메뉴 건너뛰기




Volumn 3, Issue 1, 2016, Pages

13 C-metabolic flux analysis: An accurate approach to demystify microbial metabolism for biochemical production

Author keywords

Biofuels; Bottleneck; Cell metabolism; Cofactor imbalance; Isotope; Synthetic biology

Indexed keywords


EID: 85043369440     PISSN: None     EISSN: 23065354     Source Type: Journal    
DOI: 10.3390/bioengineering3010003     Document Type: Review
Times cited : (18)

References (186)
  • 1
    • 84936994389 scopus 로고    scopus 로고
    • Metabolic engineering of yeast to produce fatty acid-derived biofuels: Bottlenecks and solutions
    • Sheng, J.; Feng, X. Metabolic engineering of yeast to produce fatty acid-derived biofuels: Bottlenecks and solutions. Front. Microbiol. 2015, 6, 554. [CrossRef] [PubMed]
    • (2015) Front. Microbiol. , vol.6 , pp. 554
    • Sheng, J.1    Feng, X.2
  • 2
    • 84883001788 scopus 로고    scopus 로고
    • Production of bulk chemicals via novel metabolic pathways in microorganisms
    • Shin, J.H.; Kim, H.U.; Kim, D.I.; Lee, S.Y. Production of bulk chemicals via novel metabolic pathways in microorganisms. Biotechnol. Adv. 2013, 31, 925–935. [CrossRef] [PubMed]
    • (2013) Biotechnol. Adv. , vol.31 , pp. 925-935
    • Shin, J.H.1    Kim, H.U.2    Kim, D.I.3    Lee, S.Y.4
  • 3
    • 79952705331 scopus 로고    scopus 로고
    • Microbial production of bulk chemicals: Development of anaerobic processes
    • Weusthuis, R.A.; Lamot, I.; van der Oost, J.; Sanders, J.P.M. Microbial production of bulk chemicals: Development of anaerobic processes. Trends Biotechnol. 2011, 29, 153–158. [CrossRef] [PubMed]
    • (2011) Trends Biotechnol , vol.29 , pp. 153-158
    • Weusthuis, R.A.1    Lamot, I.2    van der Oost, J.3    Sanders, J.P.M.4
  • 4
    • 36248991352 scopus 로고    scopus 로고
    • Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change
    • Hermann, B.G.; Blok, K.; Patel, M.K. Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change. Environ. Sci. Technol. 2007, 41, 7915–7921. [CrossRef] [PubMed]
    • (2007) Environ. Sci. Technol. , vol.41 , pp. 7915-7921
    • Hermann, B.G.1    Blok, K.2    Patel, M.K.3
  • 5
    • 33846950348 scopus 로고    scopus 로고
    • Challenges in engineering microbes for biofuels production
    • Stephanopoulos, G. Challenges in engineering microbes for biofuels production. Science 2007, 315, 801–804. [CrossRef] [PubMed]
    • (2007) Science , vol.315 , pp. 801-804
    • Stephanopoulos, G.1
  • 6
    • 76649111044 scopus 로고    scopus 로고
    • Advanced biofuel production in microbes
    • Peralta-Yahya, P.P.; Keasling, J.D. Advanced biofuel production in microbes. Biotechnol. J. 2010, 5, 147–162. [CrossRef] [PubMed]
    • (2010) Biotechnol. J. , vol.5 , pp. 147-162
    • Peralta-Yahya, P.P.1    Keasling, J.D.2
  • 7
    • 84865142847 scopus 로고    scopus 로고
    • Microbial engineering for the production of advanced biofuels
    • Peralta-Yahya, P.P.; Zhang, F.; del Cardayre, S.B.; Keasling, J.D. Microbial engineering for the production of advanced biofuels. Nature 2012, 488, 320–328. [CrossRef] [PubMed]
    • (2012) Nature , vol.488 , pp. 320-328
    • Peralta-Yahya, P.P.1    Zhang, F.2    Del Cardayre, S.B.3    Keasling, J.D.4
  • 8
    • 57049098094 scopus 로고    scopus 로고
    • Metabolic engineering of microorganisms for biofuels production: From bugs to synthetic biology to fuels
    • Lee, S.K.; Chou, H.; Ham, T.S.; Lee, T.S.; Keasling, J.D. Metabolic engineering of microorganisms for biofuels production: From bugs to synthetic biology to fuels. Curr. Opin. Biotechnol. 2008, 19, 556–563. [CrossRef] [PubMed]
    • (2008) Curr. Opin. Biotechnol. , vol.19 , pp. 556-563
    • Lee, S.K.1    Chou, H.2    Ham, T.S.3    Lee, T.S.4    Keasling, J.D.5
  • 9
    • 57049185838 scopus 로고    scopus 로고
    • Metabolic engineering: Enabling technology for biofuels production
    • Stephanopoulos, G. Metabolic engineering: Enabling technology for biofuels production. Metab. Eng. 2008, 10, 293–294. [CrossRef] [PubMed]
    • (2008) Metab. Eng. , vol.10 , pp. 293-294
    • Stephanopoulos, G.1
  • 11
    • 58149190072 scopus 로고    scopus 로고
    • Metabolic engineering of microorganisms: General strategies and drug production
    • Lee, S.Y.; Kim, H.U.; Park, J.H.; Park, J.M.; Kim, T.Y. Metabolic engineering of microorganisms: General strategies and drug production. Drug Discov. Today 2009, 14, 78–88. [CrossRef] [PubMed]
    • (2009) Drug Discov. Today , vol.14 , pp. 78-88
    • Lee, S.Y.1    Kim, H.U.2    Park, J.H.3    Park, J.M.4    Kim, T.Y.5
  • 12
    • 0038391517 scopus 로고    scopus 로고
    • Engineering a mevalonate pathway in Escherichia coli for production of terpenoids
    • Martin, V.J.J.; Pitera, D.J.; Withers, S.T.; Newman, J.D.; Keasling, J.D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotech. 2003, 21, 796–802. [CrossRef] [PubMed]
    • (2003) Nat. Biotech. , vol.21 , pp. 796-802
    • Martin, V.J.J.1    Pitera, D.J.2    Withers, S.T.3    Newman, J.D.4    Keasling, J.D.5
  • 13
    • 33751120932 scopus 로고    scopus 로고
    • Production of isoprenoid pharmaceuticals by engineered microbes
    • Chang, M.C.Y.; Keasling, J.D. Production of isoprenoid pharmaceuticals by engineered microbes. Nat. Chem. Biol. 2006, 2, 674–681. [CrossRef] [PubMed]
    • (2006) Nat. Chem. Biol. , vol.2 , pp. 674-681
    • Chang, M.C.Y.1    Keasling, J.D.2
  • 14
    • 62449089680 scopus 로고    scopus 로고
    • Microbial drug discovery: 80 Years of progress
    • Demain, A.L.; Sanchez, S. Microbial drug discovery: 80 Years of progress. J. Antibiot. 2009, 62, 5–16. [CrossRef] [PubMed]
    • (2009) J. Antibiot. , vol.62 , pp. 5-16
    • Demain, A.L.1    Sanchez, S.2
  • 16
    • 78649716727 scopus 로고    scopus 로고
    • Manufacturing molecules through metabolic engineering
    • Keasling, J.D. Manufacturing molecules through metabolic engineering. Science 2010, 330, 1355–1358. [CrossRef] [PubMed]
    • (2010) Science , vol.330 , pp. 1355-1358
    • Keasling, J.D.1
  • 19
    • 84863303532 scopus 로고    scopus 로고
    • Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements
    • Huang, C., Jr.; Lin, H.; Yang, X. Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J. Ind. Microbiol. Biotechnol. 2012, 39, 383–399. [CrossRef] [PubMed]
    • (2012) J. Ind. Microbiol. Biotechnol. , vol.39 , pp. 383-399
    • Huang, C.1    Lin, H.2    Yang, X.3
  • 20
    • 22844452835 scopus 로고    scopus 로고
    • Construction of lycopene-overproducing E. Coli strains by combining systematic and combinatorial gene knockout targets
    • Alper, H.; Miyaoku, K.; Stephanopoulos, G. Construction of lycopene-overproducing E. Coli strains by combining systematic and combinatorial gene knockout targets. Nat. Biotech. 2005, 23, 612–616. [CrossRef] [PubMed]
    • (2005) Nat. Biotech. , vol.23 , pp. 612-616
    • Alper, H.1    Miyaoku, K.2    Stephanopoulos, G.3
  • 21
    • 0034024497 scopus 로고    scopus 로고
    • Improving lycopene production in Escherichia coli by engineering metabolic control
    • Farmer, W.R.; Liao, J.C. Improving lycopene production in Escherichia coli by engineering metabolic control. Nat. Biotech. 2000, 18, 533–537.
