-
1
-
-
84885021546
-
Biobased plastics and bionanocomposites: current status and future opportunities
-
Reddy M.M., Vivekanandhan S., Misra M., Bhatia S.K., Mohanty A.K. Biobased plastics and bionanocomposites: current status and future opportunities. J. Prog. Polym. Sci. 2013, 38:1653-1689.
-
(2013)
J. Prog. Polym. Sci.
, vol.38
, pp. 1653-1689
-
-
Reddy, M.M.1
Vivekanandhan, S.2
Misra, M.3
Bhatia, S.K.4
Mohanty, A.K.5
-
2
-
-
84901235008
-
Biomass-to-bioenergy and biofuel supply chain optimization: overview, key issues and challenges
-
Yue D., You F., Snyder S.W. Biomass-to-bioenergy and biofuel supply chain optimization: overview, key issues and challenges. J. Comp. Chem. Eng. 2014, 66:35-56.
-
(2014)
J. Comp. Chem. Eng.
, vol.66
, pp. 35-56
-
-
Yue, D.1
You, F.2
Snyder, S.W.3
-
3
-
-
0024210999
-
Ethanol tolerance of Saccharomyces cerevisiae and its relationship to lipid content and composition
-
Ghareib M., Youssef K.A., Khalil A.A. Ethanol tolerance of Saccharomyces cerevisiae and its relationship to lipid content and composition. Folia Microbiol. (Praha). 1988, 33:447-452.
-
(1988)
Folia Microbiol. (Praha).
, vol.33
, pp. 447-452
-
-
Ghareib, M.1
Youssef, K.A.2
Khalil, A.A.3
-
4
-
-
34249053477
-
Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae
-
Hu X.H., Wang M.H., Tan T., Li J.R., Yang H., Leach L., Zhang R.M., Luo Z.W. Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae. Genetics 2007, 175:1479-1487.
-
(2007)
Genetics
, vol.175
, pp. 1479-1487
-
-
Hu, X.H.1
Wang, M.H.2
Tan, T.3
Li, J.R.4
Yang, H.5
Leach, L.6
Zhang, R.M.7
Luo, Z.W.8
-
5
-
-
1842332756
-
Comparative physiology of salt tolerance in Candida tropicalis and Saccharomyces cerevisiae
-
Garcia M.J., Rios G., Ali R., Belles J.M., Serrano R. Comparative physiology of salt tolerance in Candida tropicalis and Saccharomyces cerevisiae. Microbiology 1997, 143:1125-1131.
-
(1997)
Microbiology
, vol.143
, pp. 1125-1131
-
-
Garcia, M.J.1
Rios, G.2
Ali, R.3
Belles, J.M.4
Serrano, R.5
-
6
-
-
44649188503
-
Selection of thermotolerant yeast strains Saccharomyces cerevisiae for bioethanol production
-
Edgardo A., Carolina P., Manuel R., Juanita F., Baeza J. Selection of thermotolerant yeast strains Saccharomyces cerevisiae for bioethanol production. Enzyme Microb. Technol. 2008, 43:120-123.
-
(2008)
Enzyme Microb. Technol.
, vol.43
, pp. 120-123
-
-
Edgardo, A.1
Carolina, P.2
Manuel, R.3
Juanita, F.4
Baeza, J.5
-
7
-
-
0028136831
-
Activity of the plasma membrane H(+)-ATPase is a key physiological determinant of thermotolerance in Saccharomyces cerevisiae
-
Coote P.J., Jones M.V., Seymour I.J., Rowe D.L., Ferdinando D.P., McArthur A.J., Cole M.B. Activity of the plasma membrane H(+)-ATPase is a key physiological determinant of thermotolerance in Saccharomyces cerevisiae. Microbiology 1994, 140:1881-1890.
-
(1994)
Microbiology
, vol.140
, pp. 1881-1890
-
-
Coote, P.J.1
Jones, M.V.2
Seymour, I.J.3
Rowe, D.L.4
Ferdinando, D.P.5
McArthur, A.J.6
Cole, M.B.7
-
8
-
-
0033458078
-
Yeast superoxide dismutase mutants reveal a pro-oxidant action of weak organic acid food preservatives
-
Piper P.W. Yeast superoxide dismutase mutants reveal a pro-oxidant action of weak organic acid food preservatives. Free Radic. Biol. Med. 1999, 27:1219-1227.
-
(1999)
Free Radic. Biol. Med.
, vol.27
, pp. 1219-1227
-
-
Piper, P.W.1
-
9
-
-
77958162502
-
Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view
-
Mira N.P., Teixeira M.C., Sa-Correia I. Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view. OMICS 2010, 14:525-540.
