메뉴 건너뛰기




Volumn 112, Issue 3, 2015, Pages 470-483

Metabolomic and 13C-metabolic flux analysis of a xylose-consuming Saccharomyces cerevisiae strain expressing xylose isomerase

Author keywords

13C metabolic flux analysis; Carbon catabolite repression; Cellulosic ethanol; Metabolomics; Saccharomyces cerevisiae; Xylose

Indexed keywords

CARBON; CELLULOSIC ETHANOL; ETHANOL; FERMENTATION; GLUCOSE; METABOLISM; PATHOLOGY; STRAIN; XYLOSE;

EID: 84922782676     PISSN: 00063592     EISSN: 10970290     Source Type: Journal    
DOI: 10.1002/bit.25447     Document Type: Article
Times cited : (74)

References (89)
  • 2
    • 0024508349 scopus 로고
    • The fermentation of xylose-an analysis of the expression of Bacillus and Actinoplanes xylose isomerase genes in yeast
    • Amore R, Wilhelm M, Hollenberg CP. 1989. The fermentation of xylose-an analysis of the expression of Bacillus and Actinoplanes xylose isomerase genes in yeast. Appl Microbiol Biotechnol 30:351-357.
    • (1989) Appl Microbiol Biotechnol , vol.30 , pp. 351-357
    • Amore, R.1    Wilhelm, M.2    Hollenberg, C.P.3
  • 3
    • 0000493179 scopus 로고
    • Anaerobic nutrition of Saccharomyces cerevisiae. II. Unsaturated fatty acid requirement for growth in a defined medium
    • Andreasen AA, Stier TJ. 1954. Anaerobic nutrition of Saccharomyces cerevisiae. II. Unsaturated fatty acid requirement for growth in a defined medium. J Cell Physiol 43:271-281.
    • (1954) J Cell Physiol , vol.43 , pp. 271-281
    • Andreasen, A.A.1    Stier, T.J.2
  • 4
    • 0002587184 scopus 로고
    • Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium
    • Andreasen AA, Stier TJB. 1953. Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium. J Cell Physiol 41:23-36.
    • (1953) J Cell Physiol , vol.41 , pp. 23-36
    • Andreasen, A.A.1    Stier, T.J.B.2
  • 5
    • 33745155105 scopus 로고    scopus 로고
    • Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements
    • Antoniewicz MR, Kelleher JK, Stephanopoulos G. 2006. Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metab Eng 8:324-337.
    • (2006) Metab Eng , vol.8 , pp. 324-337
    • Antoniewicz, M.R.1    Kelleher, J.K.2    Stephanopoulos, G.3
  • 6
    • 33845679072 scopus 로고    scopus 로고
    • Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions
    • Antoniewicz MR, Kelleher JK, Stephanopoulos G. 2007a. Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab Eng 9:68-86.
    • (2007) Metab Eng , vol.9 , pp. 68-86
    • Antoniewicz, M.R.1    Kelleher, J.K.2    Stephanopoulos, G.3
  • 7
    • 35348941242 scopus 로고    scopus 로고
    • Accurate assessment of amino acid mass isotopomer distributions for metabolic flux analysis
    • Antoniewicz MR, Kelleher JK, Stephanopoulos G. 2007b. Accurate assessment of amino acid mass isotopomer distributions for metabolic flux analysis. Anal Chem 79:7554-7559.
    • (2007) Anal Chem , vol.79 , pp. 7554-7559
    • Antoniewicz, M.R.1    Kelleher, J.K.2    Stephanopoulos, G.3
  • 9
    • 0141921886 scopus 로고    scopus 로고
    • Xylose and some non-sugar carbon sources cause catabolite repression in Saccharomyces cerevisiae
    • Belinchón MM, Gancedo JM. 2003. Xylose and some non-sugar carbon sources cause catabolite repression in Saccharomyces cerevisiae. Arch Microbiol 180:293-297.
    • (2003) Arch Microbiol , vol.180 , pp. 293-297
    • Belinchón, M.M.1    Gancedo, J.M.2
  • 10
    • 34547914089 scopus 로고    scopus 로고
    • Glucose controls multiple processes in Saccharomyces cerevisiae through diverse combinations of signaling pathways
    • Belinchón MM, Gancedo JM. 2007. Glucose controls multiple processes in Saccharomyces cerevisiae through diverse combinations of signaling pathways. FEMS Yeast Res 7:808-818.