    • (2000) Nat. Biotech. , vol.18 , pp. 533-537
    • Farmer, W.R.1    Liao, J.C.2
  • 22
    • 77249149861 scopus 로고    scopus 로고
    • Biofuel production in Escherichia coli: The role of metabolic engineering and synthetic biology
    • Clomburg, J.; Gonzalez, R. Biofuel production in Escherichia coli: The role of metabolic engineering and synthetic biology. Appl. Microbiol. Biotechnol. 2010, 86, 419–434. [CrossRef] [PubMed]
    • (2010) Appl. Microbiol. Biotechnol. , vol.86 , pp. 419-434
    • Clomburg, J.1    Gonzalez, R.2
  • 23
    • 79952262678 scopus 로고    scopus 로고
    • Whole-genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae
    • Borneman, A.R.; Desany, B.A.; Riches, D.; Affourtit, J.P.; Forgan, A.H.; Pretorius, I.S.; Egholm, M.; Chambers, P.J. Whole-genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae. PLoS Genet. 2011, 7, e1001287. [CrossRef] [PubMed]
    • (2011) Plos Genet , vol.7
    • Borneman, A.R.1    Desany, B.A.2    Riches, D.3    Affourtit, J.P.4    Forgan, A.H.5    Pretorius, I.S.6    Egholm, M.7    Chambers, P.J.8
  • 24
    • 0034053842 scopus 로고    scopus 로고
    • Metabolic engineering of saccharomyces cerevisiae
    • Ostergaard, S.; Olsson, L.; Nielsen, J. Metabolic engineering of saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 2000, 64, 34–50. [CrossRef] [PubMed]
    • (2000) Microbiol. Mol. Biol. Rev. , vol.64 , pp. 34-50
    • Ostergaard, S.1    Olsson, L.2    Nielsen, J.3
  • 26
    • 38349164135 scopus 로고    scopus 로고
    • Impact of Systems Biology on Metabolic Engineering of Saccharomyces cerevisiae
    • Nielsen, J.; Jewett, M.C. Impact of Systems Biology on Metabolic Engineering of Saccharomyces cerevisiae. FEMS Yeast Res. 2008, 8, 122–131. [CrossRef] [PubMed]
    • (2008) FEMS Yeast Res , vol.8 , pp. 122-131
    • Nielsen, J.1    Jewett, M.C.2
  • 27
    • 84865060983 scopus 로고    scopus 로고
    • New challenges and opportunities for industrial biotechnology
    • Chen, G.-Q. New challenges and opportunities for industrial biotechnology. Microb. Cell Fact. 2012, 11, 111. [CrossRef] [PubMed]
    • (2012) Microb. Cell Fact. , vol.11 , pp. 111
    • Chen, G.-Q.1
  • 28
    • 75149167486 scopus 로고    scopus 로고
    • Five hard truths for synthetic biology
    • Kwok, R. Five hard truths for synthetic biology. Nature 2010, 463, 288. [CrossRef] [PubMed]
    • (2010) Nature , vol.463 , pp. 288
    • Kwok, R.1
  • 29
    • 84922448166 scopus 로고    scopus 로고
    • Methods and advances in metabolic flux analysis: A mini-review
    • Antoniewicz, M. Methods and advances in metabolic flux analysis: A mini-review. J. Ind. Microbiol. Biotechnol. 2015, 42, 317–325. [CrossRef] [PubMed]
    • (2015) J. Ind. Microbiol. Biotechnol. , vol.42 , pp. 317-325
    • Antoniewicz, M.1
  • 30
    • 84910058077 scopus 로고    scopus 로고
    • 13c metabolic flux analysis of recombinant expression hosts
    • Young, J.D. 13c metabolic flux analysis of recombinant expression hosts. Curr. Opin. Biotechnol. 2014, 30, 238–245. [CrossRef] [PubMed]
    • (2014) Curr. Opin. Biotechnol. , vol.30 , pp. 238-245
    • Young, J.D.1
  • 31
    • 84887626598 scopus 로고    scopus 로고
    • Cofactor engineering for advancing chemical biotechnology
    • Wang, Y.; San, K.-Y.; Bennett, G.N. Cofactor engineering for advancing chemical biotechnology. Curr. Opin. Biotechnol. 2013, 24, 994–999. [CrossRef] [PubMed]
    • (2013) Curr. Opin. Biotechnol , vol.24 , pp. 994-999
    • Wang, Y.1    San, K.-Y.2    Bennett, G.N.3
  • 32
    • 84929314719 scopus 로고    scopus 로고
    • The oxidative pentose phosphate pathway is the primary source of nadph for lipid overproduction from glucose in Yarrowia lipolytica
    • Wasylenko, T.M.; Ahn, W.S.; Stephanopoulos, G. The oxidative pentose phosphate pathway is the primary source of nadph for lipid overproduction from glucose in Yarrowia lipolytica. Metab. Eng. 2015, 30, 27–39. [CrossRef] [PubMed]
    • (2015) Metab. Eng. , vol.30 , pp. 27-39
    • Wasylenko, T.M.1    Ahn, W.S.2    Stephanopoulos, G.3
  • 33
    • 84947967425 scopus 로고    scopus 로고
    • Rapid metabolic analysis of rhodococcus opacus pd630 via parallel 13c-metabolite fingerprinting
    • Hollinshead, W.D.; Henson, W.R.; Abernathy, M.; Moon, T.S.; Tang, Y.J. Rapid metabolic analysis of rhodococcus opacus pd630 via parallel 13c-metabolite fingerprinting. Biotechnol. Bioeng. 2015, 113, 91–100. [CrossRef] [PubMed]
    • (2015) Biotechnol. Bioeng. , vol.113 , pp. 91-100
    • Hollinshead, W.D.1    Henson, W.R.2    Abernathy, M.3    Moon, T.S.4    Tang, Y.J.5
  • 34
    • 84940111166 scopus 로고    scopus 로고
    • 13c-metabolic flux analysis in s-adenosyl-l-methionine production by saccharomyces cerevisiae
    • Hayakawa, K.; Kajihata, S.; Matsuda, F.; Shimizu, H. 13c-metabolic flux analysis in s-adenosyl-l-methionine production by saccharomyces cerevisiae. J. Biosci. Bioeng. 2015. [CrossRef] [PubMed]
    • (2015) J. Biosci. Bioeng.
    • Hayakawa, K.1    Kajihata, S.2    Matsuda, F.3    Shimizu, H.4
  • 35
    • 84887769375 scopus 로고    scopus 로고
    • Investigating xylose metabolism in recombinant saccharomyces cerevisiae via 13c metabolic flux analysis
    • Feng, X.; Zhao, H. Investigating xylose metabolism in recombinant saccharomyces cerevisiae via 13c metabolic flux analysis. Microb. Cell Fact. 2013, 12, 114. [CrossRef] [PubMed]
    • (2013) Microb. Cell Fact. , vol.12 , pp. 114
    • Feng, X.1    Zhao, H.2
  • 36
    • 84907518524 scopus 로고    scopus 로고
    • Engineering alcohol tolerance in yeast
    • Lam, F.H.; Ghaderi, A.; Fink, G.R.; Stephanopoulos, G. Engineering alcohol tolerance in yeast. Science 2014, 346, 71–75. [CrossRef] [PubMed]
    • (2014) Science , vol.346 , pp. 71-75
    • Lam, F.H.1    Ghaderi, A.2    Fink, G.R.3    Stephanopoulos, G.4
  • 37
    • 84939969557 scopus 로고    scopus 로고
    • Metabolic flux analysis of Escherichia coli mg1655 under octanoic acid (C8) stress
    • Fu, Y.; Yoon, J.; Jarboe, L.; Shanks, J. Metabolic flux analysis of Escherichia coli mg1655 under octanoic acid (c8) stress. Appl. Microbiol. Biotechnol. 2015, 99, 4397–4408. [CrossRef] [PubMed]
    • (2015) Appl. Microbiol. Biotechnol. , vol.99 , pp. 4397-4408
    • Fu, Y.1    Yoon, J.2    Jarboe, L.3    Shanks, J.4
  • 38
    • 73249132552 scopus 로고    scopus 로고
    • Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on nadph-dependent reduction by at least two oxireductases
    • Heer, D.; Heine, D.; Sauer, U. Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on nadph-dependent reduction by at least two oxireductases. Appl. Environ. Microbiol. 2009, 75, 7631–7638. [CrossRef] [PubMed]
    • (2009) Appl. Environ. Microbiol. , vol.75 , pp. 7631-7638
    • Heer, D.1    Heine, D.2    Sauer, U.3
  • 39
    • 15044340553 scopus 로고    scopus 로고
    • Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae
    • Çakar, Z.P.; Seker, U.O.S.; Tamerler, C.; Sonderegger, M.; Sauer, U. Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae. FEMS Yeast Res. 2005, 5, 569–578. [CrossRef] [PubMed]
    • (2005) FEMS Yeast Res. , vol.5 , pp. 569-578
    • Çakar, Z.P.1    Seker, U.O.S.2    Tamerler, C.3    Sonderegger, M.4    Sauer, U.5
  • 40
    • 0033586461 scopus 로고    scopus 로고
    • Mass spectrometry for metabolic flux analysis
    • Wittmann, C.; Heinzle, E. Mass spectrometry for metabolic flux analysis. Biotechnol. Bioeng. 1999, 62, 739–750. [CrossRef]
    • (1999) Biotechnol. Bioeng. , vol.62 , pp. 739-750
    • Wittmann, C.1    Heinzle, E.2
  • 41
    • 0034741983 scopus 로고    scopus 로고
    • 13c metabolic flux analysis
    • Wiechert, W. 13c metabolic flux analysis. Metab. Eng. 2001, 3, 195–206. [CrossRef] [PubMed]
    • (2001) Metab. Eng. , vol.3 , pp. 195-206
    • Wiechert, W.1
  • 42
    • 0034233268 scopus 로고    scopus 로고
    • Gc-ms analysis of amino acids rapidly provides rich information for isotopomer balancing
    • Dauner, M.; Sauer, U. Gc-ms analysis of amino acids rapidly provides rich information for isotopomer balancing. Biotechnol. Prog. 2000, 16, 642–649. [CrossRef] [PubMed]
    • (2000) Biotechnol. Prog. , vol.16 , pp. 642-649
    • Dauner, M.1    Sauer, U.2
  • 43
    • 0001790385 scopus 로고    scopus 로고
    • 13 c labelling and nmr spectroscopy in metabolic flux analysis
    • Barbotin, J.N., Portais, J.C., Eds.; Horizon Scientific Press: Norwich, UK, Chapter 4
    • 13 c labelling and nmr spectroscopy in metabolic flux analysis. In Nmr in Biotechnology: Theory and Applications; Barbotin, J.N., Portais, J.C., Eds.; Horizon Scientific Press: Norwich, UK, 2000; Chapter 4.
    • (2000) Nmr in Biotechnology: Theory and Applications
    • de Graaf, A.A.1
  • 44
    • 0033205580 scopus 로고    scopus 로고
    • Isotopomer analysis using gc-ms
    • Christensen, B.; Nielsen, J. Isotopomer analysis using gc-ms. Metab. Eng. 1999, 1, 282–290. [CrossRef] [PubMed]
    • (1999) Metab. Eng. , vol.1 , pp. 282-290
    • Christensen, B.1    Nielsen, J.2
  • 45
    • 0031594984 scopus 로고    scopus 로고
    • 13c-nmr, ms and metabolic flux balancing in biotechnology research
    • SZYPERSKI, T. 13c-nmr, ms and metabolic flux balancing in biotechnology research. Q. Rev. Biophys. 1998, 31, 41–106. [CrossRef] [PubMed]
    • (1998) Q. Rev. Biophys. , vol.31 , pp. 41-106
    • Szyperski, T.1
  • 46
    • 84866467932 scopus 로고    scopus 로고
    • Metabolic pathway determination and flux analysis in nonmodel microorganisms through 13c-isotope labeling
    • Navid, A., Ed.; Humana Press: New York, NY, USA
    • Feng, X.; Zhuang, W.-Q.; Colletti, P.; Tang, Y. Metabolic pathway determination and flux analysis in nonmodel microorganisms through 13c-isotope labeling. In Microbial Systems Biology; Navid, A., Ed.; Humana Press: New York, NY, USA, 2012; Volume 881, pp. 309–330.