-
(2010)
OMICS
, vol.14
, pp. 525-540
-
-
Mira, N.P.1
Teixeira, M.C.2
Sa-Correia, I.3
-
10
-
-
84883653075
-
Different response to acetic acid stress in Saccharomyces cerevisiae wild-type and l-ascorbic acid-producing strains
-
Martani F., Fossati T., Posteri R., Signori L., Porro D., Branduardi P. Different response to acetic acid stress in Saccharomyces cerevisiae wild-type and l-ascorbic acid-producing strains. Yeast. 2013, 30:365-378.
-
(2013)
Yeast.
, vol.30
, pp. 365-378
-
-
Martani, F.1
Fossati, T.2
Posteri, R.3
Signori, L.4
Porro, D.5
Branduardi, P.6
-
11
-
-
84874487785
-
Characterization of a recombinant flocculent Saccharomyces cerevisiae strain that co-ferments glucose and xylose: II. influence of pH and acetic acid on ethanol production
-
Matsushika A., Sawayama S. Characterization of a recombinant flocculent Saccharomyces cerevisiae strain that co-ferments glucose and xylose: II. influence of pH and acetic acid on ethanol production. Appl. Biochem. Biotechnol. 2012, 168:2094-2104.
-
(2012)
Appl. Biochem. Biotechnol.
, vol.168
, pp. 2094-2104
-
-
Matsushika, A.1
Sawayama, S.2
-
12
-
-
84883819175
-
Impact of osmotic stress and ethanol inhibition in yeast cells on process oscillation associated with continuous very-high-gravity ethanol fermentation
-
Wang L., Zhao X.Q., Xue C., Bai F.W. Impact of osmotic stress and ethanol inhibition in yeast cells on process oscillation associated with continuous very-high-gravity ethanol fermentation. Biotechnol. Biofuels 2013, 6:133.
-
(2013)
Biotechnol. Biofuels
, vol.6
, pp. 133
-
-
Wang, L.1
Zhao, X.Q.2
Xue, C.3
Bai, F.W.4
-
13
-
-
84857689737
-
Overexpression of the yeast trancsription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production
-
Sasano Y., Watanabe D., Ukibe K., Inai T., Ohtsu I., Shimoi H., Takagi H. Overexpression of the yeast trancsription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production. J. Biosci. Bioeng. 2012, 114:451-455.
-
(2012)
J. Biosci. Bioeng.
, vol.114
, pp. 451-455
-
-
Sasano, Y.1
Watanabe, D.2
Ukibe, K.3
Inai, T.4
Ohtsu, I.5
Shimoi, H.6
Takagi, H.7
-
16
-
-
84857784666
-
Comparative metabolic profiling of parental and inhibitors-tolerant yeasts during lignocellulosic ethanol fermentation
-
Ding M.Z., Wang X., Yang Y., Yuan Y.J. Comparative metabolic profiling of parental and inhibitors-tolerant yeasts during lignocellulosic ethanol fermentation. Metabolomics 2012, 8:232-243.
-
(2012)
Metabolomics
, vol.8
, pp. 232-243
-
-
Ding, M.Z.1
Wang, X.2
Yang, Y.3
Yuan, Y.J.4
-
17
-
-
84885551317
-
Adaptive evolution of an industrial strain of Saccharomyces cerevisiae for combined tolerance to inhibitors and temperature
-
Wallace-Salinas V., Gorwa-Grauslund M.F. Adaptive evolution of an industrial strain of Saccharomyces cerevisiae for combined tolerance to inhibitors and temperature. Biotechnol. Biofuels 2013, 6:151.
-
(2013)
Biotechnol. Biofuels
, vol.6
, pp. 151
-
-
Wallace-Salinas, V.1
Gorwa-Grauslund, M.F.2
-
18
-
-
0031948298
-
Intracellular acidification as a mechanism for the inhibition by acid hydrolysis-derived inhibitors of xylose fermentation by yeasts
-
Lohmeier-Vogel E.M., Sopher C.R., Lee H. Intracellular acidification as a mechanism for the inhibition by acid hydrolysis-derived inhibitors of xylose fermentation by yeasts. J. Ind. Microbiol. Biotechnol. 1998, 20:75-81.
-
(1998)
J. Ind. Microbiol. Biotechnol.
, vol.20
, pp. 75-81
-
-
Lohmeier-Vogel, E.M.1
Sopher, C.R.2
Lee, H.3
-
19
-
-
84918576525
-
Physiological response of Saccharomyces cerevisiae to weak acids in lignocellulosic hydrolysate
-
Guo Z., Olsson L. Physiological response of Saccharomyces cerevisiae to weak acids in lignocellulosic hydrolysate. FEMS Yeast Res. 2014, 14:1234-1248.
