메뉴 건너뛰기




Volumn 120, Issue 4, 2015, Pages 396-404

Metabolomic analysis of acid stress response in Saccharomyces cerevisiae

Author keywords

Acid stress; Lactic acid; Metabolome; Proline; Saccharomyces cerevisiae

Indexed keywords

CAPILLARY ELECTROPHORESIS; CELLS; CYTOLOGY; MASS SPECTROMETRY; METABOLITES; PEPTIDES; PRINCIPAL COMPONENT ANALYSIS; YEAST;

EID: 84940898261     PISSN: 13891723     EISSN: 13474421     Source Type: Journal    
DOI: 10.1016/j.jbiosc.2015.02.011     Document Type: Article
Times cited : (39)

References (71)
  • 2
    • 84901235008 scopus 로고    scopus 로고
    • Biomass-to-bioenergy and biofuel supply chain optimization: overview, key issues and challenges
    • Yue D., You F., Snyder S.W. Biomass-to-bioenergy and biofuel supply chain optimization: overview, key issues and challenges. J. Comp. Chem. Eng. 2014, 66:35-56.
    • (2014) J. Comp. Chem. Eng. , vol.66 , pp. 35-56
    • Yue, D.1    You, F.2    Snyder, S.W.3
  • 3
    • 0024210999 scopus 로고
    • Ethanol tolerance of Saccharomyces cerevisiae and its relationship to lipid content and composition
    • Ghareib M., Youssef K.A., Khalil A.A. Ethanol tolerance of Saccharomyces cerevisiae and its relationship to lipid content and composition. Folia Microbiol. (Praha). 1988, 33:447-452.
    • (1988) Folia Microbiol. (Praha). , vol.33 , pp. 447-452
    • Ghareib, M.1    Youssef, K.A.2    Khalil, A.A.3
  • 4
    • 34249053477 scopus 로고    scopus 로고
    • Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae
    • Hu X.H., Wang M.H., Tan T., Li J.R., Yang H., Leach L., Zhang R.M., Luo Z.W. Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae. Genetics 2007, 175:1479-1487.
    • (2007) Genetics , vol.175 , pp. 1479-1487
    • Hu, X.H.1    Wang, M.H.2    Tan, T.3    Li, J.R.4    Yang, H.5    Leach, L.6    Zhang, R.M.7    Luo, Z.W.8
  • 5
    • 1842332756 scopus 로고    scopus 로고
    • Comparative physiology of salt tolerance in Candida tropicalis and Saccharomyces cerevisiae
    • Garcia M.J., Rios G., Ali R., Belles J.M., Serrano R. Comparative physiology of salt tolerance in Candida tropicalis and Saccharomyces cerevisiae. Microbiology 1997, 143:1125-1131.
    • (1997) Microbiology , vol.143 , pp. 1125-1131
    • Garcia, M.J.1    Rios, G.2    Ali, R.3    Belles, J.M.4    Serrano, R.5
  • 6
    • 44649188503 scopus 로고    scopus 로고
    • Selection of thermotolerant yeast strains Saccharomyces cerevisiae for bioethanol production
    • Edgardo A., Carolina P., Manuel R., Juanita F., Baeza J. Selection of thermotolerant yeast strains Saccharomyces cerevisiae for bioethanol production. Enzyme Microb. Technol. 2008, 43:120-123.
    • (2008) Enzyme Microb. Technol. , vol.43 , pp. 120-123
    • Edgardo, A.1    Carolina, P.2    Manuel, R.3    Juanita, F.4    Baeza, J.5
  • 7
    • 0028136831 scopus 로고
    • Activity of the plasma membrane H(+)-ATPase is a key physiological determinant of thermotolerance in Saccharomyces cerevisiae
    • Coote P.J., Jones M.V., Seymour I.J., Rowe D.L., Ferdinando D.P., McArthur A.J., Cole M.B. Activity of the plasma membrane H(+)-ATPase is a key physiological determinant of thermotolerance in Saccharomyces cerevisiae. Microbiology 1994, 140:1881-1890.
