
Chou, H.-H.1
Marx, C.J.2
Sauer, U.3
-
122
-
-
0034496492
-
Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria
-
Jones, K.L.; Kim, S.W.; Keasling, J.D. Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria. Metab. Eng. 2000, 2, 328–338. [CrossRef] [PubMed]
-
(2000)
Metab. Eng.
, vol.2
, pp. 328-338
-
-
Jones, K.L.1
Kim, S.W.2
Keasling, J.D.3
-
123
-
-
78049290979
-
Transcriptomic analysis of Escherichia coli o157:H7 and k-12 cultures exposed to inorganic and organic acids in stationary phase reveals acidulant-and strain-specific acid tolerance responses
-
King, T.; Lucchini, S.; Hinton, J.C.D.; Gobius, K. Transcriptomic analysis of Escherichia coli o157:H7 and k-12 cultures exposed to inorganic and organic acids in stationary phase reveals acidulant-and strain-specific acid tolerance responses. Appl. Environ. Microbiol. 2010, 76, 6514–6528. [CrossRef] [PubMed]
-
(2010)
Appl. Environ. Microbiol.
, vol.76
, pp. 6514-6528
-
-
King, T.1
Lucchini, S.2
Hinton, J.C.D.3
Gobius, K.4
-
124
-
-
77956467426
-
A systematic investigation of Escherichia coli central carbon metabolism in response to superoxide stress
-
Rui, B.; Shen, T.; Zhou, H.; Liu, J.; Chen, J.; Pan, X.; Liu, H.; Wu, J.; Zheng, H.; Shi, Y. A systematic investigation of Escherichia coli central carbon metabolism in response to superoxide stress. BMC Syst. Biology 2010, 4, 122. [CrossRef] [PubMed]
-
(2010)
BMC Syst. Biology
, vol.4
, pp. 122
-
-
Rui, B.1
Shen, T.2
Zhou, H.3
Liu, J.4
Chen, J.5
Pan, X.6
Liu, H.7
Wu, J.8
Zheng, H.9
Shi, Y.10
-
125
-
-
0032993682
-
Genetic engineering of bacillus subtilis for the commercial production of riboflavin
-
Perkins, J.B.; Sloma, A.; Hermann, T.; Theriault, K.; Zachgo, E.; Erdenberger, T.; Hannett, N.; Chatterjee, N.P.; Williams, V., II; Rufo, G.A., Jr.; et al. Genetic engineering of bacillus subtilis for the commercial production of riboflavin. J. Ind. Microbiol. Biotech. 1999, 22, 8–18. [CrossRef]
-
(1999)
J. Ind. Microbiol. Biotech.
, vol.22
, pp. 8-18
-
-
Perkins, J.B.1
Sloma, A.2
Hermann, T.3
Theriault, K.4
Zachgo, E.5
Erdenberger, T.6
Hannett, N.7
Chatterjee, N.P.8
Williams, V.9
Rufo, G.A.10
-
126
-
-
0031004921
-
Metabolic fluxes in riboflavin-producing bacillus subtilis
-
Sauer, U.; Hatzimanikatis, V.; Bailey, J.E.; Hochuli, M.; Szyperski, T.; Wuthrich, K. Metabolic fluxes in riboflavin-producing bacillus subtilis. Nat. Biotech. 1997, 15, 448–452. [CrossRef] [PubMed]
-
(1997)
Nat. Biotech.
, vol.15
, pp. 448-452
-
-
Sauer, U.1
Hatzimanikatis, V.2
Bailey, J.E.3
Hochuli, M.4
Szyperski, T.5
Wuthrich, K.6
-
127
-
-
0034847930
-
Metabolic flux analysis with a comprehensive isotopomer model in bacillus subtilis
-
Dauner, M.; Bailey, J.E.; Sauer, U. Metabolic flux analysis with a comprehensive isotopomer model in bacillus subtilis. Biotechnol. Bioeng. 2001, 76, 144–156. [CrossRef] [PubMed]
-
(2001)
Biotechnol. Bioeng.
, vol.76
, pp. 144-156
-
-
Dauner, M.1
Bailey, J.E.2
Sauer, U.3
-
128
-
-
20044375201
-
Large-scale in vivo flux analysis shows rigidity and suboptimal performance of bacillus subtilis metabolism
-
Fischer, E.; Sauer, U. Large-scale in vivo flux analysis shows rigidity and suboptimal performance of bacillus subtilis metabolism. Nat. Genet. 2005, 37, 636–640. [CrossRef] [PubMed]
-
(2005)
Nat. Genet.
, vol.37
, pp. 636-640
-
-
Fischer, E.1
Sauer, U.2
-
129
-
-
47349107339
-
Maintenance metabolism and carbon fluxes in bacillus species
-
Tannler, S.; Decasper, S.; Sauer, U. Maintenance metabolism and carbon fluxes in bacillus species. Microb. Cell Fact. 2008, 7, 19. [CrossRef] [PubMed]
-
(2008)
Microb. Cell Fact.