    • (2012) Microbial Systems Biology , vol.881 , pp. 309-330
    • Feng, X.1    Zhuang, W.-Q.2    Colletti, P.3    Tang, Y.4
  • 47
    • 84857010419 scopus 로고    scopus 로고
    • Metabolic pathway confirmation and discovery through (13)c-labeling of proteinogenic amino acids
    • e3583. [CrossRef] [PubMed
    • You, L.; Page, L.; Feng, X.; Berla, B.; Pakrasi, H.B.; Tang, Y.J. Metabolic pathway confirmation and discovery through (13)c-labeling of proteinogenic amino acids. J. Vis. Exp. 2012, 59, e3583. [CrossRef] [PubMed]
    • (2012) J. Vis. Exp. , vol.59
    • You, L.1    Page, L.2    Feng, X.3    Berla, B.4    Pakrasi, H.B.5    Tang, Y.J.6
  • 48
    • 33846061120 scopus 로고    scopus 로고
    • Metabolic Networks in Motion: 13c-Based Flux Analysis
    • Sauer, U. Metabolic Networks in Motion: 13c-Based Flux Analysis. Mol. Syst. Biol. 2006, 2, 62–72. [CrossRef] [PubMed]
    • (2006) Mol. Syst. Biol. , vol.2 , pp. 62-72
    • Sauer, U.1
  • 50
    • 84901808659 scopus 로고    scopus 로고
    • Design and construction of acetyl-coa overproducing saccharomyces cerevisiae strains
    • Lian, J.; Si, T.; Nair, N.U.; Zhao, H. Design and construction of acetyl-coa overproducing saccharomyces cerevisiae strains. Metab. Eng. 2014, 24, 139–149. [CrossRef] [PubMed]
    • (2014) Metab. Eng. , vol.24 , pp. 139-149
    • Lian, J.1    Si, T.2    Nair, N.U.3    Zhao, H.4
  • 51
    • 84864580802 scopus 로고    scopus 로고
    • Physiological characterization of recombinant saccharomyces cerevisiae expressing the aspergillus nidulans phosphoketolase pathway: Validation of activity through 13c-based metabolic flux analysis
    • Papini, M.; Nookaew, I.; Siewers, V.; Nielsen, J. Physiological characterization of recombinant saccharomyces cerevisiae expressing the aspergillus nidulans phosphoketolase pathway: Validation of activity through 13c-based metabolic flux analysis. Appl. Microbiol. Biotechnol. 2012, 95, 1001–1010. [CrossRef] [PubMed]
    • (2012) Appl. Microbiol. Biotechnol. , vol.95 , pp. 1001-1010
    • Papini, M.1    Nookaew, I.2    Siewers, V.3    Nielsen, J.4
  • 52
    • 84892831820 scopus 로고    scopus 로고
    • Improvement of nadph bioavailability in Escherichia coli by replacing nad+-dependent glyceraldehyde-3-phosphate dehydrogenase gapa with nadp+-dependent gapb from bacillus subtilis and addition of nad kinase
    • Wang, Y.; San, K.-Y.; Bennett, G. Improvement of nadph bioavailability in Escherichia coli by replacing nad+-dependent glyceraldehyde-3-phosphate dehydrogenase gapa with nadp+-dependent gapb from bacillus subtilis and addition of nad kinase. J. Ind. Microbiol. Biotechnol. 2013, 40, 1449–1460. [CrossRef] [PubMed]
    • (2013) J. Ind. Microbiol. Biotechnol. , vol.40 , pp. 1449-1460
    • Wang, Y.1    San, K.-Y.2    Bennett, G.3
  • 53
    • 80052802581 scopus 로고    scopus 로고
    • Comparative 13c metabolic flux analysis of pyruvate dehydrogenase complex-deficient, l-valine-producing corynebacterium glutamicum
    • Bartek, T.; Blombach, B.; Lang, S.; Eikmanns, B.J.; Wiechert, W.; Oldiges, M.; Nöh, K.; Noack, S. Comparative 13c metabolic flux analysis of pyruvate dehydrogenase complex-deficient, l-valine-producing corynebacterium glutamicum. Appl. Environ. Microbiol. 2011, 77, 6644–6652. [CrossRef] [PubMed]
    • (2011) Appl. Environ. Microbiol. , vol.77 , pp. 6644-6652
    • Bartek, T.1    Blombach, B.2    Lang, S.3    Eikmanns, B.J.4    Wiechert, W.5    Oldiges, M.6    Nöh, K.7    Noack, S.8
  • 54
    • 62949084480 scopus 로고    scopus 로고
    • Impact of overexpressing nadh kinase on glucose and xylose metabolism in recombinant xylose-utilizing saccharomyces cerevisiae
    • Hou, J.; Vemuri, G.; Bao, X.; Olsson, L. Impact of overexpressing nadh kinase on glucose and xylose metabolism in recombinant xylose-utilizing saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2009, 82, 909–919. [PubMed]
    • (2009) Appl. Microbiol. Biotechnol. , vol.82 , pp. 909-919
    • Hou, J.1    Vemuri, G.2    Bao, X.3    Olsson, L.4
  • 55
    • 0036663710 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli: Increase of nadh availability by overexpressing an nad+-dependent formate dehydrogenase
    • Berríos-Rivera, S.J.; Bennett, G.N.; San, K.-Y. Metabolic engineering of Escherichia coli: Increase of nadh availability by overexpressing an nad+-dependent formate dehydrogenase. Metab. Eng. 2002, 4, 217–229.
    • (2002) Metab. Eng. , vol.4 , pp. 217-229
    • Berríos-Rivera, S.J.1    Bennett, G.N.2    San, K.-Y.3
  • 56
    • 84892799105 scopus 로고    scopus 로고
    • Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13c-metabolic flux analysis
    • He, L.; Xiao, Y.; Gebreselassie, N.; Zhang, F.; Antoniewicz, M.R.; Tang, Y.J.; Peng, L. Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13c-metabolic flux analysis. Biotechnol. Bioeng. 2014, 111, 575–585. [CrossRef] [PubMed]
    • (2014) Biotechnol. Bioeng. , vol.111 , pp. 575-585
    • He, L.1    Xiao, Y.2    Gebreselassie, N.3    Zhang, F.4    Antoniewicz, M.R.5    Tang, Y.J.6    Peng, L.7
  • 57
  • 58
  • 59
    • 33947431021 scopus 로고    scopus 로고
    • Analysis of amino acid isotopomers using ft-icr ms
    • Pingitore, F.; Tang, Y.; Kruppa, G.H.; Keasling, J.D. Analysis of amino acid isotopomers using ft-icr ms. Anal. Chem. 2007, 79, 2483–2490. [CrossRef] [PubMed]
    • (2007) Anal. Chem. , vol.79 , pp. 2483-2490
    • Pingitore, F.1    Tang, Y.2    Kruppa, G.H.3    Keasling, J.D.4
  • 60
    • 84928964332 scopus 로고    scopus 로고
    • 13c pathway analysis of biofilm metabolism of shewanella oneidensis mr-1
    • Guo, W.; Luo, S.; He, Z.; Feng, X. 13c pathway analysis of biofilm metabolism of shewanella oneidensis mr-1. RSC Adv. 2015, 5, 39840–39843. [CrossRef]
    • (2015) RSC Adv , vol.5 , pp. 39840-39843
    • Guo, W.1    Luo, S.2    He, Z.3    Feng, X.4
  • 61
    • 33845675054 scopus 로고    scopus 로고
    • Determination of metabolic flux changes during fed-batch cultivation from measurements of intracellular amino acids by lc-ms/ms
    • Iwatani, S.; Van Dien, S.; Shimbo, K.; Kubota, K.; Kageyama, N.; Iwahata, D.; Miyano, H.; Hirayama, K.; Usuda, Y.; Shimizu, K.; et al. Determination of metabolic flux changes during fed-batch cultivation from measurements of intracellular amino acids by lc-ms/ms. J. Biotechnol. 2007, 128, 93–111. [CrossRef] [PubMed]
    • (2007) J. Biotechnol. , vol.128 , pp. 93-111
    • Iwatani, S.1    van Dien, S.2    Shimbo, K.3    Kubota, K.4    Kageyama, N.5    Iwahata, D.6    Miyano, H.7    Hirayama, K.8    Usuda, Y.9    Shimizu, K.10
  • 62
    • 84860498026 scopus 로고    scopus 로고
    • Isocor: Correcting ms data in isotope labeling experiments
    • Millard, P.; Letisse, F.; Sokol, S.; Portais, J.-C. Isocor: Correcting ms data in isotope labeling experiments. Bioinformatics 2012, 28, 1294–1296. [CrossRef] [PubMed]
    • (2012) Bioinformatics , vol.28 , pp. 1294-1296
    • Millard, P.1    Letisse, F.2    Sokol, S.3    Portais, J.-C.4
  • 63
    • 0842343470 scopus 로고    scopus 로고
    • New tools for mass isotopomer data evaluation in 13c flux analysis: Mass isotope correction, data consistency checking, and precursor relationships
    • Wahl, S.A.; Dauner, M.; Wiechert, W. New tools for mass isotopomer data evaluation in 13c flux analysis: Mass isotope correction, data consistency checking, and precursor relationships. Biotechnol. Bioeng. 2004, 85, 259–268. [CrossRef] [PubMed]
    • (2004) Biotechnol. Bioeng. , vol.85 , pp. 259-268
    • Wahl, S.A.1    Dauner, M.2    Wiechert, W.3
  • 64
    • 84941279254 scopus 로고    scopus 로고
    • Cecafdb: A curated database for the documentation, visualization and comparative analysis of central carbon metabolic flux distributions explored by 13c-fluxomics
    • Zhang, Z.; Shen, T.; Rui, B.; Zhou, W.; Zhou, X.; Shang, C.; Xin, C.; Liu, X.; Li, G.; Jiang, J.; et al. Cecafdb: A curated database for the documentation, visualization and comparative analysis of central carbon metabolic flux distributions explored by 13c-fluxomics. Nucleic Acids Res. 2014. [CrossRef] [PubMed]
    • (2014) Nucleic Acids Res
    • Zhang, Z.1    Shen, T.2    Rui, B.3    Zhou, W.4    Zhou, X.5    Shang, C.6    Xin, C.7    Liu, X.8    Li, G.9
  • 66
    • 84871768724 scopus 로고    scopus 로고
    • 13cflux2—high-performance software suite for 13c-metabolic flux analysis
    • Weitzel, M.; Nöh, K.; Dalman, T.; Niedenführ, S.; Stute, B.; Wiechert, W. 13cflux2—high-performance software suite for 13c-metabolic flux analysis. Bioinformatics 2013, 29, 143–145. [CrossRef] [PubMed]
    • (2013) Bioinformatics , vol.29 , pp. 143-145
    • Weitzel, M.1    Nöh, K.2    Dalman, T.3    Niedenführ, S.4    Stute, B.5    Wiechert, W.6
  • 67
    • 33845679072 scopus 로고    scopus 로고
    • Elementary metabolite units (Emu): A novel framework for modeling isotopic distributions
    • Antoniewicz, M.R.; Kelleher, J.K.; Stephanopoulos, G. Elementary metabolite units (emu): A novel framework for modeling isotopic distributions. Metab. Eng. 2007, 9, 68–86. [CrossRef] [PubMed]
    • (2007) Metab. Eng. , vol.9 , pp. 68-86
    • Antoniewicz, M.R.1    Kelleher, J.K.2    Stephanopoulos, G.3
  • 68
    • 84899511589 scopus 로고    scopus 로고
    • Inca: A computational platform for isotopically non-stationary metabolic flux analysis
    • Young, J.D. Inca: A computational platform for isotopically non-stationary metabolic flux analysis. Bioinformatics 2014, 30, 1333–1335. [CrossRef] [PubMed]
    • (2014) Bioinformatics , vol.30 , pp. 1333-1335
    • Young, J.D.1
  • 69
    • 25444489844 scopus 로고    scopus 로고
    • Fiatflux—A software for metabolic flux analysis from (13)c-glucose experiments
    • Zamboni, N.; Fischer, E.; Sauer, U. Fiatflux—A software for metabolic flux analysis from (13)c-glucose experiments. BMC Bioinf. 2005, 6, 209. [CrossRef] [PubMed]
    • (2005) BMC Bioinf. , vol.6 , pp. 209
    • Zamboni, N.1    Fischer, E.2    Sauer, U.3
  • 71
    • 38449111120 scopus 로고    scopus 로고
    • An elementary metabolite unit (Emu) based method of isotopically nonstationary flux analysis
    • Young, J.D.; Walther, J.L.; Antoniewicz, M.R.; Yoo, H.; Stephanopoulos, G. An elementary metabolite unit (emu) based method of isotopically nonstationary flux analysis. Biotechnol. Bioeng. 2008, 99, 686–699. [CrossRef] [PubMed]
    • (2008) Biotechnol. Bioeng. , vol.99 , pp. 686-699
    • Young, J.D.1    Walther, J.L.2    Antoniewicz, M.R.3    Yoo, H.4    Stephanopoulos, G.5
  • 72
    • 33845262706 scopus 로고    scopus 로고
    • Engineering life through synthetic biology
    • Chopra, P.; Kamma, A. Engineering life through synthetic biology. Silico Biol. 2006, 6, 401–410.