    • (1994) Microbiology , vol.140 , pp. 1881-1890
    • Coote, P.J.1    Jones, M.V.2    Seymour, I.J.3    Rowe, D.L.4    Ferdinando, D.P.5    McArthur, A.J.6    Cole, M.B.7
  • 8
    • 0033458078 scopus 로고    scopus 로고
    • Yeast superoxide dismutase mutants reveal a pro-oxidant action of weak organic acid food preservatives
    • Piper P.W. Yeast superoxide dismutase mutants reveal a pro-oxidant action of weak organic acid food preservatives. Free Radic. Biol. Med. 1999, 27:1219-1227.
    • (1999) Free Radic. Biol. Med. , vol.27 , pp. 1219-1227
    • Piper, P.W.1
  • 9
    • 77958162502 scopus 로고    scopus 로고
    • Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view
    • Mira N.P., Teixeira M.C., Sa-Correia I. Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view. OMICS 2010, 14:525-540.
    • (2010) OMICS , vol.14 , pp. 525-540
    • Mira, N.P.1    Teixeira, M.C.2    Sa-Correia, I.3
  • 10
    • 84883653075 scopus 로고    scopus 로고
    • Different response to acetic acid stress in Saccharomyces cerevisiae wild-type and l-ascorbic acid-producing strains
    • Martani F., Fossati T., Posteri R., Signori L., Porro D., Branduardi P. Different response to acetic acid stress in Saccharomyces cerevisiae wild-type and l-ascorbic acid-producing strains. Yeast. 2013, 30:365-378.
    • (2013) Yeast. , vol.30 , pp. 365-378
    • Martani, F.1    Fossati, T.2    Posteri, R.3    Signori, L.4    Porro, D.5    Branduardi, P.6
  • 11
    • 84874487785 scopus 로고    scopus 로고
    • Characterization of a recombinant flocculent Saccharomyces cerevisiae strain that co-ferments glucose and xylose: II. influence of pH and acetic acid on ethanol production
    • Matsushika A., Sawayama S. Characterization of a recombinant flocculent Saccharomyces cerevisiae strain that co-ferments glucose and xylose: II. influence of pH and acetic acid on ethanol production. Appl. Biochem. Biotechnol. 2012, 168:2094-2104.
    • (2012) Appl. Biochem. Biotechnol. , vol.168 , pp. 2094-2104
    • Matsushika, A.1    Sawayama, S.2
  • 12
    • 84883819175 scopus 로고    scopus 로고
    • Impact of osmotic stress and ethanol inhibition in yeast cells on process oscillation associated with continuous very-high-gravity ethanol fermentation
    • Wang L., Zhao X.Q., Xue C., Bai F.W. Impact of osmotic stress and ethanol inhibition in yeast cells on process oscillation associated with continuous very-high-gravity ethanol fermentation. Biotechnol. Biofuels 2013, 6:133.
    • (2013) Biotechnol. Biofuels , vol.6 , pp. 133
    • Wang, L.1    Zhao, X.Q.2    Xue, C.3    Bai, F.W.4
  • 13
    • 84857689737 scopus 로고    scopus 로고
    • Overexpression of the yeast trancsription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production
    • Sasano Y., Watanabe D., Ukibe K., Inai T., Ohtsu I., Shimoi H., Takagi H. Overexpression of the yeast trancsription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production. J. Biosci. Bioeng. 2012, 114:451-455.
    • (2012) J. Biosci. Bioeng. , vol.114 , pp. 451-455
    • Sasano, Y.1    Watanabe, D.2    Ukibe, K.3    Inai, T.4    Ohtsu, I.5    Shimoi, H.6    Takagi, H.7
  • 16
    • 84857784666 scopus 로고    scopus 로고
    • Comparative metabolic profiling of parental and inhibitors-tolerant yeasts during lignocellulosic ethanol fermentation
    • Ding M.Z., Wang X., Yang Y., Yuan Y.J. Comparative metabolic profiling of parental and inhibitors-tolerant yeasts during lignocellulosic ethanol fermentation. Metabolomics 2012, 8:232-243.
    • (2012) Metabolomics , vol.8 , pp. 232-243
    • Ding, M.Z.1    Wang, X.2    Yang, Y.3    Yuan, Y.J.4
  • 17
    • 84885551317 scopus 로고    scopus 로고
    • Adaptive evolution of an industrial strain of Saccharomyces cerevisiae for combined tolerance to inhibitors and temperature
    • Wallace-Salinas V., Gorwa-Grauslund M.F. Adaptive evolution of an industrial strain of Saccharomyces cerevisiae for combined tolerance to inhibitors and temperature. Biotechnol. Biofuels 2013, 6:151.