-
(2014)
FEMS Yeast Res.
, vol.14
, pp. 1234-1248
-
-
Guo, Z.1
Olsson, L.2
-
20
-
-
64749093393
-
Catalase overexpression reduces lactic acid-induced oxidative stress in Saccharomyces cerevisiae
-
Abbott D.A., Suir E., Duong G.H., de Hulster E., Pronk J.T., van Maris A.J. Catalase overexpression reduces lactic acid-induced oxidative stress in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2009, 75:2320-2325.
-
(2009)
Appl. Environ. Microbiol.
, vol.75
, pp. 2320-2325
-
-
Abbott, D.A.1
Suir, E.2
Duong, G.H.3
de Hulster, E.4
Pronk, J.T.5
van Maris, A.J.6
-
21
-
-
33747367729
-
Improvement of lactic acid production in Saccharomyces cerevisiae by cell sorting for high intracellular pH
-
Valli M., Sauer M., Branduardi P., Borth N., Porro D., Mattanovich D. Improvement of lactic acid production in Saccharomyces cerevisiae by cell sorting for high intracellular pH. Appl. Environ. Microbiol. 2006, 72:5492-5499.
-
(2006)
Appl. Environ. Microbiol.
, vol.72
, pp. 5492-5499
-
-
Valli, M.1
Sauer, M.2
Branduardi, P.3
Borth, N.4
Porro, D.5
Mattanovich, D.6
-
22
-
-
0031911933
-
Measurement of the effects of acetic acid and extracellular pH on intracellular pH of nonfermenting, individual Saccharomyces cerevisiae cells by fluorescence microscopy
-
Guldfeldt L.U., Arneborg N. Measurement of the effects of acetic acid and extracellular pH on intracellular pH of nonfermenting, individual Saccharomyces cerevisiae cells by fluorescence microscopy. Appl. Environ. Microbiol. 1998, 64:530-534.
-
(1998)
Appl. Environ. Microbiol.
, vol.64
, pp. 530-534
-
-
Guldfeldt, L.U.1
Arneborg, N.2
-
23
-
-
0032948889
-
Weak-acid preservatives: modelling microbial inhibition and response
-
Lambert R.J., Stratford M. Weak-acid preservatives: modelling microbial inhibition and response. J. Appl. Microbiol. 1999, 86:157-164.
-
(1999)
J. Appl. Microbiol.
, vol.86
, pp. 157-164
-
-
Lambert, R.J.1
Stratford, M.2
-
24
-
-
34548775911
-
Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid
-
Mollapour M., Piper P.W. Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol. Cell. Biol. 2007, 27:6446-6456.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 6446-6456
-
-
Mollapour, M.1
Piper, P.W.2
-
25
-
-
84857689251
-
Lactic-acid stress causes vacuolar fragmentation and impairs intracellular amino-acid homeostasis in Saccharomyces cerevisiae
-
Suzuki T., Sugiyama M., Wakazono K., Kaneko Y., Harashima S. Lactic-acid stress causes vacuolar fragmentation and impairs intracellular amino-acid homeostasis in Saccharomyces cerevisiae. J. Biosci. Bioeng. 2012, 113:421-430.
-
(2012)
J. Biosci. Bioeng.
, vol.113
, pp. 421-430
-
-
Suzuki, T.1
Sugiyama, M.2
Wakazono, K.3
Kaneko, Y.4
Harashima, S.5
-
26
-
-
78650995732
-
Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae
-
Hasunuma T., Sanda T., Yamada R., Yoshimura K., Ishii J., Kondo A. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microb. Cell Fact. 2011, 10:2.
-
(2011)
Microb. Cell Fact.
, vol.10
, pp. 2
-
-
Hasunuma, T.1
Sanda, T.2
Yamada, R.3
Yoshimura, K.4
Ishii, J.5
Kondo, A.6
-
27
-
-
59149103060
-
The RIM101 pathway has a role in Saccharomyces cerevisiae adaptive response and resistance to propionic acid and other weak acids
-
Mira N.P., Lourenço A.B., Fernandes A.R., Becker J.D., Sá-Correia I. The RIM101 pathway has a role in Saccharomyces cerevisiae adaptive response and resistance to propionic acid and other weak acids. FEMS Yeast Res. 2009, 9:202-216.
-
(2009)
FEMS Yeast Res.
, vol.9
, pp. 202-216
-
-
Mira, N.P.1
Lourenço, A.B.2
Fernandes, A.R.3
Becker, J.D.4
Sá-Correia, I.5
-
28
-
-
33747337558
-
Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p
-
Kawahata M., Masaki K., Fujii T., Iefuji H. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res. 2006, 6:924-936.