    • (2006) Silico Biol , vol.6 , pp. 401-410
    • Chopra, P.1    Kamma, A.2
  • 73
    • 84864186953 scopus 로고    scopus 로고
    • Metabolic engineering of saccharomyces cerevisiae: A key cell factory platform for future biorefineries
    • Hong, K.-K.; Nielsen, J. Metabolic engineering of saccharomyces cerevisiae: A key cell factory platform for future biorefineries. Cell. Mol. Life Sci. 2012, 69, 2671–2690. [CrossRef] [PubMed]
    • (2012) Cell. Mol. Life Sci. , vol.69 , pp. 2671-2690
    • Hong, K.-K.1    Nielsen, J.2
  • 74
    • 38349164135 scopus 로고    scopus 로고
    • Impact of systems biology on metabolic engineering of saccharomyces cerevisiae
    • Nielsen, J.; Jewett, M.C. Impact of systems biology on metabolic engineering of saccharomyces cerevisiae. FEMS Yeast Res. 2008, 8, 122–131. [CrossRef] [PubMed]
    • (2008) FEMS Yeast Res , vol.8 , pp. 122-131
    • Nielsen, J.1    Jewett, M.C.2
  • 75
    • 33644832381 scopus 로고    scopus 로고
    • In silico aided metabolic engineering of saccharomyces cerevisiae for improved bioethanol production
    • Bro, C.; Regenberg, B.; Förster, J.; Nielsen, J. In silico aided metabolic engineering of saccharomyces cerevisiae for improved bioethanol production. Metab. Eng. 2006, 8, 102–111. [CrossRef] [PubMed]
    • (2006) Metab. Eng. , vol.8 , pp. 102-111
    • Bro, C.1    Regenberg, B.2    Förster, J.3    Nielsen, J.4
  • 77
    • 84909594452 scopus 로고    scopus 로고
    • Metabolic engineering of saccharomyces cerevisiae to improve 1-hexadecanol production
    • Feng, X.; Lian, J.; Zhao, H. Metabolic engineering of saccharomyces cerevisiae to improve 1-hexadecanol production. Metab. Eng. 2015, 27, 10–19. [CrossRef] [PubMed]
    • (2015) Metab. Eng. , vol.27 , pp. 10-19
    • Feng, X.1    Lian, J.2    Zhao, H.3
  • 78
    • 84891829362 scopus 로고    scopus 로고
    • Metabolic engineering of saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals
    • Runguphan, W.; Keasling, J.D. Metabolic engineering of saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab. Eng. 2014, 21, 103–113. [CrossRef] [PubMed]
    • (2014) Metab. Eng. , vol.21 , pp. 103-113
    • Runguphan, W.1    Keasling, J.D.2
  • 81
    • 85007940083 scopus 로고
    • Metabolic engineering for production of β-carotene and lycopene in saccharomyces cerevisiae
    • Yamano, S.; Ishii, T.; Nakagawa, M.; Ikenaga, H.; Misawa, N. Metabolic engineering for production of β-carotene and lycopene in saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 1994, 58, 1112–1114. [CrossRef] [PubMed]
    • (1994) Biosci. Biotechnol. Biochem. , vol.58 , pp. 1112-1114
    • Yamano, S.1    Ishii, T.2    Nakagawa, M.3    Ikenaga, H.4    Misawa, N.5
  • 82
    • 84875265625 scopus 로고    scopus 로고
    • Metabolic engineering of muconic acid production in saccharomyces cerevisiae
    • Curran, K.A.; Leavitt, J.M.; Karim, A.S.; Alper, H.S. Metabolic engineering of muconic acid production in saccharomyces cerevisiae. Metab. Eng. 2013, 15, 55–66. [CrossRef] [PubMed]
    • (2013) Metab. Eng. , vol.15 , pp. 55-66
    • Curran, K.A.1    Leavitt, J.M.2    Karim, A.S.3    Alper, H.S.4
  • 83
    • 20444422841 scopus 로고    scopus 로고
    • Metabolic engineering of the phenylpropanoid pathway in saccharomyces cerevisiae
    • Jiang, H.; Wood, K.V.; Morgan, J.A. Metabolic engineering of the phenylpropanoid pathway in saccharomyces cerevisiae. Appl. Environ. Microbiol. 2005, 71, 2962–2969. [CrossRef] [PubMed]
    • (2005) Appl. Environ. Microbiol. , vol.71 , pp. 2962-2969
    • Jiang, H.1    Wood, K.V.2    Morgan, J.A.3
  • 84
    • 27744491124 scopus 로고    scopus 로고
    • Characterization of the metabolic shift between oxidative and fermentative growth in saccharomyces cerevisiae by comparative 13c flux analysis
    • Frick, O.; Wittmann, C. Characterization of the metabolic shift between oxidative and fermentative growth in saccharomyces cerevisiae by comparative 13c flux analysis. Microb. Cell Fact. 2005, 4, 30. [CrossRef] [PubMed]
    • (2005) Microb. Cell Fact. , vol.4 , pp. 30
    • Frick, O.1    Wittmann, C.2
  • 85
    • 84864858864 scopus 로고    scopus 로고
    • Atp-citrate lyase: A key player in cancer metabolism
    • Zaidi, N.; Swinnen, J.V.; Smans, K. Atp-citrate lyase: A key player in cancer metabolism. Cancer Res. 2012, 72, 3709–3714. [CrossRef] [PubMed]
    • (2012) Cancer Res , vol.72 , pp. 3709-3714
    • Zaidi, N.1    Swinnen, J.V.2    Smans, K.3
  • 86
    • 0035048559 scopus 로고    scopus 로고
    • Characterization of the d-xylulose 5-phosphate/d-fructose 6-phosphate phosphoketolase gene (Xfp) from bifidobacterium lactis
    • Meile, L.; Rohr, L.M.; Geissmann, T.A.; Herensperger, M.; Teuber, M. Characterization of the d-xylulose 5-phosphate/d-fructose 6-phosphate phosphoketolase gene (xfp) from bifidobacterium lactis. J. Bacteriol. 2001, 183, 2929–2936. [CrossRef] [PubMed]
    • (2001) J. Bacteriol. , vol.183 , pp. 2929-2936
    • Meile, L.1    Rohr, L.M.2    Geissmann, T.A.3    Herensperger, M.4    Teuber, M.5
  • 87
    • 57349128941 scopus 로고    scopus 로고
    • Systems analysis unfolds the relationship between the phosphoketolase pathway and growth in Aspergillus nidulans
    • Panagiotou, G.; Andersen, M.R.; Grotkjaer, T.; Regueira, T.B.; Hofmann, G.; Nielsen, J.; Olsson, L. Systems analysis unfolds the relationship between the phosphoketolase pathway and growth in Aspergillus nidulans. PLoS ONE 2008, 3, e3847. [CrossRef] [PubMed]
    • (2008) Plos ONE , vol.3
    • Panagiotou, G.1    Andersen, M.R.2    Grotkjaer, T.3    Regueira, T.B.4    Hofmann, G.5    Nielsen, J.6    Olsson, L.7
  • 88
    • 84899154669 scopus 로고    scopus 로고
    • Improved production of fatty acid ethyl esters in saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway
    • de Jong, B.W.; Shi, S.; Siewers, V.; Nielsen, J. Improved production of fatty acid ethyl esters in saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway. Microb. Cell Fact. 2014, 13, 39. [CrossRef] [PubMed]
    • (2014) Microb. Cell Fact. , vol.13 , pp. 39
    • de Jong, B.W.1    Shi, S.2    Siewers, V.3    Nielsen, J.4
  • 89
    • 0036208491 scopus 로고    scopus 로고
    • Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing saccharomyces cerevisiae strains improves the ethanol yield from xylose
    • Jeppsson, M.; Johansson, B.; Hahn-Hägerdal, B.; Gorwa-Grauslund, M.F. Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl. Environ. Microbiol. 2002, 68, 1604–1609. [CrossRef] [PubMed]
    • (2002) Appl. Environ. Microbiol. , vol.68 , pp. 1604-1609
    • Jeppsson, M.1    Johansson, B.2    Hahn-Hägerdal, B.3    Gorwa-Grauslund, M.F.4
  • 90
    • 34948882785 scopus 로고    scopus 로고
    • Ethanol production from xylose by recombinant saccharomyces cerevisiae expressing protein-engineered nadh-preferring xylose reductase from pichia stipitis
    • Watanabe, S.; Abu Saleh, A.; Pack, S.P.; Annaluru, N.; Kodaki, T.; Makino, K. Ethanol production from xylose by recombinant saccharomyces cerevisiae expressing protein-engineered nadh-preferring xylose reductase from pichia stipitis. Microbiology 2007, 153, 3044–3054. [CrossRef] [PubMed]
    • (2007) Microbiology , vol.153 , pp. 3044-3054
    • Watanabe, S.1    Abu Saleh, A.2    Pack, S.P.3    Annaluru, N.4    Kodaki, T.5    Makino, K.6
  • 91
    • 33644879465 scopus 로고    scopus 로고
    • The expression of a pichia stipitis xylose reductase mutant with higher km for nadph increases ethanol production from xylose in recombinant saccharomyces cerevisiae
    • Jeppsson, M.; Bengtsson, O.; Franke, K.; Lee, H.; Hahn-Hägerdal, B.; Gorwa-Grauslund, M.F. The expression of a pichia stipitis xylose reductase mutant with higher km for nadph increases ethanol production from xylose in recombinant saccharomyces cerevisiae. Biotechnol. Bioeng. 2006, 93, 665–673. [CrossRef] [PubMed]
    • (2006) Biotechnol. Bioeng. , vol.93 , pp. 665-673
    • Jeppsson, M.1    Bengtsson, O.2    Franke, K.3    Lee, H.4    Hahn-Hägerdal, B.5    Gorwa-Grauslund, M.F.6
  • 92
    • 34347390887 scopus 로고    scopus 로고
    • The positive effect of the decreased nadph-preferring activity of xylose reductase from pichia stipitis on ethanol production using xylose-fermenting recombinant saccharomyces cerevisiae
    • Watanabe, S.; Pack, S.P.; Saleh, A.A.; Annaluru, N.; Kodaki, T.; Makino, K. The positive effect of the decreased nadph-preferring activity of xylose reductase from pichia stipitis on ethanol production using xylose-fermenting recombinant saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 2007, 71, 1365–1369. [CrossRef] [PubMed]
    • (2007) Biosci. Biotechnol. Biochem. , vol.71 , pp. 1365-1369
    • Watanabe, S.1    Pack, S.P.2    Saleh, A.A.3    Annaluru, N.4    Kodaki, T.5    Makino, K.6
  • 93
    • 70449428931 scopus 로고    scopus 로고
    • Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing saccharomyces cerevisiae
    • Runquist, D.; Hahn-Hägerdal, B.; Bettiga, M. Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing saccharomyces cerevisiae. Microb. Cell Fact. 2009, 8, 49. [CrossRef] [PubMed]
    • (2009) Microb. Cell Fact. , vol.8 , pp. 49
    • Runquist, D.1    Hahn-Hägerdal, B.2    Bettiga, M.3
  • 94
    • 42449145157 scopus 로고    scopus 로고
    • Altering the coenzyme preference of xylose reductase to favor utilization of nadh enhances ethanol yield from xylose in a metabolically engineered strain of saccharomyces cerevisiae
    • Petschacher, B.; Nidetzky, B. Altering the coenzyme preference of xylose reductase to favor utilization of nadh enhances ethanol yield from xylose in a metabolically engineered strain of saccharomyces cerevisiae. Microb. Cell Fact. 2008, 7, 9. [CrossRef] [PubMed]
    • (2008) Microb. Cell Fact. , vol.7 , pp. 9
    • Petschacher, B.1    Nidetzky, B.2
  • 95
    • 66749091546 scopus 로고    scopus 로고
    • Xylose reductase from pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant saccharomyces cerevisiae