    • (2013) Biotechnol. Biofuels , vol.6 , pp. 151
    • Wallace-Salinas, V.1    Gorwa-Grauslund, M.F.2
  • 18
    • 0031948298 scopus 로고    scopus 로고
    • Intracellular acidification as a mechanism for the inhibition by acid hydrolysis-derived inhibitors of xylose fermentation by yeasts
    • Lohmeier-Vogel E.M., Sopher C.R., Lee H. Intracellular acidification as a mechanism for the inhibition by acid hydrolysis-derived inhibitors of xylose fermentation by yeasts. J. Ind. Microbiol. Biotechnol. 1998, 20:75-81.
    • (1998) J. Ind. Microbiol. Biotechnol. , vol.20 , pp. 75-81
    • Lohmeier-Vogel, E.M.1    Sopher, C.R.2    Lee, H.3
  • 19
    • 84918576525 scopus 로고    scopus 로고
    • Physiological response of Saccharomyces cerevisiae to weak acids in lignocellulosic hydrolysate
    • Guo Z., Olsson L. Physiological response of Saccharomyces cerevisiae to weak acids in lignocellulosic hydrolysate. FEMS Yeast Res. 2014, 14:1234-1248.
    • (2014) FEMS Yeast Res. , vol.14 , pp. 1234-1248
    • Guo, Z.1    Olsson, L.2
  • 21
    • 33747367729 scopus 로고    scopus 로고
    • Improvement of lactic acid production in Saccharomyces cerevisiae by cell sorting for high intracellular pH
    • Valli M., Sauer M., Branduardi P., Borth N., Porro D., Mattanovich D. Improvement of lactic acid production in Saccharomyces cerevisiae by cell sorting for high intracellular pH. Appl. Environ. Microbiol. 2006, 72:5492-5499.
    • (2006) Appl. Environ. Microbiol. , vol.72 , pp. 5492-5499
    • Valli, M.1    Sauer, M.2    Branduardi, P.3    Borth, N.4    Porro, D.5    Mattanovich, D.6
  • 22
    • 0031911933 scopus 로고    scopus 로고
    • Measurement of the effects of acetic acid and extracellular pH on intracellular pH of nonfermenting, individual Saccharomyces cerevisiae cells by fluorescence microscopy
    • Guldfeldt L.U., Arneborg N. Measurement of the effects of acetic acid and extracellular pH on intracellular pH of nonfermenting, individual Saccharomyces cerevisiae cells by fluorescence microscopy. Appl. Environ. Microbiol. 1998, 64:530-534.
    • (1998) Appl. Environ. Microbiol. , vol.64 , pp. 530-534
    • Guldfeldt, L.U.1    Arneborg, N.2
  • 23
    • 0032948889 scopus 로고    scopus 로고
    • Weak-acid preservatives: modelling microbial inhibition and response
    • Lambert R.J., Stratford M. Weak-acid preservatives: modelling microbial inhibition and response. J. Appl. Microbiol. 1999, 86:157-164.
    • (1999) J. Appl. Microbiol. , vol.86 , pp. 157-164
    • Lambert, R.J.1    Stratford, M.2
  • 24
    • 34548775911 scopus 로고    scopus 로고
    • Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid
    • Mollapour M., Piper P.W. Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol. Cell. Biol. 2007, 27:6446-6456.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 6446-6456
    • Mollapour, M.1    Piper, P.W.2
  • 25
    • 84857689251 scopus 로고    scopus 로고
    • Lactic-acid stress causes vacuolar fragmentation and impairs intracellular amino-acid homeostasis in Saccharomyces cerevisiae
    • Suzuki T., Sugiyama M., Wakazono K., Kaneko Y., Harashima S. Lactic-acid stress causes vacuolar fragmentation and impairs intracellular amino-acid homeostasis in Saccharomyces cerevisiae. J. Biosci. Bioeng. 2012, 113:421-430.