    • (2007) FEMS Yeast Res , vol.7 , pp. 808-818
    • Belinchón, M.M.1    Gancedo, J.M.2
  • 11
    • 84860907188 scopus 로고    scopus 로고
    • Dynamic metabolomics differentiates between carbon and energy starvation in recombinant Saccharomyces cerevisiae fermenting xylose
    • Bergdahl B, Heer D, Sauer U, Hahn-Hägerdal B, van Niel EW. 2012. Dynamic metabolomics differentiates between carbon and energy starvation in recombinant Saccharomyces cerevisiae fermenting xylose. Biotechnol Biofuels 5:34.
    • (2012) Biotechnol Biofuels , vol.5 , pp. 34
    • Bergdahl, B.1    Heer, D.2    Sauer, U.3    Hahn-Hägerdal, B.4    van Niel, E.W.5
  • 12
    • 15044342010 scopus 로고    scopus 로고
    • Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts
    • Blank LM, Lehmbeck F, Sauer U. 2005. Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts. FEMS Yeast Res 5:545-558.
    • (2005) FEMS Yeast Res , vol.5 , pp. 545-558
    • Blank, L.M.1    Lehmbeck, F.2    Sauer, U.3
  • 13
    • 0027267942 scopus 로고
    • Different signals control the activation of glycolysis in the yeast Saccharomyces cerevisiae
    • Boles E, Heinisch J, Zimmermann FK. 1993. Different signals control the activation of glycolysis in the yeast Saccharomyces cerevisiae. Yeast Chichester Engl 9:761-770.
    • (1993) Yeast Chichester Engl , vol.9 , pp. 761-770
    • Boles, E.1    Heinisch, J.2    Zimmermann, F.K.3
  • 14
    • 0030052874 scopus 로고    scopus 로고
    • A multi-layered sensory system controls yeast glycolytic gene expression
    • Boles E, Müller S, Zimmermann FK. 1996. A multi-layered sensory system controls yeast glycolytic gene expression. Mol Microbiol 19:641-642.
    • (1996) Mol Microbiol , vol.19 , pp. 641-642
    • Boles, E.1    Müller, S.2    Zimmermann, F.K.3
  • 15
    • 0027170537 scopus 로고
    • Induction of pyruvate decarboxylase in glycolysis mutants of Saccharomyces cerevisiae correlates with the concentrations of three-carbon glycolytic metabolites
    • Boles E, Zimmermann FK. 1993. Induction of pyruvate decarboxylase in glycolysis mutants of Saccharomyces cerevisiae correlates with the concentrations of three-carbon glycolytic metabolites. Arch Microbiol 160:324-328.
    • (1993) Arch Microbiol , vol.160 , pp. 324-328
    • Boles, E.1    Zimmermann, F.K.2
  • 17
    • 0021142327 scopus 로고
    • NADH-linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeasts
    • Bruinenberg P, Bot PM, Dijken J, Scheffers WA. 1984. NADH-linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeasts. Appl Microbiol Biotechnol 19:256-260.
    • (1984) Appl Microbiol Biotechnol , vol.19 , pp. 256-260
    • Bruinenberg, P.1    Bot, P.M.2    Dijken, J.3    Scheffers, W.A.4
  • 18
    • 69749110125 scopus 로고    scopus 로고
    • Quantitative evaluation of intracellular metabolite extraction techniques for yeast metabolomics
    • Canelas AB, ten Pierick, Ras A, Seifar C, van Dam RM, van Gulik JC, Heijnen WM. 2009. Quantitative evaluation of intracellular metabolite extraction techniques for yeast metabolomics. Anal Chem 81:7379-7389.
    • (2009) Anal Chem , vol.81 , pp. 7379-7389
    • Canelas, A.B.1    ten, P.2    Ras, A.3    Seifar, C.4    van Dam, R.M.5    van Gulik, J.C.6    Heijnen, W.M.7
  • 22
    • 0037845131 scopus 로고    scopus 로고
    • Glucose-induced stimulation of the Ras-cAMP pathway in yeast leads to multiple phosphorylations and activation of 6-phosphofructo-2-kinase
    • Dihazi H, Kessler R, Eschrich K. 2003. Glucose-induced stimulation of the Ras-cAMP pathway in yeast leads to multiple phosphorylations and activation of 6-phosphofructo-2-kinase. Biochemistry (Mosc) 42:6275-6282.