    • Bengtsson, O.; Hahn-Hägerdal, B.; Gorwa-Grauslund, M.F. Xylose reductase from pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant saccharomyces cerevisiae. Biotechnol. Biofuels 2009, 2, 9. [CrossRef] [PubMed]
    • (2009) Biotechnol. Biofuels , vol.2 , pp. 9
    • Bengtsson, O.1    Hahn-Hägerdal, B.2    Gorwa-Grauslund, M.F.3
  • 96
    • 78650327471 scopus 로고    scopus 로고
    • Increased ethanol productivity in xylose-utilizing saccharomyces cerevisiae via a randomly mutagenized xylose reductase
    • Runquist, D.; Hahn-Hägerdal, B.; Bettiga, M. Increased ethanol productivity in xylose-utilizing saccharomyces cerevisiae via a randomly mutagenized xylose reductase. Appl. Environ. Microbiol. 2010, 76, 7796–7802. [CrossRef] [PubMed]
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 7796-7802
    • Runquist, D.1    Hahn-Hägerdal, B.2    Bettiga, M.3
  • 97
    • 34250361036 scopus 로고    scopus 로고
    • Ethanol production from xylose by recombinant saccharomyces cerevisiae expressing protein engineered nadp+-dependent xylitol dehydrogenase
    • Watanabe, S.; Saleh, A.A.; Pack, S.P.; Annaluru, N.; Kodaki, T.; Makino, K. Ethanol production from xylose by recombinant saccharomyces cerevisiae expressing protein engineered nadp+-dependent xylitol dehydrogenase. J. Biotechnol. 2007, 130, 316–319. [CrossRef] [PubMed]
    • (2007) J. Biotechnol. , vol.130 , pp. 316-319
    • Watanabe, S.1    Saleh, A.A.2    Pack, S.P.3    Annaluru, N.4    Kodaki, T.5    Makino, K.6
  • 98
    • 55649111344 scopus 로고    scopus 로고
    • Expression of protein engineered nadp+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant saccharomyces cerevisiae
    • Matsushika, A.; Watanabe, S.; Kodaki, T.; Makino, K.; Inoue, H.; Murakami, K.; Takimura, O.; Sawayama, S. Expression of protein engineered nadp+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2008, 81, 243–255. [CrossRef] [PubMed]
    • (2008) Appl. Microbiol. Biotechnol. , vol.81 , pp. 243-255
    • Matsushika, A.1    Watanabe, S.2    Kodaki, T.3    Makino, K.4    Inoue, H.5    Murakami, K.6    Takimura, O.7    Sawayama, S.8
  • 99
    • 68049091805 scopus 로고    scopus 로고
    • Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by saccharomyces cerevisiae
    • Krahulec, S.; Klimacek, M.; Nidetzky, B. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by saccharomyces cerevisiae. Biotechnol. J. 2009, 4, 684–694. [CrossRef] [PubMed]
    • (2009) Biotechnol. J. , vol.4 , pp. 684-694
    • Krahulec, S.1    Klimacek, M.2    Nidetzky, B.3
  • 100
    • 66249146380 scopus 로고    scopus 로고
    • Efficient bioethanol production by a recombinant flocculent saccharomyces cerevisiae strain with a genome-integrated nadp(+)-dependent xylitol dehydrogenase gene
    • Matsushika, A.; Inoue, H.; Watanabe, S.; Kodaki, T.; Makino, K.; Sawayama, S. Efficient bioethanol production by a recombinant flocculent saccharomyces cerevisiae strain with a genome-integrated nadp(+)-dependent xylitol dehydrogenase gene. Appl. Environ. Microbiol. 2009, 75, 3818–3822. [CrossRef] [PubMed]
    • (2009) Appl. Environ. Microbiol. , vol.75 , pp. 3818-3822
    • Matsushika, A.1    Inoue, H.2    Watanabe, S.3    Kodaki, T.4    Makino, K.5    Sawayama, S.6
  • 101
    • 0142136153 scopus 로고    scopus 로고
    • Engineering redox cofactor regeneration for improved pentose fermentation in saccharomyces cerevisiae
    • Verho, R.; Londesborough, J.; Penttilä, M.; Richard, P. Engineering redox cofactor regeneration for improved pentose fermentation in saccharomyces cerevisiae. Appl. Environ. Microbiol. 2003, 69, 5892–5897. [CrossRef] [PubMed]
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 5892-5897
    • Verho, R.1    Londesborough, J.2    Penttilä, M.3    Richard, P.4
  • 102
    • 84863182778 scopus 로고    scopus 로고
    • Decreased xylitol formation during xylose fermentation in saccharomyces cerevisiae due to overexpression of water-forming nadh oxidase
    • Zhang, G.-C.; Liu, J.-J.; Ding, W.-T. Decreased xylitol formation during xylose fermentation in saccharomyces cerevisiae due to overexpression of water-forming nadh oxidase. Appl. Environ. Microbiol. 2012, 78, 1081–1086. [CrossRef] [PubMed]
    • (2012) Appl. Environ. Microbiol. , vol.78 , pp. 1081-1086
    • Zhang, G.-C.1    Liu, J.-J.2    Ding, W.-T.3
  • 103
    • 84922782676 scopus 로고    scopus 로고
    • Metabolomic and 13c-metabolic flux analysis of a xylose-consuming saccharomyces cerevisiae strain expressing xylose isomerase
    • Wasylenko, T.M.; Stephanopoulos, G. Metabolomic and 13c-metabolic flux analysis of a xylose-consuming saccharomyces cerevisiae strain expressing xylose isomerase. Biotechnol. Bioeng. 2015, 112, 470–483. [CrossRef] [PubMed]
    • (2015) Biotechnol. Bioeng. , vol.112 , pp. 470-483
    • Wasylenko, T.M.1    Stephanopoulos, G.2
  • 104
    • 0026416683 scopus 로고
    • Plasmid presence changes the relative levels of many host cell proteins and ribosome components in recombinant Escherichia coli
    • Birnbaum, S.; Bailey, J.E. Plasmid presence changes the relative levels of many host cell proteins and ribosome components in recombinant Escherichia coli. Biotechnol. Bioeng. 1991, 37, 736–745. [CrossRef] [PubMed]
    • (1991) Biotechnol. Bioeng. , vol.37 , pp. 736-745
    • Birnbaum, S.1    Bailey, J.E.2
  • 105
    • 84939271039 scopus 로고    scopus 로고
    • Surviving the heat: Heterogeneity of response in saccharomyces cerevisiae provides insight into thermal damage to the membrane
    • Guyot, S.; Gervais, P.; Young, M.; Winckler, P.; Dumont, J.; Davey, H.M. Surviving the heat: Heterogeneity of response in saccharomyces cerevisiae provides insight into thermal damage to the membrane. Environ. Microbiol. 2015, 17, 2982–2992. [CrossRef] [PubMed]
    • (2015) Environ. Microbiol. , vol.17 , pp. 2982-2992
    • Guyot, S.1    Gervais, P.2    Young, M.3    Winckler, P.4    Dumont, J.5    Davey, H.M.6
  • 106
    • 84940898261 scopus 로고    scopus 로고
    • Metabolomic analysis of acid stress response in saccharomyces cerevisiae
    • Nugroho, R.H.; Yoshikawa, K.; Shimizu, H. Metabolomic analysis of acid stress response in saccharomyces cerevisiae. J. Biosci. Bioeng. 2015, 120, 396–404. [CrossRef] [PubMed]
    • (2015) J. Biosci. Bioeng. , vol.120 , pp. 396-404
    • Nugroho, R.H.1    Yoshikawa, K.2    Shimizu, H.3
  • 107
    • 79951843066 scopus 로고    scopus 로고
    • Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: Review
    • Parawira, W.; Tekere, M. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: Review. Crit. Rev. Biotechnol. 2011, 31, 20–31. [CrossRef] [PubMed]
    • (2011) Crit. Rev. Biotechnol. , vol.31 , pp. 20-31
    • Parawira, W.1    Tekere, M.2
  • 109
    • 70350376747 scopus 로고    scopus 로고
    • Escherichia coli unsaturated fatty acid synthesis: Complex transcription of the faba gene and in vivo identification of the essential reaction catalyzed by fabb
    • Feng, Y.; Cronan, J.E. Escherichia coli unsaturated fatty acid synthesis: Complex transcription of the faba gene and in vivo identification of the essential reaction catalyzed by fabb. J. Biol. Chem. 2009, 284, 29526–29535. [CrossRef] [PubMed]
    • (2009) J. Biol. Chem. , vol.284 , pp. 29526-29535
    • Feng, Y.1    Cronan, J.E.2
  • 110
    • 0034666431 scopus 로고    scopus 로고
    • Overproduction of acetyl-coa carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli
    • Davis, M.S.; Solbiati, J.; Cronan, J.E., Jr. Overproduction of acetyl-coa carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J. Biol. Chem. 2000, 275, 28593–28598. [CrossRef] [PubMed]
    • (2000) J. Biol. Chem. , vol.275 , pp. 28593-28598
    • Davis, M.S.1    Solbiati, J.2    Cronan, J.E.3
  • 111
    • 57049105699 scopus 로고    scopus 로고
    • Overproduction of free fatty acids in E. Coli: Implications for biodiesel production
    • Lu, X.; Vora, H.; Khosla, C. Overproduction of free fatty acids in E. Coli: Implications for biodiesel production. Metab. Eng. 2008, 10, 333–339. [CrossRef] [PubMed]
    • (2008) Metab. Eng. , vol.10 , pp. 333-339
    • Lu, X.1    Vora, H.2    Khosla, C.3
  • 112
    • 84869039746 scopus 로고    scopus 로고
    • Enhancing fatty acid production by the expression of the regulatory transcription factor fadr
    • Zhang, F.; Ouellet, M.; Batth, T.S.; Adams, P.D.; Petzold, C.J.; Mukhopadhyay, A.; Keasling, J.D. Enhancing fatty acid production by the expression of the regulatory transcription factor fadr. Metab. Eng. 2012, 14, 653–660. [CrossRef] [PubMed]
    • (2012) Metab. Eng. , vol.14 , pp. 653-660
    • Zhang, F.1    Ouellet, M.2    Batth, T.S.3    Adams, P.D.4    Petzold, C.J.5    Mukhopadhyay, A.6    Keasling, J.D.7
  • 113
    • 0031783528 scopus 로고    scopus 로고
    • Overproduction of a functional fatty acid biosynthetic enzyme blocks fatty acid synthesis in Escherichia coli
    • Subrahmanyam, S.; Cronan, J.E., Jr. Overproduction of a functional fatty acid biosynthetic enzyme blocks fatty acid synthesis in Escherichia coli. J. Bacteriol. 1998, 180, 4596–4602. [PubMed]
    • (1998) J. Bacteriol. , vol.180 , pp. 4596-4602
    • Subrahmanyam, S.1    Cronan, J.E.2
  • 114
    • 80054018281 scopus 로고    scopus 로고
    • Engineering the pentose phosphate pathway to improve hydrogen yield in recombinant Escherichia coli
    • Kim, Y.M.; Cho, H.-S.; Jung, G.Y.; Park, J.M. Engineering the pentose phosphate pathway to improve hydrogen yield in recombinant Escherichia coli. Biotechnol. Bioeng. 2011, 108, 2941–2946. [CrossRef] [PubMed]
    • (2011) Biotechnol. Bioeng. , vol.108 , pp. 2941-2946
    • Kim, Y.M.1    Cho, H.-S.2    Jung, G.Y.3    Park, J.M.4
  • 115
    • 34547114478 scopus 로고    scopus 로고
    • Enhanced production of ε-caprolactone by overexpression of nadph-regenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone monooxygenase gene
    • Lee, W.-H.; Park, J.-B.; Park, K.; Kim, M.-D.; Seo, J.-H. Enhanced production of ε-caprolactone by overexpression of nadph-regenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone monooxygenase gene. Appl. Microbiol. Biotechnol. 2007, 76, 329–338. [CrossRef] [PubMed]