    • (2012) J. Biosci. Bioeng. , vol.113 , pp. 421-430
    • Suzuki, T.1    Sugiyama, M.2    Wakazono, K.3    Kaneko, Y.4    Harashima, S.5
  • 26
    • 78650995732 scopus 로고    scopus 로고
    • Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae
    • Hasunuma T., Sanda T., Yamada R., Yoshimura K., Ishii J., Kondo A. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microb. Cell Fact. 2011, 10:2.
    • (2011) Microb. Cell Fact. , vol.10 , pp. 2
    • Hasunuma, T.1    Sanda, T.2    Yamada, R.3    Yoshimura, K.4    Ishii, J.5    Kondo, A.6
  • 27
    • 59149103060 scopus 로고    scopus 로고
    • The RIM101 pathway has a role in Saccharomyces cerevisiae adaptive response and resistance to propionic acid and other weak acids
    • Mira N.P., Lourenço A.B., Fernandes A.R., Becker J.D., Sá-Correia I. The RIM101 pathway has a role in Saccharomyces cerevisiae adaptive response and resistance to propionic acid and other weak acids. FEMS Yeast Res. 2009, 9:202-216.
    • (2009) FEMS Yeast Res. , vol.9 , pp. 202-216
    • Mira, N.P.1    Lourenço, A.B.2    Fernandes, A.R.3    Becker, J.D.4    Sá-Correia, I.5
  • 28
    • 33747337558 scopus 로고    scopus 로고
    • Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p
    • Kawahata M., Masaki K., Fujii T., Iefuji H. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res. 2006, 6:924-936.
    • (2006) FEMS Yeast Res. , vol.6 , pp. 924-936
    • Kawahata, M.1    Masaki, K.2    Fujii, T.3    Iefuji, H.4
  • 29
    • 84931837170 scopus 로고    scopus 로고
    • Comparative proteomic and metabolomic analyses reveal mechanisms of improved cold stress tolerance in bermudagrass (Cynodon dactylon(L). Pers.) by exogenous calcium
    • Shi H., Ye T., Zhong B., Liu X., Chan Z. Comparative proteomic and metabolomic analyses reveal mechanisms of improved cold stress tolerance in bermudagrass (Cynodon dactylon(L). Pers.) by exogenous calcium. J. Integr. Plant Biol. 2014, 56:1064-1079.
    • (2014) J. Integr. Plant Biol. , vol.56 , pp. 1064-1079
    • Shi, H.1    Ye, T.2    Zhong, B.3    Liu, X.4    Chan, Z.5
  • 30
    • 84927169676 scopus 로고    scopus 로고
    • Metabolomic shifts in Brassica napus lines with enhanced BnPLC2 expression impact their response to low temperature stress and plant pathogens
    • Nokhrina K., Ray H., Bock C., Georges F. Metabolomic shifts in Brassica napus lines with enhanced BnPLC2 expression impact their response to low temperature stress and plant pathogens. GM Crops Food 2014, 5:120-131.
    • (2014) GM Crops Food , vol.5 , pp. 120-131
    • Nokhrina, K.1    Ray, H.2    Bock, C.3    Georges, F.4
  • 31
    • 84896597381 scopus 로고    scopus 로고
    • Ubiquinone accumulation improves osmotic-stress tolerance in Escherichia coli
    • Sevin D.C., Sauer U. Ubiquinone accumulation improves osmotic-stress tolerance in Escherichia coli. Nat. Chem. Biol. 2014, 10:266-272.
    • (2014) Nat. Chem. Biol. , vol.10 , pp. 266-272
    • Sevin, D.C.1    Sauer, U.2
  • 33
    • 17444407064 scopus 로고    scopus 로고
    • Efficient production of l-lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated l-lactate dehydrogenase gene
    • Ishida N., Saitoh S., Tokuhiro K., Nagamori E., Matsuyama T., Kitamoto K., Takahashi H. Efficient production of l-lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated l-lactate dehydrogenase gene. Appl. Environ. Microbiol. 2005, 71:1964-1970.
    • (2005) Appl. Environ. Microbiol. , vol.71 , pp. 1964-1970
    • Ishida, N.1    Saitoh, S.2    Tokuhiro, K.3    Nagamori, E.4    Matsuyama, T.5    Kitamoto, K.6    Takahashi, H.7
  • 34
    • 33745821713 scopus 로고    scopus 로고
    • Biotechnological production of lactic acid and its recent applications
    • Wee Y.-J., Kim J.-N., Ryu H.-W. Biotechnological production of lactic acid and its recent applications. Food Technol. Biotechnol. 2006, 44:163-172.
