메뉴 건너뛰기




Volumn 93, Issue 4, 2006, Pages 665-673

The expression of a Pichia stipitis xylose reductase mutant with higher KM for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae

Author keywords

NAD(P)H; Saccharomyces cerevisiae; Site specific mutagenesis; Xylitol; Xylose reductase

Indexed keywords

BIOMASS; ETHANOL; MUTAGENESIS; YEAST;

EID: 33644879465     PISSN: 00063592     EISSN: 10970290     Source Type: Journal    
DOI: 10.1002/bit.20737     Document Type: Article
Times cited : (128)

References (41)
  • 1
    • 0029786406 scopus 로고    scopus 로고
    • Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation
    • Albers E, Larsson C, Lidén G, Niklasson C, Gustafsson L. 1996. Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation. Appl Environ Microbiol 62(9):3187-3195.
    • (1996) Appl Environ Microbiol , vol.62 , Issue.9 , pp. 3187-3195
    • Albers, E.1    Larsson, C.2    Lidén, G.3    Niklasson, C.4    Gustafsson, L.5
  • 2
    • 0024508349 scopus 로고
    • The fermentation of xylose-an analysis of the expression of Bacillus and Actinoplanes xylose isomerase genes in yeast
    • Amore R, Wilhelm M, Hollenberg CP. 1989. The fermentation of xylose-an analysis of the expression of Bacillus and Actinoplanes xylose isomerase genes in yeast. Appl Microbiol Biotechnol 30:351-357.
    • (1989) Appl Microbiol Biotechnol , vol.30 , pp. 351-357
    • Amore, R.1    Wilhelm, M.2    Hollenberg, C.P.3
  • 4
    • 0021400801 scopus 로고
    • Molecular cloning, DNA structure and expression of the Escherichia coli D-xylose isomerase
    • Briggs KA, Lancashire WE, Hartley BS. 1984. Molecular cloning, DNA structure and expression of the Escherichia coli D-xylose isomerase. EMBO J 3(3):611-616.
    • (1984) EMBO J , vol.3 , Issue.3 , pp. 611-616
    • Briggs, K.A.1    Lancashire, W.E.2    Hartley, B.S.3
  • 6
    • 0033856888 scopus 로고    scopus 로고
    • Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures
    • Eliasson A, Christensson C, Wahlbom CF, Hahn-Hägerdal B. 2000. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66(8):3381-3386.
    • (2000) Appl Environ Microbiol , vol.66 , Issue.8 , pp. 3381-3386
    • Eliasson, A.1    Christensson, C.2    Wahlbom, C.F.3    Hahn-Hägerdal, B.4
  • 7
    • 0037415332 scopus 로고    scopus 로고
    • The Streptomyces rubiginosus xylose isomerase is misfolded when expressed in Saccharomyces cerevisiae
    • Gardonyi M, Hahn-Hägerdal B. 2003. The Streptomyces rubiginosus xylose isomerase is misfolded when expressed in Saccharomyces cerevisiae. Enzyme Microbiol Technol 32:252-259.
    • (2003) Enzyme Microbiol Technol , vol.32 , pp. 252-259
    • Gardonyi, M.1    Hahn-Hägerdal, B.2
  • 8
    • 0024266139 scopus 로고
    • New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites
    • Gietz RD, Sugino A. 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74(2):527-534.
    • (1988) Gene , vol.74 , Issue.2 , pp. 527-534
    • Gietz, R.D.1    Sugino, A.2
  • 9
    • 0029994841 scopus 로고    scopus 로고
    • A new efficient gene disruption cassette for repeated use in budding yeast
    • Güldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH. 1996. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24(13):2519-2524.
    • (1996) Nucleic Acids Res , vol.24 , Issue.13 , pp. 2519-2524
    • Güldener, U.1    Heck, S.2    Fielder, T.3    Beinhauer, J.4    Hegemann, J.H.5
  • 13
    • 0031832290 scopus 로고    scopus 로고
    • Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose
    • Ho NW, Chen Z, Brainard AP. 1998. Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64(5):1852-1859.
    • (1998) Appl Environ Microbiol , vol.64 , Issue.5 , pp. 1852-1859