-
(2006)
FEMS Yeast Res.
, vol.6
, pp. 924-936
-
-
Kawahata, M.1
Masaki, K.2
Fujii, T.3
Iefuji, H.4
-
29
-
-
84931837170
-
Comparative proteomic and metabolomic analyses reveal mechanisms of improved cold stress tolerance in bermudagrass (Cynodon dactylon(L). Pers.) by exogenous calcium
-
Shi H., Ye T., Zhong B., Liu X., Chan Z. Comparative proteomic and metabolomic analyses reveal mechanisms of improved cold stress tolerance in bermudagrass (Cynodon dactylon(L). Pers.) by exogenous calcium. J. Integr. Plant Biol. 2014, 56:1064-1079.
-
(2014)
J. Integr. Plant Biol.
, vol.56
, pp. 1064-1079
-
-
Shi, H.1
Ye, T.2
Zhong, B.3
Liu, X.4
Chan, Z.5
-
30
-
-
84927169676
-
Metabolomic shifts in Brassica napus lines with enhanced BnPLC2 expression impact their response to low temperature stress and plant pathogens
-
Nokhrina K., Ray H., Bock C., Georges F. Metabolomic shifts in Brassica napus lines with enhanced BnPLC2 expression impact their response to low temperature stress and plant pathogens. GM Crops Food 2014, 5:120-131.
-
(2014)
GM Crops Food
, vol.5
, pp. 120-131
-
-
Nokhrina, K.1
Ray, H.2
Bock, C.3
Georges, F.4
-
31
-
-
84896597381
-
Ubiquinone accumulation improves osmotic-stress tolerance in Escherichia coli
-
Sevin D.C., Sauer U. Ubiquinone accumulation improves osmotic-stress tolerance in Escherichia coli. Nat. Chem. Biol. 2014, 10:266-272.
-
(2014)
Nat. Chem. Biol.
, vol.10
, pp. 266-272
-
-
Sevin, D.C.1
Sauer, U.2
-
32
-
-
80051982351
-
GC-MS-based metabolomics reveals mechanism of action for hydrazine induced hepatotoxicity in rats
-
Bando K., Kunimatsu T., Sakai J., Kimura J., Funabashi H., Seki T., Bamba T., Fukusaki E. GC-MS-based metabolomics reveals mechanism of action for hydrazine induced hepatotoxicity in rats. J. Appl. Toxicol. 2011, 31:524-535.
-
(2011)
J. Appl. Toxicol.
, vol.31
, pp. 524-535
-
-
Bando, K.1
Kunimatsu, T.2
Sakai, J.3
Kimura, J.4
Funabashi, H.5
Seki, T.6
Bamba, T.7
Fukusaki, E.8
-
33
-
-
17444407064
-
Efficient production of l-lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated l-lactate dehydrogenase gene
-
Ishida N., Saitoh S., Tokuhiro K., Nagamori E., Matsuyama T., Kitamoto K., Takahashi H. Efficient production of l-lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated l-lactate dehydrogenase gene. Appl. Environ. Microbiol. 2005, 71:1964-1970.
-
(2005)
Appl. Environ. Microbiol.
, vol.71
, pp. 1964-1970
-
-
Ishida, N.1
Saitoh, S.2
Tokuhiro, K.3
Nagamori, E.4
Matsuyama, T.5
Kitamoto, K.6
Takahashi, H.7
-
34
-
-
33745821713
-
Biotechnological production of lactic acid and its recent applications
-
Wee Y.-J., Kim J.-N., Ryu H.-W. Biotechnological production of lactic acid and its recent applications. Food Technol. Biotechnol. 2006, 44:163-172.
-
(2006)
Food Technol. Biotechnol.
, vol.44
, pp. 163-172
-
-
Wee, Y.-J.1
Kim, J.-N.2
Ryu, H.-W.3
-
35
-
-
84877103996
-
Integrated transcriptomic and metabolomic analysis of the central metabolism of Synechocystis sp. PCC 6803 under different trophic conditions
-
Yoshikawa K., Hirasawa T., Ogawa K., Hidaka Y., Nakajima T., Furusawa C., Shimizu H. Integrated transcriptomic and metabolomic analysis of the central metabolism of Synechocystis sp. PCC 6803 under different trophic conditions. Biotechnol. J. 2013, 8:571-580.
-
(2013)
Biotechnol. J.