    • (2006) Food Technol. Biotechnol. , vol.44 , pp. 163-172
    • Wee, Y.-J.1    Kim, J.-N.2    Ryu, H.-W.3
  • 35
    • 84877103996 scopus 로고    scopus 로고
    • Integrated transcriptomic and metabolomic analysis of the central metabolism of Synechocystis sp. PCC 6803 under different trophic conditions
    • Yoshikawa K., Hirasawa T., Ogawa K., Hidaka Y., Nakajima T., Furusawa C., Shimizu H. Integrated transcriptomic and metabolomic analysis of the central metabolism of Synechocystis sp. PCC 6803 under different trophic conditions. Biotechnol. J. 2013, 8:571-580.
    • (2013) Biotechnol. J. , vol.8 , pp. 571-580
    • Yoshikawa, K.1    Hirasawa, T.2    Ogawa, K.3    Hidaka, Y.4    Nakajima, T.5    Furusawa, C.6    Shimizu, H.7
  • 36
    • 0030040559 scopus 로고    scopus 로고
    • A novel method for continuous determination of the intracellular pH in bacteria with the internally conjugated fluorescent probe 5 (and 6-)-carboxyfluorescein succinimidyl ester
    • Breeuwer P., Drocourt J., Rombouts F.M., Abee T. A novel method for continuous determination of the intracellular pH in bacteria with the internally conjugated fluorescent probe 5 (and 6-)-carboxyfluorescein succinimidyl ester. Appl. Environ. Microbiol. 1996, 62:178-183.
    • (1996) Appl. Environ. Microbiol. , vol.62 , pp. 178-183
    • Breeuwer, P.1    Drocourt, J.2    Rombouts, F.M.3    Abee, T.4
  • 37
    • 0030998381 scopus 로고    scopus 로고
    • Ratiometric measurement of intracellular pH of cultured cells with BCECF in a fluorescence multi-well plate reader
    • Grant R.L., Acosta D. Ratiometric measurement of intracellular pH of cultured cells with BCECF in a fluorescence multi-well plate reader. In Vitro Cell Dev. Biol. Anim. 1997, 33:256-260.
    • (1997) In Vitro Cell Dev. Biol. Anim. , vol.33 , pp. 256-260
    • Grant, R.L.1    Acosta, D.2
  • 38
    • 0028896619 scopus 로고
    • Measurement of yeast intracellular pH by image processing and the change it undergoes during growth phase
    • Imai T., Ohno T. Measurement of yeast intracellular pH by image processing and the change it undergoes during growth phase. J. Biotechnol. 1995, 38:165-172.
    • (1995) J. Biotechnol. , vol.38 , pp. 165-172
    • Imai, T.1    Ohno, T.2
  • 40
    • 0032712574 scopus 로고    scopus 로고
    • Fluorescent dyes for lymphocyte migration and proliferation studies
    • Parish C.R. Fluorescent dyes for lymphocyte migration and proliferation studies. Immunol. Cell Biol. 1999, 77:499-508.
    • (1999) Immunol. Cell Biol. , vol.77 , pp. 499-508
    • Parish, C.R.1
  • 41
    • 0037109731 scopus 로고    scopus 로고
    • Application of kinetic-based biospecific affinity chromatographic systems to ATP-dependent enzymes: studies with yeast hexokinase
    • Mulcahy P., O'Flaherty M., Jennings L., Griffin T. Application of kinetic-based biospecific affinity chromatographic systems to ATP-dependent enzymes: studies with yeast hexokinase. Anal. Biochem. 2002, 309:279-292.
    • (2002) Anal. Biochem. , vol.309 , pp. 279-292
    • Mulcahy, P.1    O'Flaherty, M.2    Jennings, L.3    Griffin, T.4
  • 42
    • 40149095111 scopus 로고    scopus 로고
    • Directed evolution of yeast pyruvate decarboxylase 1 for attenuated regulation and increased stability
    • Stevenson B.J., Liu J.W., Ollis D.L. Directed evolution of yeast pyruvate decarboxylase 1 for attenuated regulation and increased stability. Biochemistry 2008, 47:3013-3025.