    • Ho, N.W.1    Chen, Z.2    Brainard, A.P.3
  • 14
    • 0025675856 scopus 로고
    • High efficiency transformation of Escherichia coli with plasmids
    • Inoue H, Nojima H, Okayama H. 1990. High efficiency transformation of Escherichia coli with plasmids. Gene 96(1):23-28.
    • (1990) Gene , vol.96 , Issue.1 , pp. 23-28
    • Inoue, H.1    Nojima, H.2    Okayama, H.3
  • 15
    • 0036208491 scopus 로고    scopus 로고
    • Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose
    • Jeppsson M, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF. 2002. Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl Environ Microbiol 68(4):1604-1609.
    • (2002) Appl Environ Microbiol , vol.68 , Issue.4 , pp. 1604-1609
    • Jeppsson, M.1    Johansson, B.2    Hahn-Hägerdal, B.3    Gorwa-Grauslund, M.F.4
  • 16
    • 0345329541 scopus 로고    scopus 로고
    • The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains
    • Jeppsson M, Johansson B, Ruhdal-Jensen P, Hahn-Hägerdal B, Gorwa-Grauslund MF. 2003a. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains. Yeast 20:1263-1272.
    • (2003) Yeast , vol.20 , pp. 1263-1272
    • Jeppsson, M.1    Johansson, B.2    Ruhdal-Jensen, P.3    Hahn-Hägerdal, B.4    Gorwa-Grauslund, M.F.5
  • 17
    • 0037375880 scopus 로고    scopus 로고
    • Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae
    • Jeppsson M, Träff K, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF. 2003b. Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Res 3:167-175.
    • (2003) FEMS Yeast Res , vol.3 , pp. 167-175
    • Jeppsson, M.1    Träff, K.2    Johansson, B.3    Hahn-Hägerdal, B.4    Gorwa-Grauslund, M.F.5
  • 18
    • 0036187741 scopus 로고    scopus 로고
    • Overproduction of pentose phosphate pathway enzymes using a new CRE-loxP expression vector for repeated genomic integration in Saccharomyces cerevisiae
    • Johansson B, Hahn-Hägerdal B. 2002. Overproduction of pentose phosphate pathway enzymes using a new CRE-loxP expression vector for repeated genomic integration in Saccharomyces cerevisiae. Yeast 19(3):225-231.
    • (2002) Yeast , vol.19 , Issue.3 , pp. 225-231
    • Johansson, B.1    Hahn-Hägerdal, B.2
  • 19
    • 17644373035 scopus 로고    scopus 로고
    • Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering
    • Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF. 2005. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22:359-368.
    • (2005) Yeast , vol.22 , pp. 359-368
    • Karhumaa, K.1    Hahn-Hägerdal, B.2    Gorwa-Grauslund, M.F.3
  • 20
    • 0032008240 scopus 로고    scopus 로고
    • Mutational analysis of the role of the conserved lysine-270 in the Pichia stipitis xylose reductase
    • Kostrzynska M, Sopher CR, Lee H. 1998. Mutational analysis of the role of the conserved lysine-270 in the Pichia stipitis xylose reductase. FEMS Microbiol Lett 159(1):107-112.
    • (1998) FEMS Microbiol Lett , vol.159 , Issue.1 , pp. 107-112
    • Kostrzynska, M.1    Sopher, C.R.2    Lee, H.3
  • 22
    • 1642315441 scopus 로고    scopus 로고
    • Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: A proof of principle
    • Kuyper M, Winkler AA, van Dijken JP, Pronk JT. 2004. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: A proof of principle. FEMS Yeast Res 4(6):655-664.
    • (2004) FEMS Yeast Res , vol.4 , Issue.6 , pp. 655-664
    • Kuyper, M.1    Winkler, A.A.2    Van Dijken, J.P.3    Pronk, J.T.4
  • 23
    • 0027395082 scopus 로고
    • Xylose fermentation by Saccharomyces cerevisiae
    • Kötter P, Ciriacy M. 1993. Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38:776-783.
    • (1993) Appl Microbiol Biotechnol , vol.38 , pp. 776-783
    • Kötter, P.1    Ciriacy, M.2
  • 24