    • (2003) Biochemistry (Mosc) , vol.42 , pp. 6275-6282
    • Dihazi, H.1    Kessler, R.2    Eschrich, K.3
  • 23
    • 66149122635 scopus 로고    scopus 로고
    • High-throughput quantitative metabolomics: Workflow for cultivation, quenching, and analysis of yeast in a multiwell format
    • Ewald JC, Heux S, Zamboni N. 2009. High-throughput quantitative metabolomics: Workflow for cultivation, quenching, and analysis of yeast in a multiwell format. Anal Chem 81:3623-3629.
    • (2009) Anal Chem , vol.81 , pp. 3623-3629
    • Ewald, J.C.1    Heux, S.2    Zamboni, N.3
  • 24
    • 84887769375 scopus 로고    scopus 로고
    • Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis
    • Feng X, Zhao H. 2013a. Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis. Microb Cell Factories 12:114.
    • (2013) Microb Cell Factories , vol.12 , pp. 114
    • Feng, X.1    Zhao, H.2
  • 25
    • 84881660226 scopus 로고    scopus 로고
    • 13C metabolic flux analysis
    • 13C metabolic flux analysis. AIChE J 59:3195-3202.
    • (2013) AIChE J , vol.59 , pp. 3195-3202
    • Feng, X.1    Zhao, H.2
  • 27
    • 0037313750 scopus 로고    scopus 로고
    • Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network
    • Förster J, Famili I, Fu P, Palsson BØ, Nielsen J. 2003. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13:244-253.
    • (2003) Genome Res , vol.13 , pp. 244-253
    • Förster, J.1    Famili, I.2    Fu, P.3    Palsson, B.4    Nielsen, J.5
  • 28
    • 0018602266 scopus 로고
    • Inactivation of gluconeogenic enzymes in glycolytic mutants of Saccharomyces cerevisiae
    • Gancedo JM, Gancedo C. 1979. Inactivation of gluconeogenic enzymes in glycolytic mutants of Saccharomyces cerevisiae. Eur J Biochem FEBS 101:455-460.
    • (1979) Eur J Biochem FEBS , vol.101 , pp. 455-460
    • Gancedo, J.M.1    Gancedo, C.2
  • 29
    • 0021112036 scopus 로고
    • Fructose 2,6-bisphosphate activates the cAMP-dependent phosphorylation of yeast fructose-1,6-bisphosphatase in vitro
    • Gancedo JM, Mazón MJ, Gancedo C. 1983. Fructose 2, 6-bisphosphate activates the cAMP-dependent phosphorylation of yeast fructose-1, 6-bisphosphatase in vitro. J Biol Chem 258:5998-5999.
    • (1983) J Biol Chem , vol.258 , pp. 5998-5999
    • Gancedo, J.M.1    Mazón, M.J.2    Gancedo, C.3
  • 30
    • 44849104320 scopus 로고    scopus 로고
    • The early steps of glucose signalling in yeast
    • Gancedo JM. 2008. The early steps of glucose signalling in yeast. FEMS Microbiol Rev 32:673-704.
    • (2008) FEMS Microbiol Rev , vol.32 , pp. 673-704
    • Gancedo, J.M.1
  • 31
    • 0037415332 scopus 로고    scopus 로고
    • The Streptomyces rubiginosus xylose isomerase is misfolded when expressed in Saccharomyces cerevisiae
    • Gárdonyi M, Hahn-Hägerdal B. 2003. The Streptomyces rubiginosus xylose isomerase is misfolded when expressed in Saccharomyces cerevisiae. Enzyme Microb Technol 32:252-259.
    • (2003) Enzyme Microb Technol , vol.32 , pp. 252-259
    • Gárdonyi, M.1    Hahn-Hägerdal, B.2
  • 33
    • 0035140099 scopus 로고    scopus 로고
    • Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression
    • Gombert AK, Moreira dos Santos, Christensen M, Nielsen B. 2001. Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J Bacteriol 183:1441-1451.
    • (2001) J Bacteriol , vol.183 , pp. 1441-1451
    • Gombert, A.K.1    Moreira, D.S.2    Christensen, M.3    Nielsen, B.4
  • 34
    • 0030806641 scopus 로고    scopus 로고
    • A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol
    • Gonzalez B, François J, Renaud M. 1997. A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast Chichester Engl 13:1347-1355.