    • (2008) Biochemistry , vol.47 , pp. 3013-3025
    • Stevenson, B.J.1    Liu, J.W.2    Ollis, D.L.3
  • 43
    • 0042261992 scopus 로고    scopus 로고
    • Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces serevisiae
    • Shenton D., Grant C.M. Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces serevisiae. Biochem. J. 2003, 374:513-519.
    • (2003) Biochem. J. , vol.374 , pp. 513-519
    • Shenton, D.1    Grant, C.M.2
  • 46
    • 0028302033 scopus 로고
    • GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway
    • Albertyn J., Hohmann S., Thevelein J.M., Prior B.A. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol. Cell. Biol. 1994, 14:4135-4144.
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 4135-4144
    • Albertyn, J.1    Hohmann, S.2    Thevelein, J.M.3    Prior, B.A.4
  • 47
    • 0038530709 scopus 로고    scopus 로고
    • Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways
    • Wojda I., Alonso-Monge R., Bebelman J.P., Mager W.H., Siderius M. Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways. Microbiology 2003, 149:1193-1204.
    • (2003) Microbiology , vol.149 , pp. 1193-1204
    • Wojda, I.1    Alonso-Monge, R.2    Bebelman, J.P.3    Mager, W.H.4    Siderius, M.5
  • 48
    • 0029042565 scopus 로고
    • Oxidative stress response in yeast: effect of glutathione on adaptation to hydrogen peroxide stress in Saccharomyces cerevisiae
    • Izawa S., Inoue Y., Kimura A. Oxidative stress response in yeast: effect of glutathione on adaptation to hydrogen peroxide stress in Saccharomyces cerevisiae. FEBS Lett. 1995, 368:73-76.
    • (1995) FEBS Lett. , vol.368 , pp. 73-76
    • Izawa, S.1    Inoue, Y.2    Kimura, A.3
  • 49
    • 0032583570 scopus 로고    scopus 로고
    • Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae
    • Grant C.M., Perrone G., Dawes I.W. Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 1998, 253:893-898.
    • (1998) Biochem. Biophys. Res. Commun. , vol.253 , pp. 893-898
    • Grant, C.M.1    Perrone, G.2    Dawes, I.W.3
  • 50
    • 84859586432 scopus 로고    scopus 로고
    • The response to heat shock and oxidative stress in Saccharomyces cerevisiae
    • Morano K.A., Grant C.M., Moye-Rowley W.S. The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 2012, 190:1157-1195.
    • (2012) Genetics , vol.190 , pp. 1157-1195
    • Morano, K.A.1    Grant, C.M.2    Moye-Rowley, W.S.3
  • 51
  • 52
    • 0032766243 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae weak-acid-inducible ABC transporter Pdr12 transports fluorescein and preservative anions from the cytosol by an energy-dependent mechanism
    • Holyoak C.D., Bracey D., Piper P.W., Kuchler K., Coote P.J. The Saccharomyces cerevisiae weak-acid-inducible ABC transporter Pdr12 transports fluorescein and preservative anions from the cytosol by an energy-dependent mechanism. J. Bacteriol. 1999, 181:4644-4652.
    • (1999) J. Bacteriol. , vol.181 , pp. 4644-4652
    • Holyoak, C.D.1    Bracey, D.2    Piper, P.W.3    Kuchler, K.4    Coote, P.J.5
  • 53
    • 0033962977 scopus 로고    scopus 로고
    • Proline accumulation by mutation or disruption of the proline oxidase gene improves resistance to freezing and desiccation stresses in Saccharomyces cerevisiae
    • Takagi H., Sakai K., Morida K., Nakamori S. Proline accumulation by mutation or disruption of the proline oxidase gene improves resistance to freezing and desiccation stresses in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 2000, 184:103-108.
    • (2000) FEMS Microbiol. Lett. , vol.184 , pp. 103-108
    • Takagi, H.1    Sakai, K.2    Morida, K.3    Nakamori, S.4
  • 54
    • 0037004761 scopus 로고    scopus 로고
    • Effect of proline and arginine metabolism on freezing stress of Saccharomyces cerevisiae
    • Morita Y., Nakamori S., Takagi H. Effect of proline and arginine metabolism on freezing stress of Saccharomyces cerevisiae. J. Biosci. Bioeng. 2002, 94:390-394.