, vol.7
, pp. 19
-
-
Tannler, S.1
Decasper, S.2
Sauer, U.3
-
130
-
-
0029781898
-
Physiology and metabolic fluxes of wild-type and riboflavin-producing bacillus subtilis
-
Sauer, U.; Hatzimanikatis, V.; Hohmann, H.P.; Manneberg, M.; van Loon, A.P.; Bailey, J.E. Physiology and metabolic fluxes of wild-type and riboflavin-producing bacillus subtilis. Appl. Environ. Microbiol. 1996, 62, 3687–3696. [PubMed]
-
(1996)
Appl. Environ. Microbiol.
, vol.62
, pp. 3687-3696
-
-
Sauer, U.1
Hatzimanikatis, V.2
Hohmann, H.P.3
Manneberg, M.4
van Loon, A.P.5
Bailey, J.E.6
-
131
-
-
0029689236
-
-
In Metabolic Engineering; Sahm, H., Wandrey, C., Eds.; Springer: Berlin, Germany
-
Wiechert, W.; de Graaf, A.A. In vivo stationary flux analysis by 13c labeling experiments. In Metabolic Engineering; Sahm, H., Wandrey, C., Eds.; Springer: Berlin, Germany, 1996; Volume 54, pp. 109–154.
-
(1996)
In Vivo Stationary Flux Analysis by 13C Labeling Experiments
, vol.54
, pp. 109-154
-
-
Wiechert, W.1
de Graaf, A.A.2
-
132
-
-
0035002653
-
Application of maldi-tof ms to lysine-producing corynebacterium glutamicum
-
Wittmann, C.; Heinzle, E. Application of maldi-tof ms to lysine-producing corynebacterium glutamicum. Eur. J. Biochem. 2001, 268, 2441–2455. [CrossRef] [PubMed]
-
(2001)
Eur. J. Biochem.
, vol.268
, pp. 2441-2455
-
-
Wittmann, C.1
Heinzle, E.2
-
133
-
-
0042825675
-
Systematic quantification of complex metabolic flux networks using stable isotopes and mass spectrometry
-
Klapa, M.I.; Aon, J.-C.; Stephanopoulos, G. Systematic quantification of complex metabolic flux networks using stable isotopes and mass spectrometry. Eur. J. Biochem. 2003, 270, 3525–3542. [CrossRef] [PubMed]
-
(2003)
Eur. J. Biochem.
, vol.270
, pp. 3525-3542
-
-
Klapa, M.I.1
Aon, J.-C.2
Stephanopoulos, G.3
-
134
-
-
66949164842
-
Openflux: Efficient modelling software for 13c-based metabolic flux analysis
-
Quek, L.-E.; Wittmann, C.; Nielsen, L.; Kromer, J. Openflux: Efficient modelling software for 13c-based metabolic flux analysis. Microb. Cell Fact. 2009, 8, 25. [CrossRef] [PubMed]
-
(2009)
Microb. Cell Fact.
, vol.8
, pp. 25
-
-
Quek, L.-E.1
Wittmann, C.2
Nielsen, L.3
Kromer, J.4
-
135
-
-
1542376957
-
In-depth profiling of lysine-producing corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome
-
Krömer, J.O.; Sorgenfrei, O.; Klopprogge, K.; Heinzle, E.; Wittmann, C. In-depth profiling of lysine-producing corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J. Bacteriol. 2004, 186, 1769–1784. [CrossRef] [PubMed]
-
(2004)
J. Bacteriol.
, vol.186
, pp. 1769-1784
-
-
Krömer, J.O.1
Sorgenfrei, O.2
Klopprogge, K.3
Heinzle, E.4
Wittmann, C.5
-
136
-
-
35348981360
-
Metabolic flux engineering of l-lysine production in corynebacterium glutamicum—Over expression and modification of g6p dehydrogenase
-
Becker, J.; Klopprogge, C.; Herold, A.; Zelder, O.; Bolten, C.J.; Wittmann, C. Metabolic flux engineering of l-lysine production in corynebacterium glutamicum—Over expression and modification of g6p dehydrogenase. J. Biotechnol. 2007, 132, 99–109. [CrossRef] [PubMed]
-
(2007)
J. Biotechnol.
, vol.132
, pp. 99-109
-
-
Becker, J.1
Klopprogge, C.2
Herold, A.3
Zelder, O.4
Bolten, C.J.5
Wittmann, C.6
-
137
-
-
79952106791
-
From zero to hero—Design-based systems metabolic engineering of corynebacterium glutamicum for l-lysine production
-
Becker, J.; Zelder, O.; Häfner, S.; Schröder, H.; Wittmann, C. From zero to hero—Design-based systems metabolic engineering of corynebacterium glutamicum for l-lysine production. Metab. Eng. 2011, 13, 159–168. [CrossRef] [PubMed]
-
(2011)
Metab. Eng
, vol.13
, pp. 159-168
-
-
Becker, J.1
Zelder, O.2
Häfner, S.3
Schröder, H.4
Wittmann, C.5
-
138
-
-
27744506402
-
Amplified expression of fructose 1,6-bisphosphatase in corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources
-
Becker, J.; Klopprogge, C.; Zelder, O.; Heinzle, E.; Wittmann, C. Amplified expression of fructose 1,6-bisphosphatase in corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl. Environ. Microbiol. 2005, 71, 8587–8596. [CrossRef] [PubMed]
-
(2005)
Appl. Environ. Microbiol.