    • (1997) Yeast Chichester Engl , vol.13 , pp. 1347-1355
    • Gonzalez, B.1    François, J.2    Renaud, M.3
  • 35
    • 29044444888 scopus 로고    scopus 로고
    • Comparative metabolic network analysis of two xylose fermenting recombinant Saccharomyces cerevisiae strains
    • Grotkjaer T, Christakopoulos P, Nielsen J, Olsson L. 2005. Comparative metabolic network analysis of two xylose fermenting recombinant Saccharomyces cerevisiae strains. Metab Eng 7:437-444.
    • (2005) Metab Eng , vol.7 , pp. 437-444
    • Grotkjaer, T.1    Christakopoulos, P.2    Nielsen, J.3    Olsson, L.4
  • 38
    • 0037375880 scopus 로고    scopus 로고
    • Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae
    • Jeppsson M, Träff K, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF. 2003. Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Res 3:167-175.
    • (2003) FEMS Yeast Res , vol.3 , pp. 167-175
    • Jeppsson, M.1    Träff, K.2    Johansson, B.3    Hahn-Hägerdal, B.4    Gorwa-Grauslund, M.F.5
  • 39
    • 8744293844 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response
    • Jin Y-S, Laplaza JM, Jeffries TW. 2004. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Appl Environ Microbiol 70:6816-6825.
    • (2004) Appl Environ Microbiol , vol.70 , pp. 6816-6825
    • Jin, Y.-S.1    Laplaza, J.M.2    Jeffries, T.W.3
  • 40
    • 0037228901 scopus 로고    scopus 로고
    • Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity
    • Jin Y-S, Ni H, Laplaza JM, Jeffries TW. 2003. Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl Environ Microbiol 69:495-503.
    • (2003) Appl Environ Microbiol , vol.69 , pp. 495-503
    • Jin, Y.-S.1    Ni, H.2    Laplaza, J.M.3    Jeffries, T.W.4
  • 41
    • 17644373035 scopus 로고    scopus 로고
    • Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering
    • Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund M-F. 2005. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast Chichester Engl 22:359-368.
    • (2005) Yeast Chichester Engl , vol.22 , pp. 359-368
    • Karhumaa, K.1    Hahn-Hägerdal, B.2    Gorwa-Grauslund, M.-F.3
  • 42
    • 84862231336 scopus 로고    scopus 로고
    • High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae
    • Kim SR, Ha S-J, Kong II, Jin Y-S. 2012. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae. Metab Eng 14:336-343.
    • (2012) Metab Eng , vol.14 , pp. 336-343
    • Kim, S.R.1    Ha, S.-J.2    Kong, I.I.3    Jin, Y.-S.4
  • 43
    • 26244452731 scopus 로고    scopus 로고
    • Revisiting the 13C-label distribution of the non-oxidative branch of the pentose phosphate pathway based upon kinetic and genetic evidence
    • Kleijn RJ, van Winden WA, van Gulik WM, Heijnen JJ. 2005. Revisiting the 13C-label distribution of the non-oxidative branch of the pentose phosphate pathway based upon kinetic and genetic evidence. FEBS J 272:4970-4982.
    • (2005) FEBS J , vol.272 , pp. 4970-4982
    • Kleijn, R.J.1    van Winden, W.A.2    van Gulik, W.M.3    Heijnen, J.J.4
  • 44
    • 78649701348 scopus 로고    scopus 로고
    • Limitations in xylose-fermenting Saccharomyces cerevisiae, made evident through comprehensive metabolite profiling and thermodynamic analysis
    • Klimacek M, Krahulec S, Sauer U, Nidetzky B. 2010. Limitations in xylose-fermenting Saccharomyces cerevisiae, made evident through comprehensive metabolite profiling and thermodynamic analysis. Appl Environ Microbiol 76:7566-7574.
    • (2010) Appl Environ Microbiol , vol.76 , pp. 7566-7574
    • Klimacek, M.1    Krahulec, S.2    Sauer, U.3    Nidetzky, B.4
  • 45
    • 0027395082 scopus 로고
    • Xylose fermentation by Saccharomyces cerevisiae
    • Kötter P, Ciriacy M. 1993. Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38:776-783.
    • (1993) Appl Microbiol Biotechnol , vol.38 , pp. 776-783
    • Kötter, P.1    Ciriacy, M.2
  • 48
  • 49
    • 1642315441 scopus 로고    scopus 로고
    • Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: A proof of principle
    • Kuyper M, Winkler AA, van Dijken JP, Pronk JT. 2004. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: A proof of principle. FEMS Yeast Res 4:655-664.