    • (2002) J. Biosci. Bioeng. , vol.94 , pp. 390-394
    • Morita, Y.1    Nakamori, S.2    Takagi, H.3
  • 55
    • 0242657628 scopus 로고    scopus 로고
    • Gene dosage effect of l-proline biosynthetic enzymes on l-proline accumulation and freeze tolerance in Saccharomyces cerevisiae
    • Terao Y., Nakamori S., Takagi H. Gene dosage effect of l-proline biosynthetic enzymes on l-proline accumulation and freeze tolerance in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2003, 69:6527-6532.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 6527-6532
    • Terao, Y.1    Nakamori, S.2    Takagi, H.3
  • 56
    • 29144482938 scopus 로고    scopus 로고
    • Effect of l-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae
    • Takagi H., Takaoka M., Kawaguchi A., Kubo Y. Effect of l-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2005, 71:8656-8662.
    • (2005) Appl. Environ. Microbiol. , vol.71 , pp. 8656-8662
    • Takagi, H.1    Takaoka, M.2    Kawaguchi, A.3    Kubo, Y.4
  • 57
    • 0031551022 scopus 로고    scopus 로고
    • Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae
    • Carmelo V., Santos H., Sa-Correia I. Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae. Biochim. Biophys. Acta 1997, 1325:63-70.
    • (1997) Biochim. Biophys. Acta , vol.1325 , pp. 63-70
    • Carmelo, V.1    Santos, H.2    Sa-Correia, I.3
  • 58
  • 59
    • 0031938503 scopus 로고    scopus 로고
    • +-ATPase in the plasma membrane of Saccharomyces cerevisiae is activated during growth latency in octanoic acid-supplemented medium accompanying the decrease in intracellular pH and cell viability
    • +-ATPase in the plasma membrane of Saccharomyces cerevisiae is activated during growth latency in octanoic acid-supplemented medium accompanying the decrease in intracellular pH and cell viability. Appl. Environ. Microbiol. 1998, 64:779-783.
    • (1998) Appl. Environ. Microbiol. , vol.64 , pp. 779-783
    • Viegas, C.A.1    Almeida, P.F.2    Cavaco, A.3    Sa-Correia, I.4
  • 60
    • 0030222083 scopus 로고    scopus 로고
    • Glutathione is an important antioxidant molecule in the yeast Saccharomyces cerevisiae
    • Stephen D.W., Jamieson D.J. Glutathione is an important antioxidant molecule in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Lett. 1996, 141:207-212.
    • (1996) FEMS Microbiol. Lett. , vol.141 , pp. 207-212
    • Stephen, D.W.1    Jamieson, D.J.2
  • 61
    • 0026627817 scopus 로고
    • Cysteine addition strategy for maximum glutathione production in fed-batch culture of Saccharomyces cerevisiae
    • Alfafara C., Miura K., Shimizu H., Shioya S., Suga K. Cysteine addition strategy for maximum glutathione production in fed-batch culture of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 1992, 37:141-146.
    • (1992) Appl. Microbiol. Biotechnol. , vol.37 , pp. 141-146
    • Alfafara, C.1    Miura, K.2    Shimizu, H.3    Shioya, S.4    Suga, K.5
  • 62
    • 2442486776 scopus 로고    scopus 로고
    • Optimal fermentation conditions for enhanced glutathione production by Saccharomyces serevisiae FF-8
    • Cha J., Park J., Jeon B., Lee Y., Cho Y. Optimal fermentation conditions for enhanced glutathione production by Saccharomyces serevisiae FF-8. J. Microbiol. 2004, 42:51-55.
    • (2004) J. Microbiol. , vol.42 , pp. 51-55
    • Cha, J.1    Park, J.2    Jeon, B.3    Lee, Y.4    Cho, Y.5
  • 63
    • 7544219805 scopus 로고    scopus 로고
    • Utilization of amino acids to enhance glutathione production in Saccharomyces cerevisiae
    • Wen S., Zhang T., Tan T. Utilization of amino acids to enhance glutathione production in Saccharomyces cerevisiae. Enzyme Microb. Technol. 2004, 35:501-507.