, vol.71
, pp. 8587-8596
-
-
Becker, J.1
Klopprogge, C.2
Zelder, O.3
Heinzle, E.4
Wittmann, C.5
-
139
-
-
84903743153
-
A de novo nadph generation pathway for improving lysine production of corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase
-
Bommareddy, R.R.; Chen, Z.; Rappert, S.; Zeng, A.-P. A de novo nadph generation pathway for improving lysine production of corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase. Metab. Eng. 2014, 25, 30–37. [CrossRef] [PubMed]
-
(2014)
Metab. Eng.
, vol.25
, pp. 30-37
-
-
Bommareddy, R.R.1
Chen, Z.2
Rappert, S.3
Zeng, A.-P.4
-
140
-
-
0030997654
-
Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast pichia pastoris
-
Sreekrishna, K.; Brankamp, R.G.; Kropp, K.E.; Blankenship, D.T.; Tsay, J.-T.; Smith, P.L.; Wierschke, J.D.; Subramaniam, A.; Birkenberger, L.A. Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast pichia pastoris. Gene 1997, 190, 55–62. [CrossRef]
-
(1997)
Gene
, vol.190
, pp. 55-62
-
-
Sreekrishna, K.1
Brankamp, R.G.2
Kropp, K.E.3
Blankenship, D.T.4
Tsay, J.-T.5
Smith, P.L.6
Wierschke, J.D.7
Subramaniam, A.8
Birkenberger, L.A.9
-
141
-
-
0033753671
-
Recombinant protein expression in pichia pastoris
-
Cregg, J.; Cereghino, J.; Shi, J.; Higgins, D. Recombinant protein expression in pichia pastoris. Mol. Biotechnol. 2000, 16, 23–52. [CrossRef]
-
(2000)
Mol. Biotechnol.
, vol.16
, pp. 23-52
-
-
Cregg, J.1
Cereghino, J.2
Shi, J.3
Higgins, D.4
-
142
-
-
0033955337
-
Heterologous protein expression in the methylotrophic yeast pichia pastoris
-
Cereghino, J.L.; Cregg, J.M. Heterologous protein expression in the methylotrophic yeast pichia pastoris. FEMS Microbiol. Rev. 2000, 24, 45–66. [CrossRef] [PubMed]
-
(2000)
FEMS Microbiol. Rev.
, vol.24
, pp. 45-66
-
-
Cereghino, J.L.1
Cregg, J.M.2
-
143
-
-
0023693630
-
High level expression of heterologous proteins in methylotrophic yeast pichia pastoris
-
Sreekrishna, K.; Potenz, R.H.; Cruze, J.A.; McCombie, W.R.; Parker, K.A.; Nelles, L.; Mazzaferro, P.K.; Holden, K.A.; Harrison, R.G.; Wood, P.J. High level expression of heterologous proteins in methylotrophic yeast pichia pastoris. J. Basic Microbiol. 1988, 28, 265–278. [CrossRef] [PubMed]
-
(1988)
J. Basic Microbiol.
, vol.28
, pp. 265-278
-
-
Sreekrishna, K.1
Potenz, R.H.2
Cruze, J.A.3
McCombie, W.R.4
Parker, K.A.5
Nelles, L.6
Mazzaferro, P.K.7
Holden, K.A.8
Harrison, R.G.9
Wood, P.J.10
-
144
-
-
84903814380
-
Protein expression in pichia pastoris: Recent achievements and perspectives for heterologous protein production
-
Ahmad, M.; Hirz, M.; Pichler, H.; Schwab, H. Protein expression in pichia pastoris: Recent achievements and perspectives for heterologous protein production. Appl. Microbiol. Biotechnol. 2014, 98, 5301–5317. [CrossRef] [PubMed]
-
(2014)
Appl. Microbiol. Biotechnol.