    • (2004) FEMS Yeast Res , vol.4 , pp. 655-664
    • Kuyper, M.1    Winkler, A.A.2    van Dijken, J.P.3    Pronk, J.T.4
  • 50
    • 77954686543 scopus 로고    scopus 로고
    • Comparing the fermentation performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A(LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol production
    • Lau MW, Gunawan C, Balan V, Dale BE. 2010. Comparing the fermentation performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A(LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol production. Biotechnol Biofuels 3:11.
    • (2010) Biotechnol Biofuels , vol.3 , pp. 11
    • Lau, M.W.1    Gunawan, C.2    Balan, V.3    Dale, B.E.4
  • 51
    • 0242669383 scopus 로고    scopus 로고
    • Xylose isomerase activity influences xylose fermentation with recombinant Saccharomyces cerevisiae strains expressing mutated xylA from Thermus thermophilus
    • Lönn A, Träff-Bjerre K, Cordero Otero, van Zyl R, Hahn-Hägerdal W. 2003. Xylose isomerase activity influences xylose fermentation with recombinant Saccharomyces cerevisiae strains expressing mutated xylA from Thermus thermophilus. Enzyme Microb Technol 32:567-573.
    • (2003) Enzyme Microb Technol , vol.32 , pp. 567-573
    • Lönn, A.1    Träff-Bjerre, K.2    Cordero, O.3    van Zyl, R.4    Hahn-Hägerdal, W.5
  • 52
    • 33947503169 scopus 로고    scopus 로고
    • Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry
    • Luo B, Groenke K, Takors R, Wandrey C, Oldiges M. 2007. Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry. J Chromatogr A 1147:153-164.
    • (2007) J Chromatogr A , vol.1147 , pp. 153-164
    • Luo, B.1    Groenke, K.2    Takors, R.3    Wandrey, C.4    Oldiges, M.5
  • 53
    • 0035014718 scopus 로고    scopus 로고
    • Central carbon metabolism of Saccharomyces cerevisiae explored by biosynthetic fractional (13)C labeling of common amino acids
    • Maaheimo H, Fiaux J, Cakar ZP, Bailey JE, Sauer U, Szyperski T. 2001. Central carbon metabolism of Saccharomyces cerevisiae explored by biosynthetic fractional (13)C labeling of common amino acids. Eur J Biochem FEBS 268:2464-2479.
    • (2001) Eur J Biochem FEBS , vol.268 , pp. 2464-2479
    • Maaheimo, H.1    Fiaux, J.2    Cakar, Z.P.3    Bailey, J.E.4    Sauer, U.5    Szyperski, T.6
  • 55
    • 84879993970 scopus 로고    scopus 로고
    • Fermentation of xylose causes inefficient metabolic state due to carbon/energy starvation and reduced glycolytic flux in recombinant industrial Saccharomyces cerevisiae
    • Matsushika A, Nagashima A, Goshima T, Hoshino T. 2013. Fermentation of xylose causes inefficient metabolic state due to carbon/energy starvation and reduced glycolytic flux in recombinant industrial Saccharomyces cerevisiae. PloS ONE 8: e 69005.
    • (2013) PloS ONE , vol.8 , pp. 69005
    • Matsushika, A.1    Nagashima, A.2    Goshima, T.3    Hoshino, T.4
  • 56
    • 0026788169 scopus 로고
    • Glucose-induced degradation of the MDH2 isozyme of malate dehydrogenase in yeast
    • Minard KI, McAlister-Henn L. 1992. Glucose-induced degradation of the MDH2 isozyme of malate dehydrogenase in yeast. J Biol Chem 267:17458-17464.
    • (1992) J Biol Chem , vol.267 , pp. 17458-17464
    • Minard, K.I.1    McAlister-Henn, L.2
  • 57
    • 0028046969 scopus 로고
    • Glucose-induced phosphorylation of the MDH2 isozyme of malate dehydrogenase in Saccharomyces cerevisiae
    • Minard KI, McAlister-Henn L. 1994. Glucose-induced phosphorylation of the MDH2 isozyme of malate dehydrogenase in Saccharomyces cerevisiae. Arch Biochem Biophys 315:302-309.