    • (2004) Enzyme Microb. Technol. , vol.35 , pp. 501-507
    • Wen, S.1    Zhang, T.2    Tan, T.3
  • 64
    • 0030004354 scopus 로고    scopus 로고
    • Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae
    • Grant C.M., MacIver F.H., Dawes I.W. Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Curr. Genet. 1996, 29:511-515.
    • (1996) Curr. Genet. , vol.29 , pp. 511-515
    • Grant, C.M.1    MacIver, F.H.2    Dawes, I.W.3
  • 65
    • 0035808386 scopus 로고    scopus 로고
    • Expression of glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae
    • Coleman S.T., Fang T.K., Rovinsky S.A., Turano F.J., Moye-Rowley W.S. Expression of glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae. J. Biol. Chem. 2001, 276:244-250.
    • (2001) J. Biol. Chem. , vol.276 , pp. 244-250
    • Coleman, S.T.1    Fang, T.K.2    Rovinsky, S.A.3    Turano, F.J.4    Moye-Rowley, W.S.5
  • 66
    • 84896489183 scopus 로고    scopus 로고
    • Presence of proline has a protective effect on weak acid stressed Saccharomyces cerevisiae
    • Greetham D., Takagi H., Phister T.P. Presence of proline has a protective effect on weak acid stressed Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 2014, 105:641-652.
    • (2014) Antonie Van Leeuwenhoek , vol.105 , pp. 641-652
    • Greetham, D.1    Takagi, H.2    Phister, T.P.3
  • 67
    • 4344579413 scopus 로고    scopus 로고
    • Role of the yeast acetyltransferase Mpr1 in oxidative stress: regulation of oxygen reactive species caused by a toxic proline catabolism intermediate
    • Nomura M., Takagi H. Role of the yeast acetyltransferase Mpr1 in oxidative stress: regulation of oxygen reactive species caused by a toxic proline catabolism intermediate. Proc. Natl. Acad. Sci. USA 2004, 101:12616-12621.
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 12616-12621
    • Nomura, M.1    Takagi, H.2
  • 68
    • 84880394283 scopus 로고    scopus 로고
    • Structural and functional analysis of the yeast N-acetyltransferase Mpr1 involved in oxidative stress tolerance via proline metabolism
    • Nasuno R., Hirano Y., Itoh T., Hakoshima T., Hibi T., Takagi H. Structural and functional analysis of the yeast N-acetyltransferase Mpr1 involved in oxidative stress tolerance via proline metabolism. Proc. Natl. Acad. Sci. USA 2013, 110:11821-11826.
    • (2013) Proc. Natl. Acad. Sci. USA , vol.110 , pp. 11821-11826
    • Nasuno, R.1    Hirano, Y.2    Itoh, T.3    Hakoshima, T.4    Hibi, T.5    Takagi, H.6
  • 69
    • 84892584811 scopus 로고    scopus 로고
    • •OH radicals and proline: insights on the role as reactive oxygen species scavenger in plant stress
    • •OH radicals and proline: insights on the role as reactive oxygen species scavenger in plant stress. J. Phys. Chem. B 2014, 118:37-47.
    • (2014) J. Phys. Chem. B , vol.118 , pp. 37-47
    • Signorelli, S.1    Coitiño, E.L.2    Borsani, O.3    Monza, J.4
  • 70
    • 0005761490 scopus 로고    scopus 로고
    • Enhancement of hydroxyl radical generation in the Fenton reaction by alpha-hydroxy acid
    • Ali M.A., Konishi T. Enhancement of hydroxyl radical generation in the Fenton reaction by alpha-hydroxy acid. Biochem. Mol. Biol. Int. 1998, 46:137-145.
    • (1998) Biochem. Mol. Biol. Int. , vol.46 , pp. 137-145
    • Ali, M.A.1    Konishi, T.2
  • 71
    • 0034053781 scopus 로고    scopus 로고
    • The lactate-dependent enhancement of hydroxyl radical generation by the Fenton reaction
    • Ali M.A., Yasui F., Matsugo S., Konishi T. The lactate-dependent enhancement of hydroxyl radical generation by the Fenton reaction. Free Radic. Res. 2000, 32:429-438.
    • (2000) Free Radic. Res. , vol.32 , pp. 429-438
    • Ali, M.A.1    Yasui, F.2    Matsugo, S.3    Konishi, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.