    • (2007) Appl. Microbiol. Biotechnol. , vol.76 , pp. 329-338
    • Lee, W.-H.1    Park, J.-B.2    Park, K.3    Kim, M.-D.4    Seo, J.-H.5
  • 116
    • 79954423939 scopus 로고    scopus 로고
    • Improved nadph supply for xylitol production by engineered Escherichia coli with glycolytic mutations
    • Chin, J.W.; Cirino, P.C. Improved nadph supply for xylitol production by engineered Escherichia coli with glycolytic mutations. Biotechnol. Prog. 2011, 27, 333–341. [CrossRef] [PubMed]
    • (2011) Biotechnol. Prog. , vol.27 , pp. 333-341
    • Chin, J.W.1    Cirino, P.C.2
  • 117
    • 84880510233 scopus 로고    scopus 로고
    • Improvement of nadph bioavailability in Escherichia coli through the use of phosphofructokinase deficient strains
    • Wang, Y.; San, K.-Y.; Bennett, G. Improvement of nadph bioavailability in Escherichia coli through the use of phosphofructokinase deficient strains. Appl. Microbiol. Biotechnol. 2013, 97, 6883–6893. [CrossRef] [PubMed]
    • (2013) Appl. Microbiol. Biotechnol. , vol.97 , pp. 6883-6893
    • Wang, Y.1    San, K.-Y.2    Bennett, G.3
  • 118
    • 76749151341 scopus 로고    scopus 로고
    • Improving nadph availability for natural product biosynthesis in Escherichia coli by metabolic engineering
    • Chemler, J.A.; Fowler, Z.L.; McHugh, K.P.; Koffas, M.A.G. Improving nadph availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metab. Eng. 2010, 12, 96–104. [CrossRef] [PubMed]
    • (2010) Metab. Eng. , vol.12 , pp. 96-104
    • Chemler, J.A.1    Fowler, Z.L.2    McHugh, K.P.3    Koffas, M.A.G.4
  • 119
    • 79953735971 scopus 로고    scopus 로고
    • Alteration of reducing powers in an isogenic phosphoglucose isomerase (Pgi)-disrupted Escherichia coli expressing nad(p)-dependent malic enzymes and nadp-dependent glyceraldehyde 3-phosphate dehydrogenase
    • Kim, S.; Lee, C.H.; Nam, S.W.; Kim, P. Alteration of reducing powers in an isogenic phosphoglucose isomerase (pgi)-disrupted Escherichia coli expressing nad(p)-dependent malic enzymes and nadp-dependent glyceraldehyde 3-phosphate dehydrogenase. Lett. Appl. Microbiol. 2011, 52, 433–440. [CrossRef] [PubMed]
    • (2011) Lett. Appl. Microbiol. , vol.52 , pp. 433-440
    • Kim, S.1    Lee, C.H.2    Nam, S.W.3    Kim, P.4
  • 120
    • 33646045867 scopus 로고    scopus 로고
    • Effect of overexpression of a soluble pyridine nucleotide transhydrogenase (Udha) on the production of poly(3-hydroxybutyrate) in Escherichia coli
    • Sánchez, A.M.; Andrews, J.; Hussein, I.; Bennett, G.N.; San, K.-Y. Effect of overexpression of a soluble pyridine nucleotide transhydrogenase (udha) on the production of poly(3-hydroxybutyrate) in Escherichia coli. Biotechnol. Prog. 2006, 22, 420–425. [CrossRef] [PubMed]
    • (2006) Biotechnol. Prog. , vol.22 , pp. 420-425
    • Sánchez, A.M.1    Andrews, J.2    Hussein, I.3    Bennett, G.N.4    San, K.-Y.5
  • 121
    • 84924408551 scopus 로고    scopus 로고
    • Transhydrogenase promotes the robustness and evolvability of E. Coli deficient in nadph production
    • Chou, H.-H.; Marx, C.J.; Sauer, U. Transhydrogenase promotes the robustness and evolvability of E. Coli deficient in nadph production. PLoS Genet. 2015, 11, e1005007. [CrossRef] [PubMed]
    • (2015) Plos Genet , vol.11
    • Chou, H.-H.1    Marx, C.J.2    Sauer, U.3
  • 122
    • 0034496492 scopus 로고    scopus 로고
    • Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria
    • Jones, K.L.; Kim, S.W.; Keasling, J.D. Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria. Metab. Eng. 2000, 2, 328–338. [CrossRef] [PubMed]
    • (2000) Metab. Eng. , vol.2 , pp. 328-338
    • Jones, K.L.1    Kim, S.W.2    Keasling, J.D.3
  • 123
    • 78049290979 scopus 로고    scopus 로고
    • Transcriptomic analysis of Escherichia coli o157:H7 and k-12 cultures exposed to inorganic and organic acids in stationary phase reveals acidulant-and strain-specific acid tolerance responses
    • King, T.; Lucchini, S.; Hinton, J.C.D.; Gobius, K. Transcriptomic analysis of Escherichia coli o157:H7 and k-12 cultures exposed to inorganic and organic acids in stationary phase reveals acidulant-and strain-specific acid tolerance responses. Appl. Environ. Microbiol. 2010, 76, 6514–6528. [CrossRef] [PubMed]
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 6514-6528
    • King, T.1    Lucchini, S.2    Hinton, J.C.D.3    Gobius, K.4
  • 124
    • 77956467426 scopus 로고    scopus 로고
    • A systematic investigation of Escherichia coli central carbon metabolism in response to superoxide stress
    • Rui, B.; Shen, T.; Zhou, H.; Liu, J.; Chen, J.; Pan, X.; Liu, H.; Wu, J.; Zheng, H.; Shi, Y. A systematic investigation of Escherichia coli central carbon metabolism in response to superoxide stress. BMC Syst. Biology 2010, 4, 122. [CrossRef] [PubMed]
    • (2010) BMC Syst. Biology , vol.4 , pp. 122
    • Rui, B.1    Shen, T.2    Zhou, H.3    Liu, J.4    Chen, J.5    Pan, X.6    Liu, H.7    Wu, J.8    Zheng, H.9    Shi, Y.10
  • 127
    • 0034847930 scopus 로고    scopus 로고
    • Metabolic flux analysis with a comprehensive isotopomer model in bacillus subtilis
    • Dauner, M.; Bailey, J.E.; Sauer, U. Metabolic flux analysis with a comprehensive isotopomer model in bacillus subtilis. Biotechnol. Bioeng. 2001, 76, 144–156. [CrossRef] [PubMed]
    • (2001) Biotechnol. Bioeng. , vol.76 , pp. 144-156
    • Dauner, M.1    Bailey, J.E.2    Sauer, U.3
  • 128
    • 20044375201 scopus 로고    scopus 로고
    • Large-scale in vivo flux analysis shows rigidity and suboptimal performance of bacillus subtilis metabolism
    • Fischer, E.; Sauer, U. Large-scale in vivo flux analysis shows rigidity and suboptimal performance of bacillus subtilis metabolism. Nat. Genet. 2005, 37, 636–640. [CrossRef] [PubMed]
    • (2005) Nat. Genet. , vol.37 , pp. 636-640
    • Fischer, E.1    Sauer, U.2
  • 129
    • 47349107339 scopus 로고    scopus 로고
    • Maintenance metabolism and carbon fluxes in bacillus species
    • Tannler, S.; Decasper, S.; Sauer, U. Maintenance metabolism and carbon fluxes in bacillus species. Microb. Cell Fact. 2008, 7, 19. [CrossRef] [PubMed]
    • (2008) Microb. Cell Fact. , vol.7 , pp. 19
    • Tannler, S.1    Decasper, S.2    Sauer, U.3
  • 132
    • 0035002653 scopus 로고    scopus 로고
    • Application of maldi-tof ms to lysine-producing corynebacterium glutamicum
    • Wittmann, C.; Heinzle, E. Application of maldi-tof ms to lysine-producing corynebacterium glutamicum. Eur. J. Biochem. 2001, 268, 2441–2455. [CrossRef] [PubMed]
    • (2001) Eur. J. Biochem. , vol.268 , pp. 2441-2455
    • Wittmann, C.1    Heinzle, E.2
  • 133
    • 0042825675 scopus 로고    scopus 로고
    • Systematic quantification of complex metabolic flux networks using stable isotopes and mass spectrometry
    • Klapa, M.I.; Aon, J.-C.; Stephanopoulos, G. Systematic quantification of complex metabolic flux networks using stable isotopes and mass spectrometry. Eur. J. Biochem. 2003, 270, 3525–3542. [CrossRef] [PubMed]
    • (2003) Eur. J. Biochem. , vol.270 , pp. 3525-3542
    • Klapa, M.I.1    Aon, J.-C.2    Stephanopoulos, G.3
  • 134
    • 66949164842 scopus 로고    scopus 로고
    • Openflux: Efficient modelling software for 13c-based metabolic flux analysis
    • Quek, L.-E.; Wittmann, C.; Nielsen, L.; Kromer, J. Openflux: Efficient modelling software for 13c-based metabolic flux analysis. Microb. Cell Fact. 2009, 8, 25. [CrossRef] [PubMed]
    • (2009) Microb. Cell Fact. , vol.8 , pp. 25
    • Quek, L.-E.1    Wittmann, C.2    Nielsen, L.3    Kromer, J.4
  • 135
    • 1542376957 scopus 로고    scopus 로고
    • In-depth profiling of lysine-producing corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome
    • Krömer, J.O.; Sorgenfrei, O.; Klopprogge, K.; Heinzle, E.; Wittmann, C. In-depth profiling of lysine-producing corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J. Bacteriol. 2004, 186, 1769–1784. [CrossRef] [PubMed]
    • (2004) J. Bacteriol. , vol.186 , pp. 1769-1784
    • Krömer, J.O.1    Sorgenfrei, O.2    Klopprogge, K.3    Heinzle, E.4    Wittmann, C.5
  • 136
    • 35348981360 scopus 로고    scopus 로고
    • Metabolic flux engineering of l-lysine production in corynebacterium glutamicum—Over expression and modification of g6p dehydrogenase
    • Becker, J.; Klopprogge, C.; Herold, A.; Zelder, O.; Bolten, C.J.; Wittmann, C. Metabolic flux engineering of l-lysine production in corynebacterium glutamicum—Over expression and modification of g6p dehydrogenase. J. Biotechnol. 2007, 132, 99–109. [CrossRef] [PubMed]
    • (2007) J. Biotechnol. , vol.132 , pp. 99-109
    • Becker, J.1    Klopprogge, C.2    Herold, A.3    Zelder, O.4    Bolten, C.J.5    Wittmann, C.6
  • 137
    • 79952106791 scopus 로고    scopus 로고
    • From zero to hero—Design-based systems metabolic engineering of corynebacterium glutamicum for l-lysine production
    • Becker, J.; Zelder, O.; Häfner, S.; Schröder, H.; Wittmann, C. From zero to hero—Design-based systems metabolic engineering of corynebacterium glutamicum for l-lysine production. Metab. Eng. 2011, 13, 159–168. [CrossRef] [PubMed]
    • (2011) Metab. Eng , vol.13 , pp. 159-168
    • Becker, J.1    Zelder, O.2    Häfner, S.3    Schröder, H.4    Wittmann, C.5
  • 138
    • 27744506402 scopus 로고    scopus 로고
    • Amplified expression of fructose 1,6-bisphosphatase in corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources
    • Becker, J.; Klopprogge, C.; Zelder, O.; Heinzle, E.; Wittmann, C. Amplified expression of fructose 1,6-bisphosphatase in corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl. Environ. Microbiol. 2005, 71, 8587–8596. [CrossRef] [PubMed]
    • (2005) Appl. Environ. Microbiol. , vol.71 , pp. 8587-8596
    • Becker, J.1    Klopprogge, C.2    Zelder, O.3    Heinzle, E.4    Wittmann, C.5
  • 139
    • 84903743153 scopus 로고    scopus 로고