, vol.8
, pp. 571-580
-
-
Yoshikawa, K.1
Hirasawa, T.2
Ogawa, K.3
Hidaka, Y.4
Nakajima, T.5
Furusawa, C.6
Shimizu, H.7
-
36
-
-
0030040559
-
A novel method for continuous determination of the intracellular pH in bacteria with the internally conjugated fluorescent probe 5 (and 6-)-carboxyfluorescein succinimidyl ester
-
Breeuwer P., Drocourt J., Rombouts F.M., Abee T. A novel method for continuous determination of the intracellular pH in bacteria with the internally conjugated fluorescent probe 5 (and 6-)-carboxyfluorescein succinimidyl ester. Appl. Environ. Microbiol. 1996, 62:178-183.
-
(1996)
Appl. Environ. Microbiol.
, vol.62
, pp. 178-183
-
-
Breeuwer, P.1
Drocourt, J.2
Rombouts, F.M.3
Abee, T.4
-
37
-
-
0030998381
-
Ratiometric measurement of intracellular pH of cultured cells with BCECF in a fluorescence multi-well plate reader
-
Grant R.L., Acosta D. Ratiometric measurement of intracellular pH of cultured cells with BCECF in a fluorescence multi-well plate reader. In Vitro Cell Dev. Biol. Anim. 1997, 33:256-260.
-
(1997)
In Vitro Cell Dev. Biol. Anim.
, vol.33
, pp. 256-260
-
-
Grant, R.L.1
Acosta, D.2
-
38
-
-
0028896619
-
Measurement of yeast intracellular pH by image processing and the change it undergoes during growth phase
-
Imai T., Ohno T. Measurement of yeast intracellular pH by image processing and the change it undergoes during growth phase. J. Biotechnol. 1995, 38:165-172.
-
(1995)
J. Biotechnol.
, vol.38
, pp. 165-172
-
-
Imai, T.1
Ohno, T.2
-
39
-
-
24944555252
-
Carboxyfluorescein diacetate succinimidyl ester fluorescent dye for cell labeling
-
Wang X.Q., Duan X.M., Liu L.H., Fang Y.Q., Tan Y. Carboxyfluorescein diacetate succinimidyl ester fluorescent dye for cell labeling. Acta Biochim. Biophys. Sin. (Shanghai) 2005, 37:379-385.
-
(2005)
Acta Biochim. Biophys. Sin. (Shanghai)
, vol.37
, pp. 379-385
-
-
Wang, X.Q.1
Duan, X.M.2
Liu, L.H.3
Fang, Y.Q.4
Tan, Y.5
-
40
-
-
0032712574
-
Fluorescent dyes for lymphocyte migration and proliferation studies
-
Parish C.R. Fluorescent dyes for lymphocyte migration and proliferation studies. Immunol. Cell Biol. 1999, 77:499-508.
-
(1999)
Immunol. Cell Biol.
, vol.77
, pp. 499-508
-
-
Parish, C.R.1
-
41
-
-
0037109731
-
Application of kinetic-based biospecific affinity chromatographic systems to ATP-dependent enzymes: studies with yeast hexokinase
-
Mulcahy P., O'Flaherty M., Jennings L., Griffin T. Application of kinetic-based biospecific affinity chromatographic systems to ATP-dependent enzymes: studies with yeast hexokinase. Anal. Biochem. 2002, 309:279-292.
-
(2002)
Anal. Biochem.
, vol.309
, pp. 279-292
-
-
Mulcahy, P.1
O'Flaherty, M.2
Jennings, L.3
Griffin, T.4
-
42
-
-
40149095111
-
Directed evolution of yeast pyruvate decarboxylase 1 for attenuated regulation and increased stability
-
Stevenson B.J., Liu J.W., Ollis D.L. Directed evolution of yeast pyruvate decarboxylase 1 for attenuated regulation and increased stability. Biochemistry 2008, 47:3013-3025.
-
(2008)
Biochemistry
, vol.47
, pp. 3013-3025
-
-
Stevenson, B.J.1
Liu, J.W.2
Ollis, D.L.3
-
43
-
-
0042261992
-
Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces serevisiae
-
Shenton D., Grant C.M. Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces serevisiae. Biochem. J. 2003, 374:513-519.
-
(2003)
Biochem. J.
, vol.374
, pp. 513-519
-
-
Shenton, D.1
Grant, C.M.2
-
44
-
-
37549072681
-
Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress
-
Ralser M., Wamelink M.M., Kowald A., Gerisch B., Heeren G., Struys E.A., Klipp E., Jakobs C., Breitenbach M., Lehrach H., Krobitsch S. Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J. Biol. 2007, 6:10.