    • 0015888270 scopus 로고
    • Reduced pyridine-nucleotides balance in glucose-growing Saccharomyces cerevisiae
    • Lagunas R, Gancedo JM. 1973. Reduced pyridine-nucleotides balance in glucose-growing Saccharomyces cerevisiae. Eur J Biochem 37(1):90-94.
    • (1973) Eur J Biochem , vol.37 , Issue.1 , pp. 90-94
    • Lagunas, R.1    Gancedo, J.M.2
  • 25
    • 0142124355 scopus 로고    scopus 로고
    • Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis
    • Lee JK, Koo BS, Kim SY. 2003. Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis. Appl Environ Microbiol 69(10):6179-6188.
    • (2003) Appl Environ Microbiol , vol.69 , Issue.10 , pp. 6179-6188
    • Lee, J.K.1    Koo, B.S.2    Kim, S.Y.3
  • 26
    • 0028821530 scopus 로고
    • Amino acid substitutions in the yeast Pichia stipitis xylitol dehydrogenase coenzyme-binding domain affect the coenzyme specificity
    • Metzger MH, Hollenberg CP. 1995. Amino acid substitutions in the yeast Pichia stipitis xylitol dehydrogenase coenzyme-binding domain affect the coenzyme specificity. Eur J Biochem 228(1):50-54.
    • (1995) Eur J Biochem , vol.228 , Issue.1 , pp. 50-54
    • Metzger, M.H.1    Hollenberg, C.P.2
  • 27
    • 0030000304 scopus 로고    scopus 로고
    • Cloning and expression of the Clostridium thermosulfurogenes D-xylose isomerase gene (xylA) in Saccharomyces cerevisiae
    • Moes CJ, Pretorius IS, van Zyl W. 1996. Cloning and expression of the Clostridium thermosulfurogenes D-xylose isomerase gene (xylA) in Saccharomyces cerevisiae. Biotechnol Lett 18:269-274.
    • (1996) Biotechnol Lett , vol.18 , pp. 269-274
    • Moes, C.J.1    Pretorius, I.S.2    Van Zyl, W.3
  • 28
    • 0035862739 scopus 로고    scopus 로고
    • Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool
    • Nissen TL, Anderlund M, Nielsen J, Villadsen J, Kielland-Brandt MC. 2001. Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool. Yeast 18(1):19-32.
    • (2001) Yeast , vol.18 , Issue.1 , pp. 19-32
    • Nissen, T.L.1    Anderlund, M.2    Nielsen, J.3    Villadsen, J.4    Kielland-Brandt, M.C.5
  • 29
    • 12844287005 scopus 로고    scopus 로고
    • The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography
    • Petschacher B, Leitgeb S, Kavanagh KL, Wilson DK, Nidetzky B. 2004. The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography. Biochem J 385 (Pt 1):75-83.
    • (2004) Biochem J , vol.385 , Issue.PART 1 , pp. 75-83
    • Petschacher, B.1    Leitgeb, S.2    Kavanagh, K.L.3    Wilson, D.K.4    Nidetzky, B.5
  • 30
    • 0041528246 scopus 로고    scopus 로고
    • Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyces cerevisiae improves ethanol production
    • Roca C, Nielsen J, Olsson L. 2003. Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyces cerevisiae improves ethanol production. Appl Environ Microbiol 69(8):4732-4736.
    • (2003) Appl Environ Microbiol , vol.69 , Issue.8 , pp. 4732-4736
    • Roca, C.1    Nielsen, J.2    Olsson, L.3
  • 32
    • 0029862486 scopus 로고    scopus 로고
    • Extranuclear expression of the bacterial xylose isomerase (xylA) and the UDP-glucose dehydrogenase (hasB) genes in yeast with Kluyveromyces lactis linear killer plasmids as vectors
    • Schrunder J, Gunge N, Meinhardt F. 1996. Extranuclear expression of the bacterial xylose isomerase (xylA) and the UDP-glucose dehydrogenase (hasB) genes in yeast with Kluyveromyces lactis linear killer plasmids as vectors. Curr Microbiol 33(5):323-330.
    • (1996) Curr Microbiol , vol.33 , Issue.5 , pp. 323-330
    • Schrunder, J.1    Gunge, N.2    Meinhardt, F.3
  • 33
    • 0027415073 scopus 로고
    • Construction of xylose-assimilating Saccharomyces cerevisiae