    • (1994) Arch Biochem Biophys , vol.315 , pp. 302-309
    • Minard, K.I.1    McAlister-Henn, L.2
  • 58
    • 0029084376 scopus 로고
    • Different internal metabolites trigger the induction of glycolytic gene expression in Saccharomyces cerevisiae
    • Müller S, Boles E, May M, Zimmermann FK. 1995. Different internal metabolites trigger the induction of glycolytic gene expression in Saccharomyces cerevisiae. J Bacteriol 177:4517-4519.
    • (1995) J Bacteriol , vol.177 , pp. 4517-4519
    • Müller, S.1    Boles, E.2    May, M.3    Zimmermann, F.K.4
  • 59
    • 0029874904 scopus 로고    scopus 로고
    • The regulatory characteristics of yeast fructose-1,6-bisphosphatase confer only a small selective advantage
    • Navas MA, Gancedo JM. 1996. The regulatory characteristics of yeast fructose-1, 6-bisphosphatase confer only a small selective advantage. J Bacteriol 178:1809-1812.
    • (1996) J Bacteriol , vol.178 , pp. 1809-1812
    • Navas, M.A.1    Gancedo, J.M.2
  • 60
    • 0031015551 scopus 로고    scopus 로고
    • Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae
    • Nissen TL, Schulze U, Nielsen J, Villadsen J. 1997. Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiol Read Engl 143:203-218.
    • (1997) Microbiol Read Engl , vol.143 , pp. 203-218
    • Nissen, T.L.1    Schulze, U.2    Nielsen, J.3    Villadsen, J.4
  • 62
    • 0038514106 scopus 로고    scopus 로고
    • Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture
    • Pitkänen J-P, Aristidou A, Salusjärvi L, Ruohonen L, Penttilä M. 2003. Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture. Metab Eng 5:16-31.
    • (2003) Metab Eng , vol.5 , pp. 16-31
    • Pitkänen, J.-P.1    Aristidou, A.2    Salusjärvi, L.3    Ruohonen, L.4    Penttilä, M.5
  • 63
    • 0001363302 scopus 로고
    • Changes in the enzyme activities of Saccharomyces cerevisiae during aerobic growth on different carbon sources
    • Polakis ES, Bartley W. 1965. Changes in the enzyme activities of Saccharomyces cerevisiae during aerobic growth on different carbon sources. Biochem J 97:284-297.
    • (1965) Biochem J , vol.97 , pp. 284-297
    • Polakis, E.S.1    Bartley, W.2
  • 64
    • 0033745888 scopus 로고    scopus 로고
    • Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process
    • Rolland F, De Winde JH, Lemaire K, Boles E, Thevelein JM, Winderickx J. 2000. Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process. Mol Microbiol 38:348-358.
    • (2000) Mol Microbiol , vol.38 , pp. 348-358
    • Rolland, F.1    De Winde, J.H.2    Lemaire, K.3    Boles, E.4    Thevelein, J.M.5    Winderickx, J.6
  • 65
    • 58549084602 scopus 로고    scopus 로고
    • Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae
    • Runquist D, Fonseca C, Rådström P, Spencer-Martins I, Hahn-Hägerdal B. 2009a. Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl Microbiol Biotechnol 82:123-130.
    • (2009) Appl Microbiol Biotechnol , vol.82 , pp. 123-130
    • Runquist, D.1    Fonseca, C.2    Rådström, P.3    Spencer-Martins, I.4    Hahn-Hägerdal, B.5
  • 66
    • 70449428931 scopus 로고    scopus 로고
    • Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae
    • Runquist D, Hahn-Hägerdal B, Bettiga M. 2009b. Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae. Microb Cell Factories 8:49.
    • (2009) Microb Cell Factories , vol.8 , pp. 49
    • Runquist, D.1    Hahn-Hägerdal, B.2    Bettiga, M.3
  • 67
    • 77951127992 scopus 로고    scopus 로고
    • Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae
    • Runquist D, Hahn-Hägerdal B, Rådström P. 2010. Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 3:5.
    • (2010) Biotechnol Biofuels , vol.3 , pp. 5
    • Runquist, D.1    Hahn-Hägerdal, B.2    Rådström, P.3
  • 71
    • 2442641770 scopus 로고    scopus 로고
    • Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis
    • Sonderegger M, Jeppsson M, Hahn-Hägerdal B, Sauer U. 2004. Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis. Appl Environ Microbiol 70:2307-2317.