-
(2007)
J. Biol.
, vol.6
, pp. 10
-
-
Ralser, M.1
Wamelink, M.M.2
Kowald, A.3
Gerisch, B.4
Heeren, G.5
Struys, E.A.6
Klipp, E.7
Jakobs, C.8
Breitenbach, M.9
Lehrach, H.10
Krobitsch, S.11
-
45
-
-
84884188178
-
Nucleotide degradation and ribose salvage in yeast
-
Xu Y.-F., Létisse F., Absalan F., Lu W., Kuznetsova E., Brown G., Caudy A.A., Yakunin A.F., Broach J.R., Rabinowitz J.D. Nucleotide degradation and ribose salvage in yeast. Mol. Syst. Biol. 2013, 9:665.
-
(2013)
Mol. Syst. Biol.
, vol.9
, pp. 665
-
-
Xu, Y.-F.1
Létisse, F.2
Absalan, F.3
Lu, W.4
Kuznetsova, E.5
Brown, G.6
Caudy, A.A.7
Yakunin, A.F.8
Broach, J.R.9
Rabinowitz, J.D.10
-
46
-
-
0028302033
-
GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway
-
Albertyn J., Hohmann S., Thevelein J.M., Prior B.A. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol. Cell. Biol. 1994, 14:4135-4144.
-
(1994)
Mol. Cell. Biol.
, vol.14
, pp. 4135-4144
-
-
Albertyn, J.1
Hohmann, S.2
Thevelein, J.M.3
Prior, B.A.4
-
47
-
-
0038530709
-
Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways
-
Wojda I., Alonso-Monge R., Bebelman J.P., Mager W.H., Siderius M. Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways. Microbiology 2003, 149:1193-1204.
-
(2003)
Microbiology
, vol.149
, pp. 1193-1204
-
-
Wojda, I.1
Alonso-Monge, R.2
Bebelman, J.P.3
Mager, W.H.4
Siderius, M.5
-
48
-
-
0029042565
-
Oxidative stress response in yeast: effect of glutathione on adaptation to hydrogen peroxide stress in Saccharomyces cerevisiae
-
Izawa S., Inoue Y., Kimura A. Oxidative stress response in yeast: effect of glutathione on adaptation to hydrogen peroxide stress in Saccharomyces cerevisiae. FEBS Lett. 1995, 368:73-76.
-
(1995)
FEBS Lett.
, vol.368
, pp. 73-76
-
-
Izawa, S.1
Inoue, Y.2
Kimura, A.3
-
49
-
-
0032583570
-
Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae
-
Grant C.M., Perrone G., Dawes I.W. Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 1998, 253:893-898.
-
(1998)
Biochem. Biophys. Res. Commun.
, vol.253
, pp. 893-898
-
-
Grant, C.M.1
Perrone, G.2
Dawes, I.W.3
-
50
-
-
84859586432
-
The response to heat shock and oxidative stress in Saccharomyces cerevisiae
-
Morano K.A., Grant C.M., Moye-Rowley W.S. The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 2012, 190:1157-1195.
-
(2012)
Genetics
, vol.190
, pp. 1157-1195
-
-
Morano, K.A.1
Grant, C.M.2
Moye-Rowley, W.S.3
-
51
-
-
0029808313
-
+-ATPase and optimal glycolitic flux are required for rapid adaptation and growth of Saccharomyces cerevisiae in the presence of the weak-acid preservative sorbic acid
-
+-ATPase and optimal glycolitic flux are required for rapid adaptation and growth of Saccharomyces cerevisiae in the presence of the weak-acid preservative sorbic acid. Appl. Environ. Microbiol. 1996, 62:3158-3164.
-
(1996)
Appl. Environ. Microbiol.
, vol.62
, pp. 3158-3164
-
-
Holyoak, C.D.1
Stratford, M.2
McMullin, Z.3
Cole, M.B.4
Crimmins, K.5
Brown, A.J.P.6
Coote, P.J.7
-
52
-
-
0032766243
-
The Saccharomyces cerevisiae weak-acid-inducible ABC transporter Pdr12 transports fluorescein and preservative anions from the cytosol by an energy-dependent mechanism
-
Holyoak C.D., Bracey D., Piper P.W., Kuchler K., Coote P.J. The Saccharomyces cerevisiae weak-acid-inducible ABC transporter Pdr12 transports fluorescein and preservative anions from the cytosol by an energy-dependent mechanism. J. Bacteriol. 1999, 181:4644-4652.
-
(1999)
J. Bacteriol.
, vol.181
, pp. 4644-4652
-
-
Holyoak, C.D.1
Bracey, D.2
Piper, P.W.3
Kuchler, K.4
Coote, P.J.5
-
53
-
-
0033962977
-
Proline accumulation by mutation or disruption of the proline oxidase gene improves resistance to freezing and desiccation stresses in Saccharomyces cerevisiae
-
Takagi H., Sakai K., Morida K., Nakamori S. Proline accumulation by mutation or disruption of the proline oxidase gene improves resistance to freezing and desiccation stresses in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 2000, 184:103-108.