, vol.98
, pp. 5301-5317
-
-
Ahmad, M.1
Hirz, M.2
Pichler, H.3
Schwab, H.4
-
145
-
-
14744285206
-
Expression of heterologous proteins in pichia pastoris: A useful experimental tool in protein engineering and production
-
Daly, R.; Hearn, M.T.W. Expression of heterologous proteins in pichia pastoris: A useful experimental tool in protein engineering and production. J. Mol. Recognit. 2005, 18, 119–138. [CrossRef] [PubMed]
-
(2005)
J. Mol. Recognit.
, vol.18
, pp. 119-138
-
-
Daly, R.1
Hearn, M.T.W.2
-
146
-
-
55749091599
-
Recombinant bacterial hemoglobin alters metabolism of aspergillus niger
-
Hofmann, G.; Diano, A.; Nielsen, J. Recombinant bacterial hemoglobin alters metabolism of aspergillus niger. Metab. Eng. 2009, 11, 8–12. [CrossRef] [PubMed]
-
(2009)
Metab. Eng.
, vol.11
, pp. 8-12
-
-
Hofmann, G.1
Diano, A.2
Nielsen, J.3
-
147
-
-
0018404417
-
Penicillin g production by immobilized whole cells of penicillium chrysogenum
-
Morikawa, Y.; Karube, I.; Suzuki, S. Penicillin g production by immobilized whole cells of penicillium chrysogenum. Biotechnol. Bioeng. 1979, 21, 261–270. [CrossRef] [PubMed]
-
(1979)
Biotechnol. Bioeng.
, vol.21
, pp. 261-270
-
-
Morikawa, Y.1
Karube, I.2
Suzuki, S.3
-
148
-
-
85063847238
-
Penicillin production and history: An overview
-
Pandey, S.; Ahmad, T.; Aryal, S.; Rana, B.; Sapkota, B. Penicillin production and history: An overview. Int. J. Microbiol. Allied Sci. 2014, 1, 5.
-
(2014)
Int. J. Microbiol. Allied Sci.
, vol.1
, pp. 5
-
-
Pandey, S.1
Ahmad, T.2
Aryal, S.3
Rana, B.4
Sapkota, B.5
-
149
-
-
33847294641
-
A novel feeding strategy during the production phase for enhancing the enzymatic synthesis of s-adenosyl-l-methionine by methylotrophic pichia pastoris
-
Hu, X.-Q.; Chu, J.; Zhang, S.-L.; Zhuang, Y.-P.; Wang, Y.-H.; Zhu, S.; Zhu, Z.-G.; Yuan, Z.-Y. A novel feeding strategy during the production phase for enhancing the enzymatic synthesis of s-adenosyl-l-methionine by methylotrophic pichia pastoris. Enzym. Microb. Technol. 2007, 40, 669–674. [CrossRef]
-
(2007)
Enzym. Microb. Technol.
, vol.40
, pp. 669-674
-
-
Hu, X.-Q.1
Chu, J.2
Zhang, S.-L.3
Zhuang, Y.-P.4
Wang, Y.-H.5
Zhu, S.6
Zhu, Z.-G.7
Yuan, Z.-Y.8
-
150
-
-
52949134791
-
Effects of different glycerol feeding strategies on s-adenosyl-l-methionine biosynthesis by pgap-driven pichia pastoris overexpressing methionine adenosyltransferase
-
Hu, X.-Q.; Chu, J.; Zhang, Z.; Zhang, S.-L.; Zhuang, Y.-P.; Wang, Y.-H.; Guo, M.-J.; Chen, H.-X.; Yuan, Z.-Y. Effects of different glycerol feeding strategies on s-adenosyl-l-methionine biosynthesis by pgap-driven pichia pastoris overexpressing methionine adenosyltransferase. J. Biotechnol. 2008, 137, 44–49. [CrossRef] [PubMed]
-
(2008)
J. Biotechnol.
, vol.137
, pp. 44-49
-
-
Hu, X.-Q.1
Chu, J.2
Zhang, Z.3
Zhang, S.-L.4
Zhuang, Y.-P.5
Wang, Y.-H.6
Guo, M.-J.7
Chen, H.-X.8
Yuan, Z.-Y.9
-
151
-
-
84855419801
-
Integration of in vivo and in silico metabolic fluxes for improvement of recombinant protein production
-
Driouch, H.; Melzer, G.; Wittmann, C. Integration of in vivo and in silico metabolic fluxes for improvement of recombinant protein production. Metab. Eng. 2012, 14, 47–58. [CrossRef] [PubMed]
-
(2012)
Metab. Eng.
, vol.14
, pp. 47-58
-
-
Driouch, H.1
Melzer, G.2
Wittmann, C.3
-
152
-
-
0033916304
-
Construction and characterization of an oxalic acid nonproducing strain of aspergillus niger
-
Pedersen, H.; Christensen, B.; Hjort, C.; Nielsen, J. Construction and characterization of an oxalic acid nonproducing strain of aspergillus niger. Metab. Eng. 2000, 2, 34–41. [CrossRef] [PubMed]
-
(2000)
Metab. Eng.