    • (2004) Appl Environ Microbiol , vol.70 , pp. 2307-2317
    • Sonderegger, M.1    Jeppsson, M.2    Hahn-Hägerdal, B.3    Sauer, U.4
  • 72
    • 33846950348 scopus 로고    scopus 로고
    • Challenges in engineering microbes for biofuels production
    • Stephanopoulos G. 2007. Challenges in engineering microbes for biofuels production. Science 315:801-804.
    • (2007) Science , vol.315 , pp. 801-804
    • Stephanopoulos, G.1
  • 74
    • 0034878314 scopus 로고    scopus 로고
    • Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability
    • Toivari MH, Aristidou A, Ruohonen L, Penttilä M. 2001. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab Eng 3:236-249.
    • (2001) Metab Eng , vol.3 , pp. 236-249
    • Toivari, M.H.1    Aristidou, A.2    Ruohonen, L.3    Penttilä, M.4
  • 75
    • 0037145633 scopus 로고    scopus 로고
    • Correcting mass isotopomer distributions for naturally occurring isotopes
    • Van Winden WA, Wittmann C, Heinzle E, Heijnen JJ. 2002. Correcting mass isotopomer distributions for naturally occurring isotopes. Biotechnol Bioeng 80:477-479.
    • (2002) Biotechnol Bioeng , vol.80 , pp. 477-479
    • Van Winden, W.A.1    Wittmann, C.2    Heinzle, E.3    Heijnen, J.J.4
  • 76
    • 0034804472 scopus 로고    scopus 로고
    • Signal transduction dynamics of the protein kinase-A/phosphofructokinase-2 system in Saccharomyces cerevisiae
    • Vaseghi S, Macherhammer F, Zibek S, Reuss M. 2001. Signal transduction dynamics of the protein kinase-A/phosphofructokinase-2 system in Saccharomyces cerevisiae. Metab Eng 3:163-172.
    • (2001) Metab Eng , vol.3 , pp. 163-172
    • Vaseghi, S.1    Macherhammer, F.2    Zibek, S.3    Reuss, M.4
  • 77
    • 0035338114 scopus 로고    scopus 로고
    • Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism
    • Vincent O, Townley R, Kuchin S, Carlson M. 2001. Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism. Genes Dev 15:1104-1114.
    • (2001) Genes Dev , vol.15 , pp. 1104-1114
    • Vincent, O.1    Townley, R.2    Kuchin, S.3    Carlson, M.4
  • 78
    • 0035809032 scopus 로고    scopus 로고
    • Intracellular fluxes in a recombinant xylose-utilizing Saccharomyces cerevisiae cultivated anaerobically at different dilution rates and feed concentrations
    • Wahlbom CF, Eliasson A, Hahn-Hägerdal B. 2001. Intracellular fluxes in a recombinant xylose-utilizing Saccharomyces cerevisiae cultivated anaerobically at different dilution rates and feed concentrations. Biotechnol Bioeng 72:289-296.
    • (2001) Biotechnol Bioeng , vol.72 , pp. 289-296
    • Wahlbom, C.F.1    Eliasson, A.2    Hahn-Hägerdal, B.3
  • 79
    • 0347297600 scopus 로고    scopus 로고
    • Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway
    • Wahlbom CF, Cordero Otero, van Zyl RR, Hahn-Hägerdal WH, Jönsson B. 2003. Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl Environ Microbiol 69:740-746.
    • (2003) Appl Environ Microbiol , vol.69 , pp. 740-746
    • Wahlbom, C.F.1    Cordero, O.2    van Zyl, R.R.3    Hahn-Hägerdal, W.H.4    Jönsson, B.5
  • 80
    • 0028829654 scopus 로고
    • Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase
    • Walfridsson M, Hallborn J, Penttilä M, Keränen S, Hahn-Hägerdal B. 1995. Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl Environ Microbiol 61:4184-4190.
    • (1995) Appl Environ Microbiol , vol.61 , pp. 4184-4190
    • Walfridsson, M.1    Hallborn, J.2    Penttilä, M.3    Keränen, S.4    Hahn-Hägerdal, B.5
  • 81
    • 84883803981 scopus 로고    scopus 로고
    • Kinetic isotope effects significantly influence intracellular metabolite (13) C labeling patterns and flux determination
    • Wasylenko TM, Stephanopoulos G. 2013. Kinetic isotope effects significantly influence intracellular metabolite (13) C labeling patterns and flux determination. Biotechnol J 8:1080-1089.