-
(2000)
FEMS Microbiol. Lett.
, vol.184
, pp. 103-108
-
-
Takagi, H.1
Sakai, K.2
Morida, K.3
Nakamori, S.4
-
54
-
-
0037004761
-
Effect of proline and arginine metabolism on freezing stress of Saccharomyces cerevisiae
-
Morita Y., Nakamori S., Takagi H. Effect of proline and arginine metabolism on freezing stress of Saccharomyces cerevisiae. J. Biosci. Bioeng. 2002, 94:390-394.
-
(2002)
J. Biosci. Bioeng.
, vol.94
, pp. 390-394
-
-
Morita, Y.1
Nakamori, S.2
Takagi, H.3
-
55
-
-
0242657628
-
Gene dosage effect of l-proline biosynthetic enzymes on l-proline accumulation and freeze tolerance in Saccharomyces cerevisiae
-
Terao Y., Nakamori S., Takagi H. Gene dosage effect of l-proline biosynthetic enzymes on l-proline accumulation and freeze tolerance in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2003, 69:6527-6532.
-
(2003)
Appl. Environ. Microbiol.
, vol.69
, pp. 6527-6532
-
-
Terao, Y.1
Nakamori, S.2
Takagi, H.3
-
56
-
-
29144482938
-
Effect of l-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae
-
Takagi H., Takaoka M., Kawaguchi A., Kubo Y. Effect of l-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2005, 71:8656-8662.
-
(2005)
Appl. Environ. Microbiol.
, vol.71
, pp. 8656-8662
-
-
Takagi, H.1
Takaoka, M.2
Kawaguchi, A.3
Kubo, Y.4
-
57
-
-
0031551022
-
Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae
-
Carmelo V., Santos H., Sa-Correia I. Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae. Biochim. Biophys. Acta 1997, 1325:63-70.
-
(1997)
Biochim. Biophys. Acta
, vol.1325
, pp. 63-70
-
-
Carmelo, V.1
Santos, H.2
Sa-Correia, I.3
-
58
-
-
84884267990
-
Yeast adaptation to weak acids prevents futile energy expenditure
-
Ullah A., Chandrasekaran G., Brul S., Smits G.J. Yeast adaptation to weak acids prevents futile energy expenditure. Front. Microbiol. 2013, 4:142.
-
(2013)
Front. Microbiol.
, vol.4
, pp. 142
-
-
Ullah, A.1
Chandrasekaran, G.2
Brul, S.3
Smits, G.J.4
-
59
-
-
0031938503
-
+-ATPase in the plasma membrane of Saccharomyces cerevisiae is activated during growth latency in octanoic acid-supplemented medium accompanying the decrease in intracellular pH and cell viability
-
+-ATPase in the plasma membrane of Saccharomyces cerevisiae is activated during growth latency in octanoic acid-supplemented medium accompanying the decrease in intracellular pH and cell viability. Appl. Environ. Microbiol. 1998, 64:779-783.
-
(1998)
Appl. Environ. Microbiol.
, vol.64
, pp. 779-783
-
-
Viegas, C.A.1
Almeida, P.F.2
Cavaco, A.3
Sa-Correia, I.4
-
60
-
-
0030222083
-
Glutathione is an important antioxidant molecule in the yeast Saccharomyces cerevisiae
-
Stephen D.W., Jamieson D.J. Glutathione is an important antioxidant molecule in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Lett. 1996, 141:207-212.
-
(1996)
FEMS Microbiol. Lett.
, vol.141
, pp. 207-212
-
-
Stephen, D.W.1
Jamieson, D.J.2
-
61
-
-
0026627817
-
Cysteine addition strategy for maximum glutathione production in fed-batch culture of Saccharomyces cerevisiae
-
Alfafara C., Miura K., Shimizu H., Shioya S., Suga K. Cysteine addition strategy for maximum glutathione production in fed-batch culture of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 1992, 37:141-146.
-
(1992)
Appl. Microbiol. Biotechnol.
, vol.37
, pp. 141-146
-
-
Alfafara, C.1
Miura, K.2
Shimizu, H.3
Shioya, S.4
Suga, K.5
-
62
-
-
2442486776
-
Optimal fermentation conditions for enhanced glutathione production by Saccharomyces serevisiae FF-8
-
Cha J., Park J., Jeon B., Lee Y., Cho Y. Optimal fermentation conditions for enhanced glutathione production by Saccharomyces serevisiae FF-8. J. Microbiol. 2004, 42:51-55.