, vol.2
, pp. 34-41
-
-
Pedersen, H.1
Christensen, B.2
Hjort, C.3
Nielsen, J.4
-
153
-
-
0034691228
-
Application of metabolic flux analysis for the identification of metabolic bottlenecks in the biosynthesis of penicillin-g
-
van Gulik, W.M.; de Laat, W.T.A.M.; Vinke, J.L.; Heijnen, J.J. Application of metabolic flux analysis for the identification of metabolic bottlenecks in the biosynthesis of penicillin-g. Biotechnol. Bioeng. 2000, 68, 602–618. [CrossRef]
-
(2000)
Biotechnol. Bioeng.
, vol.68
, pp. 602-618
-
-
van Gulik, W.M.1
de Laat, W.T.A.M.2
Vinke, J.L.3
Heijnen, J.J.4
-
154
-
-
84893070239
-
Non-growing rhodopseudomonas palustris increases the hydrogen gas yield from acetate by shifting from the glyoxylate shunt to the tricarboxylic acid cycle
-
McKinlay, J.B.; Oda, Y.; Rühl, M.; Posto, A.L.; Sauer, U.; Harwood, C.S. Non-growing rhodopseudomonas palustris increases the hydrogen gas yield from acetate by shifting from the glyoxylate shunt to the tricarboxylic acid cycle. J. Biol. Chem. 2014, 289, 1960–1970. [CrossRef] [PubMed]
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 1960-1970
-
-
McKinlay, J.B.1
Oda, Y.2
Rühl, M.3
Posto, A.L.4
Sauer, U.5
Harwood, C.S.6
-
155
-
-
84884531356
-
Systems-wide analysis and engineering of metabolic pathway fluxes in bio-succinate producing basfia succiniciproducens
-
Becker, J.; Reinefeld, J.; Stellmacher, R.; Schäfer, R.; Lange, A.; Meyer, H.; Lalk, M.; Zelder, O.; von Abendroth, G.; Schröder, H.; et al. Systems-wide analysis and engineering of metabolic pathway fluxes in bio-succinate producing basfia succiniciproducens. Biotechnol. Bioeng. 2013, 110, 3013–3023. [CrossRef] [PubMed]
-
(2013)
Biotechnol. Bioeng.
, vol.110
, pp. 3013-3023
-
-
Becker, J.1
Reinefeld, J.2
Stellmacher, R.3
Schäfer, R.4
Lange, A.5
Meyer, H.6
Lalk, M.7
Zelder, O.8
von Abendroth, G.9
Schröder, H.10
-
156
-
-
79954459893
-
Construction of an E. Coli genome-scale atom mapping model for mfa calculations
-
Ravikirthi, P.; Suthers, P.F.; Maranas, C.D. Construction of an E. Coli genome-scale atom mapping model for mfa calculations. Biotechnol. Bioeng. 2011, 108, 1372–1382. [CrossRef] [PubMed]
-
(2011)
Biotechnol. Bioeng.
, vol.108
, pp. 1372-1382
-
-
Ravikirthi, P.1
Suthers, P.F.2
Maranas, C.D.3
-
157
-
-
70349745413
-
Novel biological insights through metabolomics and 13c-flux analysis
-
Zamboni, N.; Sauer, U. Novel biological insights through metabolomics and 13c-flux analysis. Curr. Opin. Microbiol. 2009, 12, 553–558. [CrossRef] [PubMed]
-
(2009)
Curr. Opin. Microbiol.
, vol.12
, pp. 553-558
-
-
Zamboni, N.1
Sauer, U.2
-
158
-
-
64649089947
-
Cross-platform comparison of methods for quantitative metabolomics of primary metabolism
-
Büscher, J.M.; Czernik, D.; Ewald, J.C.; Sauer, U.; Zamboni, N. Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Anal. Chem. 2009, 81, 2135–2143. [CrossRef] [PubMed]
-
(2009)
Anal. Chem.
, vol.81
, pp. 2135-2143
-
-
Büscher, J.M.1
Czernik, D.2
Ewald, J.C.3
Sauer, U.4
Zamboni, N.5
-
159
-
-
79953882386
-
Intracellular characterization of aerobic glucose metabolism in seven yeast species by 13c flux analysis and metabolomics
-
Christen, S.; Sauer, U. Intracellular characterization of aerobic glucose metabolism in seven yeast species by 13c flux analysis and metabolomics. FEMS Yeast Res. 2011, 11, 263–272. [CrossRef] [PubMed]
-
(2011)
FEMS Yeast Res
, vol.11
, pp. 263-272
-
-
Christen, S.1
Sauer, U.2
-
160
-
-
84919681581
-
Clca: Maximum common molecular substructure queries within the metrxn database
-
Kumar, A.; Maranas, C.D. Clca: Maximum common molecular substructure queries within the metrxn database. J. Chem. Inf. Model. 2014, 54, 3417–3438. [CrossRef] [PubMed]
-
(2014)