    • A de novo nadph generation pathway for improving lysine production of corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase
    • Bommareddy, R.R.; Chen, Z.; Rappert, S.; Zeng, A.-P. A de novo nadph generation pathway for improving lysine production of corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase. Metab. Eng. 2014, 25, 30–37. [CrossRef] [PubMed]
    • (2014) Metab. Eng. , vol.25 , pp. 30-37
    • Bommareddy, R.R.1    Chen, Z.2    Rappert, S.3    Zeng, A.-P.4
  • 141
    • 0033753671 scopus 로고    scopus 로고
    • Recombinant protein expression in pichia pastoris
    • Cregg, J.; Cereghino, J.; Shi, J.; Higgins, D. Recombinant protein expression in pichia pastoris. Mol. Biotechnol. 2000, 16, 23–52. [CrossRef]
    • (2000) Mol. Biotechnol. , vol.16 , pp. 23-52
    • Cregg, J.1    Cereghino, J.2    Shi, J.3    Higgins, D.4
  • 142
    • 0033955337 scopus 로고    scopus 로고
    • Heterologous protein expression in the methylotrophic yeast pichia pastoris
    • Cereghino, J.L.; Cregg, J.M. Heterologous protein expression in the methylotrophic yeast pichia pastoris. FEMS Microbiol. Rev. 2000, 24, 45–66. [CrossRef] [PubMed]
    • (2000) FEMS Microbiol. Rev. , vol.24 , pp. 45-66
    • Cereghino, J.L.1    Cregg, J.M.2
  • 144
    • 84903814380 scopus 로고    scopus 로고
    • Protein expression in pichia pastoris: Recent achievements and perspectives for heterologous protein production
    • Ahmad, M.; Hirz, M.; Pichler, H.; Schwab, H. Protein expression in pichia pastoris: Recent achievements and perspectives for heterologous protein production. Appl. Microbiol. Biotechnol. 2014, 98, 5301–5317. [CrossRef] [PubMed]
    • (2014) Appl. Microbiol. Biotechnol. , vol.98 , pp. 5301-5317
    • Ahmad, M.1    Hirz, M.2    Pichler, H.3    Schwab, H.4
  • 145
    • 14744285206 scopus 로고    scopus 로고
    • Expression of heterologous proteins in pichia pastoris: A useful experimental tool in protein engineering and production
    • Daly, R.; Hearn, M.T.W. Expression of heterologous proteins in pichia pastoris: A useful experimental tool in protein engineering and production. J. Mol. Recognit. 2005, 18, 119–138. [CrossRef] [PubMed]
    • (2005) J. Mol. Recognit. , vol.18 , pp. 119-138
    • Daly, R.1    Hearn, M.T.W.2
  • 146
    • 55749091599 scopus 로고    scopus 로고
    • Recombinant bacterial hemoglobin alters metabolism of aspergillus niger
    • Hofmann, G.; Diano, A.; Nielsen, J. Recombinant bacterial hemoglobin alters metabolism of aspergillus niger. Metab. Eng. 2009, 11, 8–12. [CrossRef] [PubMed]
    • (2009) Metab. Eng. , vol.11 , pp. 8-12
    • Hofmann, G.1    Diano, A.2    Nielsen, J.3
  • 147
    • 0018404417 scopus 로고
    • Penicillin g production by immobilized whole cells of penicillium chrysogenum
    • Morikawa, Y.; Karube, I.; Suzuki, S. Penicillin g production by immobilized whole cells of penicillium chrysogenum. Biotechnol. Bioeng. 1979, 21, 261–270. [CrossRef] [PubMed]
    • (1979) Biotechnol. Bioeng. , vol.21 , pp. 261-270
    • Morikawa, Y.1    Karube, I.2    Suzuki, S.3
  • 149
    • 33847294641 scopus 로고    scopus 로고
    • A novel feeding strategy during the production phase for enhancing the enzymatic synthesis of s-adenosyl-l-methionine by methylotrophic pichia pastoris
    • Hu, X.-Q.; Chu, J.; Zhang, S.-L.; Zhuang, Y.-P.; Wang, Y.-H.; Zhu, S.; Zhu, Z.-G.; Yuan, Z.-Y. A novel feeding strategy during the production phase for enhancing the enzymatic synthesis of s-adenosyl-l-methionine by methylotrophic pichia pastoris. Enzym. Microb. Technol. 2007, 40, 669–674. [CrossRef]
    • (2007) Enzym. Microb. Technol. , vol.40 , pp. 669-674
    • Hu, X.-Q.1    Chu, J.2    Zhang, S.-L.3    Zhuang, Y.-P.4    Wang, Y.-H.5    Zhu, S.6    Zhu, Z.-G.7    Yuan, Z.-Y.8
  • 150
    • 52949134791 scopus 로고    scopus 로고
    • Effects of different glycerol feeding strategies on s-adenosyl-l-methionine biosynthesis by pgap-driven pichia pastoris overexpressing methionine adenosyltransferase
    • Hu, X.-Q.; Chu, J.; Zhang, Z.; Zhang, S.-L.; Zhuang, Y.-P.; Wang, Y.-H.; Guo, M.-J.; Chen, H.-X.; Yuan, Z.-Y. Effects of different glycerol feeding strategies on s-adenosyl-l-methionine biosynthesis by pgap-driven pichia pastoris overexpressing methionine adenosyltransferase. J. Biotechnol. 2008, 137, 44–49. [CrossRef] [PubMed]
    • (2008) J. Biotechnol. , vol.137 , pp. 44-49
    • Hu, X.-Q.1    Chu, J.2    Zhang, Z.3    Zhang, S.-L.4    Zhuang, Y.-P.5    Wang, Y.-H.6    Guo, M.-J.7    Chen, H.-X.8    Yuan, Z.-Y.9
  • 151
    • 84855419801 scopus 로고    scopus 로고
    • Integration of in vivo and in silico metabolic fluxes for improvement of recombinant protein production
    • Driouch, H.; Melzer, G.; Wittmann, C. Integration of in vivo and in silico metabolic fluxes for improvement of recombinant protein production. Metab. Eng. 2012, 14, 47–58. [CrossRef] [PubMed]
    • (2012) Metab. Eng. , vol.14 , pp. 47-58
    • Driouch, H.1    Melzer, G.2    Wittmann, C.3
  • 152
    • 0033916304 scopus 로고    scopus 로고
    • Construction and characterization of an oxalic acid nonproducing strain of aspergillus niger
    • Pedersen, H.; Christensen, B.; Hjort, C.; Nielsen, J. Construction and characterization of an oxalic acid nonproducing strain of aspergillus niger. Metab. Eng. 2000, 2, 34–41. [CrossRef] [PubMed]
    • (2000) Metab. Eng. , vol.2 , pp. 34-41
    • Pedersen, H.1    Christensen, B.2    Hjort, C.3    Nielsen, J.4
  • 153
    • 0034691228 scopus 로고    scopus 로고
    • Application of metabolic flux analysis for the identification of metabolic bottlenecks in the biosynthesis of penicillin-g
    • van Gulik, W.M.; de Laat, W.T.A.M.; Vinke, J.L.; Heijnen, J.J. Application of metabolic flux analysis for the identification of metabolic bottlenecks in the biosynthesis of penicillin-g. Biotechnol. Bioeng. 2000, 68, 602–618. [CrossRef]
    • (2000) Biotechnol. Bioeng. , vol.68 , pp. 602-618
    • van Gulik, W.M.1    de Laat, W.T.A.M.2    Vinke, J.L.3    Heijnen, J.J.4
  • 154
    • 84893070239 scopus 로고    scopus 로고
    • Non-growing rhodopseudomonas palustris increases the hydrogen gas yield from acetate by shifting from the glyoxylate shunt to the tricarboxylic acid cycle
    • McKinlay, J.B.; Oda, Y.; Rühl, M.; Posto, A.L.; Sauer, U.; Harwood, C.S. Non-growing rhodopseudomonas palustris increases the hydrogen gas yield from acetate by shifting from the glyoxylate shunt to the tricarboxylic acid cycle. J. Biol. Chem. 2014, 289, 1960–1970. [CrossRef] [PubMed]
    • (2014) J. Biol. Chem. , vol.289 , pp. 1960-1970
    • McKinlay, J.B.1    Oda, Y.2    Rühl, M.3    Posto, A.L.4    Sauer, U.5    Harwood, C.S.6
  • 156
    • 79954459893 scopus 로고    scopus 로고
    • Construction of an E. Coli genome-scale atom mapping model for mfa calculations
    • Ravikirthi, P.; Suthers, P.F.; Maranas, C.D. Construction of an E. Coli genome-scale atom mapping model for mfa calculations. Biotechnol. Bioeng. 2011, 108, 1372–1382. [CrossRef] [PubMed]
    • (2011) Biotechnol. Bioeng. , vol.108 , pp. 1372-1382
    • Ravikirthi, P.1    Suthers, P.F.2    Maranas, C.D.3
  • 157
    • 70349745413 scopus 로고    scopus 로고
    • Novel biological insights through metabolomics and 13c-flux analysis
    • Zamboni, N.; Sauer, U. Novel biological insights through metabolomics and 13c-flux analysis. Curr. Opin. Microbiol. 2009, 12, 553–558. [CrossRef] [PubMed]
    • (2009) Curr. Opin. Microbiol. , vol.12 , pp. 553-558
    • Zamboni, N.1    Sauer, U.2
  • 158
    • 64649089947 scopus 로고    scopus 로고
    • Cross-platform comparison of methods for quantitative metabolomics of primary metabolism
    • Büscher, J.M.; Czernik, D.; Ewald, J.C.; Sauer, U.; Zamboni, N. Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Anal. Chem. 2009, 81, 2135–2143. [CrossRef] [PubMed]
    • (2009) Anal. Chem. , vol.81 , pp. 2135-2143
    • Büscher, J.M.1    Czernik, D.2    Ewald, J.C.3    Sauer, U.4    Zamboni, N.5
  • 159
    • 79953882386 scopus 로고    scopus 로고
    • Intracellular characterization of aerobic glucose metabolism in seven yeast species by 13c flux analysis and metabolomics
    • Christen, S.; Sauer, U. Intracellular characterization of aerobic glucose metabolism in seven yeast species by 13c flux analysis and metabolomics. FEMS Yeast Res. 2011, 11, 263–272. [CrossRef] [PubMed]
    • (2011) FEMS Yeast Res , vol.11 , pp. 263-272
    • Christen, S.1    Sauer, U.2
  • 160
    • 84919681581 scopus 로고    scopus 로고
    • Clca: Maximum common molecular substructure queries within the metrxn database
    • Kumar, A.; Maranas, C.D. Clca: Maximum common molecular substructure queries within the metrxn database. J. Chem. Inf. Model. 2014, 54, 3417–3438. [CrossRef] [PubMed]
    • (2014) J. Chem. Inf. Model. , vol.54 , pp. 3417-3438
    • Kumar, A.1    Maranas, C.D.2
  • 161
    • 84855499408 scopus 로고    scopus 로고
    • Metrxn: A knowledgebase of metabolites and reactions spanning metabolic models and databases
    • Kumar, A.; Suthers, P.; Maranas, C. Metrxn: A knowledgebase of metabolites and reactions spanning metabolic models and databases. BMC Bioinf. 2012, 13, 6. [CrossRef] [PubMed]
    • (2012) BMC Bioinf , vol.13 , pp. 6
    • Kumar, A.1    Suthers, P.2    Maranas, C.3
  • 162
    • 84942248861 scopus 로고    scopus 로고
    • 13c metabolic flux analysis at a genome-scale
    • Gopalakrishnan, S.; Maranas, C.D. 13c metabolic flux analysis at a genome-scale. Metab. Eng. 2015, 32, 12–22. [CrossRef] [PubMed]
    • (2015) Metab. Eng. , vol.32 , pp. 12-22
    • Gopalakrishnan, S.1    Maranas, C.D.2
  • 163
    • 84934438759 scopus 로고    scopus 로고
    • Isotopically nonstationary mfa (Inst-mfa) of autotrophic metabolism
    • Dieuaide-Noubhani, M., Alonso, A.P., Eds.; Humana Press: New York, NY, USA
    • Jazmin, L.; O’Grady, J.; Ma, F.; Allen, D.; Morgan, J.; Young, J. Isotopically nonstationary mfa (inst-mfa) of autotrophic metabolism. In Plant Metabolic Flux Analysis; Dieuaide-Noubhani, M., Alonso, A.P., Eds.; Humana Press: New York, NY, USA, 2014; Volume 1090, pp. 181–210.