-
(2004)
J. Microbiol.
, vol.42
, pp. 51-55
-
-
Cha, J.1
Park, J.2
Jeon, B.3
Lee, Y.4
Cho, Y.5
-
63
-
-
7544219805
-
Utilization of amino acids to enhance glutathione production in Saccharomyces cerevisiae
-
Wen S., Zhang T., Tan T. Utilization of amino acids to enhance glutathione production in Saccharomyces cerevisiae. Enzyme Microb. Technol. 2004, 35:501-507.
-
(2004)
Enzyme Microb. Technol.
, vol.35
, pp. 501-507
-
-
Wen, S.1
Zhang, T.2
Tan, T.3
-
64
-
-
0030004354
-
Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae
-
Grant C.M., MacIver F.H., Dawes I.W. Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Curr. Genet. 1996, 29:511-515.
-
(1996)
Curr. Genet.
, vol.29
, pp. 511-515
-
-
Grant, C.M.1
MacIver, F.H.2
Dawes, I.W.3
-
65
-
-
0035808386
-
Expression of glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae
-
Coleman S.T., Fang T.K., Rovinsky S.A., Turano F.J., Moye-Rowley W.S. Expression of glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae. J. Biol. Chem. 2001, 276:244-250.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 244-250
-
-
Coleman, S.T.1
Fang, T.K.2
Rovinsky, S.A.3
Turano, F.J.4
Moye-Rowley, W.S.5
-
66
-
-
84896489183
-
Presence of proline has a protective effect on weak acid stressed Saccharomyces cerevisiae
-
Greetham D., Takagi H., Phister T.P. Presence of proline has a protective effect on weak acid stressed Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 2014, 105:641-652.
-
(2014)
Antonie Van Leeuwenhoek
, vol.105
, pp. 641-652
-
-
Greetham, D.1
Takagi, H.2
Phister, T.P.3
-
67
-
-
4344579413
-
Role of the yeast acetyltransferase Mpr1 in oxidative stress: regulation of oxygen reactive species caused by a toxic proline catabolism intermediate
-
Nomura M., Takagi H. Role of the yeast acetyltransferase Mpr1 in oxidative stress: regulation of oxygen reactive species caused by a toxic proline catabolism intermediate. Proc. Natl. Acad. Sci. USA 2004, 101:12616-12621.
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 12616-12621
-
-
Nomura, M.1
Takagi, H.2
-
68
-
-
84880394283
-
Structural and functional analysis of the yeast N-acetyltransferase Mpr1 involved in oxidative stress tolerance via proline metabolism
-
Nasuno R., Hirano Y., Itoh T., Hakoshima T., Hibi T., Takagi H. Structural and functional analysis of the yeast N-acetyltransferase Mpr1 involved in oxidative stress tolerance via proline metabolism. Proc. Natl. Acad. Sci. USA 2013, 110:11821-11826.
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 11821-11826
-
-
Nasuno, R.1
Hirano, Y.2
Itoh, T.3
Hakoshima, T.4
Hibi, T.5
Takagi, H.6
-
69
-
-
84892584811
-
•OH radicals and proline: insights on the role as reactive oxygen species scavenger in plant stress
-
•OH radicals and proline: insights on the role as reactive oxygen species scavenger in plant stress. J. Phys. Chem. B 2014, 118:37-47.
-
(2014)
J. Phys. Chem. B
, vol.118
, pp. 37-47
-
-
Signorelli, S.1
Coitiño, E.L.2
Borsani, O.3
Monza, J.4
-
70
-
-
0005761490
-
Enhancement of hydroxyl radical generation in the Fenton reaction by alpha-hydroxy acid
-
Ali M.A., Konishi T. Enhancement of hydroxyl radical generation in the Fenton reaction by alpha-hydroxy acid. Biochem. Mol. Biol. Int. 1998, 46:137-145.
-
(1998)
Biochem. Mol. Biol. Int.
, vol.46
, pp. 137-145
-
-
Ali, M.A.1
Konishi, T.2
-
71
-
-
0034053781
-
The lactate-dependent enhancement of hydroxyl radical generation by the Fenton reaction
-
Ali M.A., Yasui F., Matsugo S., Konishi T. The lactate-dependent enhancement of hydroxyl radical generation by the Fenton reaction. Free Radic. Res. 2000, 32:429-438.
-
(2000)
Free Radic. Res.
, vol.32
, pp. 429-438
-
-
Ali, M.A.1
Yasui, F.2
Matsugo, S.3
Konishi, T.4
|