J. Chem. Inf. Model.
, vol.54
, pp. 3417-3438
-
-
Kumar, A.1
Maranas, C.D.2
-
161
-
-
84855499408
-
Metrxn: A knowledgebase of metabolites and reactions spanning metabolic models and databases
-
Kumar, A.; Suthers, P.; Maranas, C. Metrxn: A knowledgebase of metabolites and reactions spanning metabolic models and databases. BMC Bioinf. 2012, 13, 6. [CrossRef] [PubMed]
-
(2012)
BMC Bioinf
, vol.13
, pp. 6
-
-
Kumar, A.1
Suthers, P.2
Maranas, C.3
-
162
-
-
84942248861
-
13c metabolic flux analysis at a genome-scale
-
Gopalakrishnan, S.; Maranas, C.D. 13c metabolic flux analysis at a genome-scale. Metab. Eng. 2015, 32, 12–22. [CrossRef] [PubMed]
-
(2015)
Metab. Eng.
, vol.32
, pp. 12-22
-
-
Gopalakrishnan, S.1
Maranas, C.D.2
-
163
-
-
84934438759
-
Isotopically nonstationary mfa (Inst-mfa) of autotrophic metabolism
-
Dieuaide-Noubhani, M., Alonso, A.P., Eds.; Humana Press: New York, NY, USA
-
Jazmin, L.; O’Grady, J.; Ma, F.; Allen, D.; Morgan, J.; Young, J. Isotopically nonstationary mfa (inst-mfa) of autotrophic metabolism. In Plant Metabolic Flux Analysis; Dieuaide-Noubhani, M., Alonso, A.P., Eds.; Humana Press: New York, NY, USA, 2014; Volume 1090, pp. 181–210.
-
(2014)
Plant Metabolic Flux Analysis
, vol.1090
, pp. 181-210
-
-
Jazmin, L.1
O’Grady, J.2
Ma, F.3
Allen, D.4
Morgan, J.5
Young, J.6
-
164
-
-
84872376676
-
Isotopically nonstationary 13c flux analysis of myc-induced metabolic reprogramming in b-cells
-
Murphy, T.A.; Dang, C.V.; Young, J.D. Isotopically nonstationary 13c flux analysis of myc-induced metabolic reprogramming in b-cells. Metab. Eng. 2013, 15, 206–217. [CrossRef] [PubMed]
-
(2013)
Metab. Eng.
, vol.15
, pp. 206-217
-
-
Murphy, T.A.1
Dang, C.V.2
Young, J.D.3
-
165
-
-
84880843363
-
Isotopically nonstationary 13c metabolic flux analysis
-
Alper, H.S., Ed.; Humana Press: New York, NY, USA
-
Jazmin, L.; Young, J. Isotopically nonstationary 13c metabolic flux analysis. In Systems Metabolic Engineering; Alper, H.S., Ed.; Humana Press: New York, NY, USA, 2013; Volume 985, pp. 367–390.
-
(2013)
Systems Metabolic Engineering
, vol.985
, pp. 367-390
-
-
Jazmin, L.1
Young, J.2
-
166
-
-
84887626505
-
Isotopically non-stationary metabolic flux analysis: Complex yet highly informative
-
Wiechert, W.; Nöh, K. Isotopically non-stationary metabolic flux analysis: Complex yet highly informative. Curr. Opin. Biotechnol. 2013, 24, 979–986. [CrossRef] [PubMed]
-
(2013)
Curr. Opin. Biotechnol.
, vol.24
, pp. 979-986
-
-
Wiechert, W.1
Nöh, K.2
-
167
-
-
17144387903
-
-
Technology Transfer in Biotechnology; Kragl, U., Ed.; Springer: Berlin, Germany
-
Wiechert, W.; Nöh, K. From stationary to instationary metabolic flux analysis. In Technology Transfer in Biotechnology; Kragl, U., Ed.; Springer: Berlin, Germany, 2005; Volume 92, pp. 145–172.
-
(2005)
From Stationary to Instationary Metabolic Flux Analysis
, vol.92
, pp. 145-172
-
-
Wiechert, W.1
Nöh, K.2
-
168
-
-
80555122963
-
Mapping photoautotrophic metabolism with isotopically nonstationary 13c flux analysis
-
Young, J.D.; Shastri, A.A.; Stephanopoulos, G.; Morgan, J.A. Mapping photoautotrophic metabolism with isotopically nonstationary 13c flux analysis. Metab. Eng. 2011, 13, 656–665. [CrossRef] [PubMed]
-
(2011)
Metab. Eng.