    • (2014) Plant Metabolic Flux Analysis , vol.1090 , pp. 181-210
    • Jazmin, L.1    O’Grady, J.2    Ma, F.3    Allen, D.4    Morgan, J.5    Young, J.6
  • 164
    • 84872376676 scopus 로고    scopus 로고
    • Isotopically nonstationary 13c flux analysis of myc-induced metabolic reprogramming in b-cells
    • Murphy, T.A.; Dang, C.V.; Young, J.D. Isotopically nonstationary 13c flux analysis of myc-induced metabolic reprogramming in b-cells. Metab. Eng. 2013, 15, 206–217. [CrossRef] [PubMed]
    • (2013) Metab. Eng. , vol.15 , pp. 206-217
    • Murphy, T.A.1    Dang, C.V.2    Young, J.D.3
  • 165
    • 84880843363 scopus 로고    scopus 로고
    • Isotopically nonstationary 13c metabolic flux analysis
    • Alper, H.S., Ed.; Humana Press: New York, NY, USA
    • Jazmin, L.; Young, J. Isotopically nonstationary 13c metabolic flux analysis. In Systems Metabolic Engineering; Alper, H.S., Ed.; Humana Press: New York, NY, USA, 2013; Volume 985, pp. 367–390.
    • (2013) Systems Metabolic Engineering , vol.985 , pp. 367-390
    • Jazmin, L.1    Young, J.2
  • 166
    • 84887626505 scopus 로고    scopus 로고
    • Isotopically non-stationary metabolic flux analysis: Complex yet highly informative
    • Wiechert, W.; Nöh, K. Isotopically non-stationary metabolic flux analysis: Complex yet highly informative. Curr. Opin. Biotechnol. 2013, 24, 979–986. [CrossRef] [PubMed]
    • (2013) Curr. Opin. Biotechnol. , vol.24 , pp. 979-986
    • Wiechert, W.1    Nöh, K.2
  • 167
    • 17144387903 scopus 로고    scopus 로고
    • Technology Transfer in Biotechnology; Kragl, U., Ed.; Springer: Berlin, Germany
    • Wiechert, W.; Nöh, K. From stationary to instationary metabolic flux analysis. In Technology Transfer in Biotechnology; Kragl, U., Ed.; Springer: Berlin, Germany, 2005; Volume 92, pp. 145–172.
    • (2005) From Stationary to Instationary Metabolic Flux Analysis , vol.92 , pp. 145-172
    • Wiechert, W.1    Nöh, K.2
  • 168
    • 80555122963 scopus 로고    scopus 로고
    • Mapping photoautotrophic metabolism with isotopically nonstationary 13c flux analysis
    • Young, J.D.; Shastri, A.A.; Stephanopoulos, G.; Morgan, J.A. Mapping photoautotrophic metabolism with isotopically nonstationary 13c flux analysis. Metab. Eng. 2011, 13, 656–665. [CrossRef] [PubMed]
    • (2011) Metab. Eng. , vol.13 , pp. 656-665
    • Young, J.D.1    Shastri, A.A.2    Stephanopoulos, G.3    Morgan, J.A.4
  • 169
    • 84912569727 scopus 로고    scopus 로고
    • Isotopically nonstationary 13c flux analysis of changes in arabidopsis thaliana leaf metabolism due to high light acclimation
    • Ma, F.; Jazmin, L.J.; Young, J.D.; Allen, D.K. Isotopically nonstationary 13c flux analysis of changes in arabidopsis thaliana leaf metabolism due to high light acclimation. Proc. Natl. Acad. Sci. USA 2014, 111, 16967–16972. [CrossRef] [PubMed]
    • (2014) Proc. Natl. Acad. Sci. USA , vol.111 , pp. 16967-16972
    • Ma, F.1    Jazmin, L.J.2    Young, J.D.3    Allen, D.K.4
  • 170
    • 72049083209 scopus 로고    scopus 로고
    • Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products
    • Brennan, L.; Owende, P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 2010, 14, 557–577. [CrossRef]
    • (2010) Renew. Sustain. Energy Rev. , vol.14 , pp. 557-577
    • Brennan, L.1    Owende, P.2
  • 171
    • 84888095603 scopus 로고    scopus 로고
    • Photoautotrophic production of d-lactic acid in an engineered cyanobacterium
    • Varman, A.; Yu, Y.; You, L.; Tang, Y. Photoautotrophic production of d-lactic acid in an engineered cyanobacterium. Microb. Cell Fact. 2013, 12, 117. [CrossRef] [PubMed]
    • (2013) Microb. Cell Fact. , vol.12 , pp. 117
    • Varman, A.1    Yu, Y.2    You, L.3    Tang, Y.4
  • 172
    • 79953139204 scopus 로고    scopus 로고
    • Engineering cyanobacteria for fuels and chemicals production
    • Zhou, J.; Li, Y. Engineering cyanobacteria for fuels and chemicals production. Protein Cell 2010, 1, 207–210. [CrossRef] [PubMed]
    • (2010) Protein Cell , vol.1 , pp. 207-210
    • Zhou, J.1    Li, Y.2
  • 173
    • 84884386184 scopus 로고    scopus 로고
    • Complete-mfa: Complementary parallel labeling experiments technique for metabolic flux analysis
    • Leighty, R.W.; Antoniewicz, M.R. Complete-mfa: Complementary parallel labeling experiments technique for metabolic flux analysis. Metab. Eng. 2013, 20, 49–55. [CrossRef] [PubMed]
    • (2013) Metab. Eng. , vol.20 , pp. 49-55
    • Leighty, R.W.1    Antoniewicz, M.R.2
  • 174
    • 84922245805 scopus 로고    scopus 로고
    • Integrated 13c-metabolic flux analysis of 14 parallel labeling experiments in Escherichia coli
    • Crown, S.B.; Long, C.P.; Antoniewicz, M.R. Integrated 13c-metabolic flux analysis of 14 parallel labeling experiments in Escherichia coli. Metab. Eng. 2015, 28, 151–158. [CrossRef] [PubMed]
    • (2015) Metab. Eng. , vol.28 , pp. 151-158
    • Crown, S.B.1    Long, C.P.2    Antoniewicz, M.R.3
  • 175
    • 84865597532 scopus 로고    scopus 로고
    • Parallel labeling experiments with [u-13c]glucose validate E. Coli metabolic network model for 13c metabolic flux analysis
    • Leighty, R.W.; Antoniewicz, M.R. Parallel labeling experiments with [u-13c]glucose validate E. Coli metabolic network model for 13c metabolic flux analysis. Metab. Eng. 2012, 14, 533–541. [CrossRef] [PubMed]
    • (2012) Metab. Eng. , vol.14 , pp. 533-541
    • Leighty, R.W.1    Antoniewicz, M.R.2
  • 176
    • 84872122643 scopus 로고    scopus 로고
    • Parallel labeling experiments and metabolic flux analysis: Past, present and future methodologies
    • Crown, S.B.; Antoniewicz, M.R. Parallel labeling experiments and metabolic flux analysis: Past, present and future methodologies. Metab. Eng. 2013, 16, 21–32. [CrossRef] [PubMed]
    • (2013) Metab. Eng. , vol.16 , pp. 21-32
    • Crown, S.B.1    Antoniewicz, M.R.2
  • 177
    • 80053105319 scopus 로고    scopus 로고
    • Fluxomers: A new approach for (13)c metabolic flux analysis
    • Srour, O.; Young, J.D.; Eldar, Y.C. Fluxomers: A new approach for (13)c metabolic flux analysis. BMC Syst. Biol. 2011, 5, 129. [CrossRef] [PubMed]
    • (2011) BMC Syst. Biol. , vol.5 , pp. 129
    • Srour, O.1    Young, J.D.2    Eldar, Y.C.3
  • 178
    • 17444372724 scopus 로고    scopus 로고
    • Snopt: An sqp algorithm for large-scale constrained optimization
    • Gill, P.E.; Murray, W.; Saunders, M.A. Snopt: An sqp algorithm for large-scale constrained optimization. SIAM Rev. 2005, 47, 99–131. [CrossRef]
    • (2005) SIAM Rev , vol.47 , pp. 99-131
    • Gill, P.E.1    Murray, W.2    Saunders, M.A.3
  • 179
    • 84857845281 scopus 로고    scopus 로고
    • Influx_s: Increasing numerical stability and precision for metabolic flux analysis in isotope labelling experiments
    • Sokol, S.; Millard, P.; Portais, J.-C. Influx_s: Increasing numerical stability and precision for metabolic flux analysis in isotope labelling experiments. Bioinformatics 2012, 28, 687–693. [CrossRef] [PubMed]
    • (2012) Bioinformatics , vol.28 , pp. 687-693
    • Sokol, S.1    Millard, P.2    Portais, J.-C.3
  • 181
    • 0035140099 scopus 로고    scopus 로고
    • Network identification and flux quantification in the central metabolism of saccharomyces cerevisiae under different conditions of glucose repression
    • Gombert, A.K.; Moreira dos Santos, M.; Christensen, B.; Nielsen, J. Network identification and flux quantification in the central metabolism of saccharomyces cerevisiae under different conditions of glucose repression. J. Bacteriol. 2001, 183, 1441–1451. [CrossRef] [PubMed]
    • (2001) J. Bacteriol. , vol.183 , pp. 1441-1451
    • Gombert, A.K.1    Moreira Dos Santos, M.2    Christensen, B.3    Nielsen, J.4
  • 182
    • 84903650019 scopus 로고    scopus 로고
    • Openmebius: An open source software for isotopically nonstationary 13c-based metabolic flux analysis
    • Kajihata, S.; Furusawa, C.; Matsuda, F.; Shimizu, H. Openmebius: An open source software for isotopically nonstationary 13c-based metabolic flux analysis. BioMed Res. Int. 2014, 2014, 10. [CrossRef] [PubMed]
    • (2014) Biomed Res. Int. , vol.2014 , pp. 10
    • Kajihata, S.1    Furusawa, C.2    Matsuda, F.3    Shimizu, H.4
  • 184
    • 33847378479 scopus 로고    scopus 로고
    • Engineering of the pyruvate dehydrogenase bypass in saccharomyces cerevisiae for high-level production of isoprenoids
    • Shiba, Y.; Paradise, E.M.; Kirby, J.; Ro, D.-K.; Keasling, J.D. Engineering of the pyruvate dehydrogenase bypass in saccharomyces cerevisiae for high-level production of isoprenoids. Metab. Eng. 2007, 9, 160–168. [CrossRef] [PubMed]
    • (2007) Metab. Eng. , vol.9 , pp. 160-168
    • Shiba, Y.1    Paradise, E.M.2    Kirby, J.3    Ro, D.-K.4    Keasling, J.D.5
  • 185
    • 84860649085 scopus 로고    scopus 로고
    • Metabolic flux profiling of recombinant protein secreting pichia pastoris growing on glucose:Methanol mixtures
    • Jordà, J.; Jouhten, P.; Cámara, E.; Maaheimo, H.; Albiol, J.; Ferrer, P. Metabolic flux profiling of recombinant protein secreting pichia pastoris growing on glucose:Methanol mixtures. Microb. Cell Fact. 2012, 11, 57. [CrossRef] [PubMed]
    • (2012) Microb. Cell Fact. , vol.11 , pp. 57
    • Jordà, J.1    Jouhten, P.2    Cámara, E.3    Maaheimo, H.4    Albiol, J.5    Ferrer, P.6
  • 186
    • 64049099490 scopus 로고    scopus 로고
    • Different biochemical mechanisms ensure network-wide balancing of reducing equivalents in microbial metabolism
    • Fuhrer, T.; Sauer, U. Different biochemical mechanisms ensure network-wide balancing of reducing equivalents in microbial metabolism. J. Bacteriol. 2009, 191, 2112–2121. [CrossRef] [PubMed]
    • (2009) J. Bacteriol. , vol.191 , pp. 2112-2121
    • Fuhrer, T.1    Sauer, U.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.