    • Tantirungkij M, Nakashima N, Seki T, Yoshida T. 1993. Construction of xylose-assimilating Saccharomyces cerevisiae. J Ferm Bioeng 75(2):83-88.
    • (1993) J Ferm Bioeng , vol.75 , Issue.2 , pp. 83-88
    • Tantirungkij, M.1    Nakashima, N.2    Seki, T.3    Yoshida, T.4
  • 34
    • 0034878314 scopus 로고    scopus 로고
    • Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: Importance of xylulokinase (XKS1) and oxygen availability
    • Toivari MH, Aristidou A, Ruohonen L, Penttilä M. 2001. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: Importance of xylulokinase (XKS1) and oxygen availability. Metab Eng 3(3):236-249.
    • (2001) Metab Eng , vol.3 , Issue.3 , pp. 236-249
    • Toivari, M.H.1    Aristidou, A.2    Ruohonen, L.3    Penttilä, M.4
  • 35
    • 1242284461 scopus 로고    scopus 로고
    • Endogeneous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae
    • Träff-Bjerre KL, Jeppsson M, Hahn-Hägerdal B, Gorwa-Grauslund MF. 2003. Endogeneous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae. Yeast 21(2):141-150.
    • (2003) Yeast , vol.21 , Issue.2 , pp. 141-150
    • Träff-Bjerre, K.L.1    Jeppsson, M.2    Hahn-Hägerdal, B.3    Gorwa-Grauslund, M.F.4
  • 36
    • 0142136153 scopus 로고    scopus 로고
    • Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae
    • Verho R, Londesborough J, Penttilä M, Richard P. 2003. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl Environ Microbiol 69(10):5892-5897.
    • (2003) Appl Environ Microbiol , vol.69 , Issue.10 , pp. 5892-5897
    • Verho, R.1    Londesborough, J.2    Penttilä, M.3    Richard, P.4
  • 37
    • 0037140422 scopus 로고    scopus 로고
    • Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae
    • Wahlbom CF, Hahn-Hägerdal B. 2002. Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 78(2):172-178.
    • (2002) Biotechnol Bioeng , vol.78 , Issue.2 , pp. 172-178
    • Wahlbom, C.F.1    Hahn-Hägerdal, B.2
  • 38
    • 0035809032 scopus 로고    scopus 로고
    • Intracellular fluxes in a recombinant xylose-utilizing Saccharomyces cerevisiae cultivated anaerobically at different dilution rates and feed concentrations
    • Wahlbom CF, Eliasson A, Hahn-Hägerdal B. 2001. Intracellular fluxes in a recombinant xylose-utilizing Saccharomyces cerevisiae cultivated anaerobically at different dilution rates and feed concentrations. Biotechnol Bioeng 72(3):289-296.
    • (2001) Biotechnol Bioeng , vol.72 , Issue.3 , pp. 289-296
    • Wahlbom, C.F.1    Eliasson, A.2    Hahn-Hägerdal, B.3
  • 39
    • 0029909726 scopus 로고    scopus 로고
    • Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase
    • Walfridsson M, Bao X, Anderlund M, Lilius G, Bülow L, Hahn-Hägerdal B. 1996. Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol 62(12):4648-4651.
    • (1996) Appl Environ Microbiol , vol.62 , Issue.12 , pp. 4648-4651
    • Walfridsson, M.1    Bao, X.2    Anderlund, M.3    Lilius, G.4    Bülow, L.5    Hahn-Hägerdal, B.6
  • 40
    • 15544372361 scopus 로고    scopus 로고
    • Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc
    • Watanabe S, Kodaki T, Makino K. 2005. Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. J Biol Chem 280:10340-10349.
    • (2005) J Biol Chem , vol.280 , pp. 10340-10349
    • Watanabe, S.1    Kodaki, T.2    Makino, K.3
  • 41
    • 0031050344 scopus 로고    scopus 로고
    • Site-directed mutagenesis of the cysteine residues in the Pichia stipitis xylose reductase
    • Zhang Y, Lee H. 1997. Site-directed mutagenesis of the cysteine residues in the Pichia stipitis xylose reductase. FEMS Microbiol Lett 147(2):227-232.
    • (1997) FEMS Microbiol Lett , vol.147 , Issue.2 , pp. 227-232
    • Zhang, Y.1    Lee, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.