, vol.13
, pp. 656-665
-
-
Young, J.D.1
Shastri, A.A.2
Stephanopoulos, G.3
Morgan, J.A.4
-
169
-
-
84912569727
-
Isotopically nonstationary 13c flux analysis of changes in arabidopsis thaliana leaf metabolism due to high light acclimation
-
Ma, F.; Jazmin, L.J.; Young, J.D.; Allen, D.K. Isotopically nonstationary 13c flux analysis of changes in arabidopsis thaliana leaf metabolism due to high light acclimation. Proc. Natl. Acad. Sci. USA 2014, 111, 16967–16972. [CrossRef] [PubMed]
-
(2014)
Proc. Natl. Acad. Sci. USA
, vol.111
, pp. 16967-16972
-
-
Ma, F.1
Jazmin, L.J.2
Young, J.D.3
Allen, D.K.4
-
170
-
-
72049083209
-
Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products
-
Brennan, L.; Owende, P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 2010, 14, 557–577. [CrossRef]
-
(2010)
Renew. Sustain. Energy Rev.
, vol.14
, pp. 557-577
-
-
Brennan, L.1
Owende, P.2
-
171
-
-
84888095603
-
Photoautotrophic production of d-lactic acid in an engineered cyanobacterium
-
Varman, A.; Yu, Y.; You, L.; Tang, Y. Photoautotrophic production of d-lactic acid in an engineered cyanobacterium. Microb. Cell Fact. 2013, 12, 117. [CrossRef] [PubMed]
-
(2013)
Microb. Cell Fact.
, vol.12
, pp. 117
-
-
Varman, A.1
Yu, Y.2
You, L.3
Tang, Y.4
-
172
-
-
79953139204
-
Engineering cyanobacteria for fuels and chemicals production
-
Zhou, J.; Li, Y. Engineering cyanobacteria for fuels and chemicals production. Protein Cell 2010, 1, 207–210. [CrossRef] [PubMed]
-
(2010)
Protein Cell
, vol.1
, pp. 207-210
-
-
Zhou, J.1
Li, Y.2
-
173
-
-
84884386184
-
Complete-mfa: Complementary parallel labeling experiments technique for metabolic flux analysis
-
Leighty, R.W.; Antoniewicz, M.R. Complete-mfa: Complementary parallel labeling experiments technique for metabolic flux analysis. Metab. Eng. 2013, 20, 49–55. [CrossRef] [PubMed]
-
(2013)
Metab. Eng.
, vol.20
, pp. 49-55
-
-
Leighty, R.W.1
Antoniewicz, M.R.2
-
174
-
-
84922245805
-
Integrated 13c-metabolic flux analysis of 14 parallel labeling experiments in Escherichia coli
-
Crown, S.B.; Long, C.P.; Antoniewicz, M.R. Integrated 13c-metabolic flux analysis of 14 parallel labeling experiments in Escherichia coli. Metab. Eng. 2015, 28, 151–158. [CrossRef] [PubMed]
-
(2015)
Metab. Eng.
, vol.28
, pp. 151-158
-
-
Crown, S.B.1
Long, C.P.2
Antoniewicz, M.R.3
-
175
-
-
84865597532
-
Parallel labeling experiments with [u-13c]glucose validate E. Coli metabolic network model for 13c metabolic flux analysis
-
Leighty, R.W.; Antoniewicz, M.R. Parallel labeling experiments with [u-13c]glucose validate E. Coli metabolic network model for 13c metabolic flux analysis. Metab. Eng. 2012, 14, 533–541. [CrossRef] [PubMed]
-
(2012)
Metab. Eng.
, vol.14
, pp. 533-541
-
-
Leighty, R.W.1
Antoniewicz, M.R.2
-
176
-
-
84872122643
-
Parallel labeling experiments and metabolic flux analysis: Past, present and future methodologies
-
Crown, S.B.; Antoniewicz, M.R. Parallel labeling experiments and metabolic flux analysis: Past, present and future methodologies. Metab. Eng. 2013, 16, 21–32. [CrossRef] [PubMed]
-
(2013)
Metab. Eng.
, vol.16
, pp. 21-32
-
-
Crown, S.B.1
Antoniewicz, M.R.2
-
177
-
-
80053105319
-
Fluxomers: A new approach for (13)c metabolic flux analysis
-
Srour, O.; Young, J.D.; Eldar, Y.C. Fluxomers: A new approach for (13)c metabolic flux analysis. BMC Syst. Biol. 2011, 5, 129. [CrossRef] [PubMed]
-
(2011)
BMC Syst. Biol.