    • (2013) Biotechnol J , vol.8 , pp. 1080-1089
    • Wasylenko, T.M.1    Stephanopoulos, G.2
  • 82
    • 0031554635 scopus 로고    scopus 로고
    • Bidirectional reaction steps in metabolic networks: I. Modeling and simulation of carbon isotope labeling experiments
    • Wiechert W, de Graaf AA. 1997. Bidirectional reaction steps in metabolic networks: I. Modeling and simulation of carbon isotope labeling experiments. Biotechnol Bioeng 55:101-117.
    • (1997) Biotechnol Bioeng , vol.55 , pp. 101-117
    • Wiechert, W.1    de Graaf, A.A.2
  • 83
    • 78049451371 scopus 로고    scopus 로고
    • Metabolome, transcriptome and metabolic flux analysis of arabinose fermentation by engineered Saccharomyces cerevisiae
    • Wisselink HW, Cipollina C, Oud B, Crimi B, Heijnen JJ, Pronk JT, van Maris AJA. 2010. Metabolome, transcriptome and metabolic flux analysis of arabinose fermentation by engineered Saccharomyces cerevisiae. Metab Eng 12:537-551.
    • (2010) Metab Eng , vol.12 , pp. 537-551
    • Wisselink, H.W.1    Cipollina, C.2    Oud, B.3    Crimi, B.4    Heijnen, J.J.5    Pronk, J.T.6    van Maris, A.J.A.7
  • 84
    • 0033586461 scopus 로고    scopus 로고
    • Mass spectrometry for metabolic flux analysis
    • Wittmann, Heinzle 1999. Mass spectrometry for metabolic flux analysis. Biotechnol Bioeng 62:739-750.
    • (1999) Biotechnol Bioeng , vol.62 , pp. 739-750
    • Wittmann, C.1    Heinzle, E.2
  • 85
    • 11144324238 scopus 로고    scopus 로고
    • Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly 13C-labeled cell extracts as internal standards
    • Wu L, Mashego MR, van Dam JC, Proell AM, Vinke JL, Ras C, van Winden WA, van Gulik WM, Heijnen JJ. 2005. Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly 13C-labeled cell extracts as internal standards. Anal Biochem 336:164-171.
    • (2005) Anal Biochem , vol.336 , pp. 164-171
    • Wu, L.1    Mashego, M.R.2    van Dam, J.C.3    Proell, A.M.4    Vinke, J.L.5    Ras, C.6    van Winden, W.A.7    van Gulik, W.M.8    Heijnen, J.J.9
  • 86
    • 0033965777 scopus 로고    scopus 로고
    • Differential post-transcriptional regulation of yeast mRNAs in response to high and low glucose concentrations
    • Yin Z, Hatton L, Brown AJ. 2000. Differential post-transcriptional regulation of yeast mRNAs in response to high and low glucose concentrations. Mol Microbiol 35:553-565.
    • (2000) Mol Microbiol , vol.35 , pp. 553-565
    • Yin, Z.1    Hatton, L.2    Brown, A.J.3
  • 87
    • 84862800120 scopus 로고    scopus 로고
    • A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae
    • Young EM, Comer AD, Huang H, Alper HS. 2012. A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae. Metab Eng 14:401-411.
    • (2012) Metab Eng , vol.14 , pp. 401-411
    • Young, E.M.1    Comer, A.D.2    Huang, H.3    Alper, H.S.4
  • 88
    • 80555122963 scopus 로고    scopus 로고
    • Mapping photoautotrophic metabolism with isotopically nonstationary (13)C flux analysis
    • Young JD, Shastri AA, Stephanopoulos G, Morgan JA. 2011. Mapping photoautotrophic metabolism with isotopically nonstationary (13)C flux analysis. Metab Eng 13:656-665.
    • (2011) Metab Eng , vol.13 , pp. 656-665
    • Young, J.D.1    Shastri, A.A.2    Stephanopoulos, G.3    Morgan, J.A.4
  • 89
    • 84869043924 scopus 로고    scopus 로고
    • Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae
    • Zhou H, Cheng J-S, Wang BL, Fink GR, Stephanopoulos G. 2012. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng 14:611-622.
    • (2012) Metab Eng , vol.14 , pp. 611-622
    • Zhou, H.1    Cheng, J.-S.2    Wang, B.L.3    Fink, G.R.4    Stephanopoulos, G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.