, vol.5
, pp. 129
-
-
Srour, O.1
Young, J.D.2
Eldar, Y.C.3
-
178
-
-
17444372724
-
Snopt: An sqp algorithm for large-scale constrained optimization
-
Gill, P.E.; Murray, W.; Saunders, M.A. Snopt: An sqp algorithm for large-scale constrained optimization. SIAM Rev. 2005, 47, 99–131. [CrossRef]
-
(2005)
SIAM Rev
, vol.47
, pp. 99-131
-
-
Gill, P.E.1
Murray, W.2
Saunders, M.A.3
-
179
-
-
84857845281
-
Influx_s: Increasing numerical stability and precision for metabolic flux analysis in isotope labelling experiments
-
Sokol, S.; Millard, P.; Portais, J.-C. Influx_s: Increasing numerical stability and precision for metabolic flux analysis in isotope labelling experiments. Bioinformatics 2012, 28, 687–693. [CrossRef] [PubMed]
-
(2012)
Bioinformatics
, vol.28
, pp. 687-693
-
-
Sokol, S.1
Millard, P.2
Portais, J.-C.3
-
180
-
-
77954291914
-
Biomet toolbox: Genome-wide analysis of metabolism
-
Cvijovic, M.; Olivares-Hernández, R.; Agren, R.; Dahr, N.; Vongsangnak, W.; Nookaew, I.; Patil, K.R.; Nielsen, J. Biomet toolbox: Genome-wide analysis of metabolism. Nucleic Acids Res. 2010, 38, W144–W149. [CrossRef] [PubMed]
-
(2010)
Nucleic Acids Res
, vol.38
, pp. W144-W149
-
-
Cvijovic, M.1
Olivares-Hernández, R.2
Agren, R.3
Dahr, N.4
Vongsangnak, W.5
Nookaew, I.6
Patil, K.R.7
Nielsen, J.8
-
181
-
-
0035140099
-
Network identification and flux quantification in the central metabolism of saccharomyces cerevisiae under different conditions of glucose repression
-
Gombert, A.K.; Moreira dos Santos, M.; Christensen, B.; Nielsen, J. Network identification and flux quantification in the central metabolism of saccharomyces cerevisiae under different conditions of glucose repression. J. Bacteriol. 2001, 183, 1441–1451. [CrossRef] [PubMed]
-
(2001)
J. Bacteriol.
, vol.183
, pp. 1441-1451
-
-
Gombert, A.K.1
Moreira Dos Santos, M.2
Christensen, B.3
Nielsen, J.4
-
182
-
-
84903650019
-
Openmebius: An open source software for isotopically nonstationary 13c-based metabolic flux analysis
-
Kajihata, S.; Furusawa, C.; Matsuda, F.; Shimizu, H. Openmebius: An open source software for isotopically nonstationary 13c-based metabolic flux analysis. BioMed Res. Int. 2014, 2014, 10. [CrossRef] [PubMed]
-
(2014)
Biomed Res. Int.
, vol.2014
, pp. 10
-
-
Kajihata, S.1
Furusawa, C.2
Matsuda, F.3
Shimizu, H.4
-
183
-
-
0004161838
-
-
Cambridge University Press: Cambridge, UK
-
Press, W.H.; Flannery, B.P.; Teukolsky, S.A.; Vetterling, W.T. Numerical Recipes in C: The Art of Scientific Computing; Cambridge University Press: Cambridge, UK, 1988; p. 735.
-
(1988)
Numerical Recipes in C: The Art of Scientific Computing
, pp. 735
-
-
Press, W.H.1
Flannery, B.P.2
Teukolsky, S.A.3
Vetterling, W.T.4
-
184
-
-
33847378479
-
Engineering of the pyruvate dehydrogenase bypass in saccharomyces cerevisiae for high-level production of isoprenoids
-
Shiba, Y.; Paradise, E.M.; Kirby, J.; Ro, D.-K.; Keasling, J.D. Engineering of the pyruvate dehydrogenase bypass in saccharomyces cerevisiae for high-level production of isoprenoids. Metab. Eng. 2007, 9, 160–168. [CrossRef] [PubMed]
-
(2007)
Metab. Eng.
, vol.9
, pp. 160-168
-
-
Shiba, Y.1
Paradise, E.M.2
Kirby, J.3
Ro, D.-K.4
Keasling, J.D.5
-
185
-
-
84860649085
-
Metabolic flux profiling of recombinant protein secreting pichia pastoris growing on glucose:Methanol mixtures
-
Jordà, J.; Jouhten, P.; Cámara, E.; Maaheimo, H.; Albiol, J.; Ferrer, P. Metabolic flux profiling of recombinant protein secreting pichia pastoris growing on glucose:Methanol mixtures. Microb. Cell Fact. 2012, 11, 57. [CrossRef] [PubMed]
-
(2012)
Microb. Cell Fact.
, vol.11
, pp. 57
-
-
Jordà, J.1
Jouhten, P.2
Cámara, E.3
Maaheimo, H.4
Albiol, J.5
Ferrer, P.6
-
186
-
-
64049099490
-
Different biochemical mechanisms ensure network-wide balancing of reducing equivalents in microbial metabolism
-
Fuhrer, T.; Sauer, U. Different biochemical mechanisms ensure network-wide balancing of reducing equivalents in microbial metabolism. J. Bacteriol. 2009, 191, 2112–2121. [CrossRef] [PubMed]
-
(2009)
J. Bacteriol.
, vol.191
, pp. 2112-2121
-
-
Fuhrer, T.1
Sauer, U.2
|