메뉴 건너뛰기




Volumn 29, Issue 4, 2011, Pages 153-158

Microbial production of bulk chemicals: Development of anaerobic processes

Author keywords

[No Author keywords available]

Indexed keywords

AEROBIC PROCESS; ANAEROBIC PROCESS; BULK CHEMICALS; COST-EFFECTIVE PRODUCTION; ENERGY GENERATIONS; FERMENTATION PROCESS; HIGH YIELD; MICROBIAL CONVERSIONS; MICROBIAL PROCESS; MICROBIAL PRODUCTION; OXYGEN UTILIZATION; PRODUCT FORMATION; PRODUCT YIELDS; RATE LIMITING; REDOX METABOLISM; RENEWABLE RESOURCE; VOLUMETRIC OXYGEN TRANSFER;

EID: 79952705331     PISSN: 01677799     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tibtech.2010.12.007     Document Type: Short Survey
Times cited : (92)

References (43)
  • 2
    • 74149084370 scopus 로고    scopus 로고
    • Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives and limits
    • Okano K., et al. Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives and limits. Appl. Microbiol. Biotechnol. 2010, 85:413-423.
    • (2010) Appl. Microbiol. Biotechnol. , vol.85 , pp. 413-423
    • Okano, K.1
  • 3
    • 0026448291 scopus 로고
    • Ethanol production in an integrated process of fermentation and ethanol recovery by pervaporation
    • Groot W.J., et al. Ethanol production in an integrated process of fermentation and ethanol recovery by pervaporation. Bioprocess Eng. 1991, 8:99-111.
    • (1991) Bioprocess Eng. , vol.8 , pp. 99-111
    • Groot, W.J.1
  • 4
    • 0029079015 scopus 로고
    • Lactic acid from cheese whey permeate. Productivity and economics of a continuous membrane reactor
    • Tejayadi S., Cheryan M. Lactic acid from cheese whey permeate. Productivity and economics of a continuous membrane reactor. Appl. Microbiol. Biotechnol. 1994, 43:242-248.
    • (1994) Appl. Microbiol. Biotechnol. , vol.43 , pp. 242-248
    • Tejayadi, S.1    Cheryan, M.2
  • 5
    • 0027449170 scopus 로고
    • Glutamic acid and by-product synthesis by immobilized cells of the bacterium Corynebacterium glutamicum
    • Amin G., et al. Glutamic acid and by-product synthesis by immobilized cells of the bacterium Corynebacterium glutamicum. Biotechnol. Lett. 1993, 15:1123-1128.
    • (1993) Biotechnol. Lett. , vol.15 , pp. 1123-1128
    • Amin, G.1
  • 6
    • 79952709166 scopus 로고    scopus 로고
    • Ajinomoto Co., Inc. Method for producing l-glutamic acid by continuous fermentation, US005869300
    • Yoshioka, T. et al. Ajinomoto Co., Inc. Method for producing l-glutamic acid by continuous fermentation, US005869300.
    • Yoshioka, T.1
  • 7
    • 0034581414 scopus 로고    scopus 로고
    • Production of citric acid by immobilized Aspergillus niger using a rotating biological contactor (RBC)
    • Jianlong W. Production of citric acid by immobilized Aspergillus niger using a rotating biological contactor (RBC). Biores. Technol. 2000, 75:245-247.
    • (2000) Biores. Technol. , vol.75 , pp. 245-247
    • Jianlong, W.1
  • 8
    • 0034581365 scopus 로고    scopus 로고
    • Production of citric acid from molasses integrated with in-situ product separation by ion-exchange resin adsorbtion
    • Jianlong W., et al. Production of citric acid from molasses integrated with in-situ product separation by ion-exchange resin adsorbtion. Biores. Technol. 2000, 75:231-234.
    • (2000) Biores. Technol. , vol.75 , pp. 231-234
    • Jianlong, W.1
  • 9
    • 23244443072 scopus 로고    scopus 로고
    • Process optimization of continuous gluconic acid fermentation by isolated yeast-like strains or Aureobasidium pullulans
    • Anastasiadis S. Process optimization of continuous gluconic acid fermentation by isolated yeast-like strains or Aureobasidium pullulans. Biotechnol. Bioeng. 2005, 91:494-501.
    • (2005) Biotechnol. Bioeng. , vol.91 , pp. 494-501
    • Anastasiadis, S.1
  • 10
    • 0024657263 scopus 로고
    • Characterization of production of free gluconic acid by Gluconobacter suboxydans adsorbed on ceramic honeycomb monolith
    • Shiraishi F., et al. Characterization of production of free gluconic acid by Gluconobacter suboxydans adsorbed on ceramic honeycomb monolith. Biotechnol. Bioeng. 1988, 33:1413-1418.
    • (1988) Biotechnol. Bioeng. , vol.33 , pp. 1413-1418
    • Shiraishi, F.1
  • 11
  • 12
    • 0345164255 scopus 로고
    • Continuous production of vinegar, I. research strategy
    • Ghommid C., et al. Continuous production of vinegar, I. research strategy. Biotechnol. Lett. 1986, 8:13-18.
    • (1986) Biotechnol. Lett. , vol.8 , pp. 13-18
    • Ghommid, C.1
  • 13
    • 0024847584 scopus 로고
    • L-Lysine production in continuous culture of an l-Lysine hyperproducing mutant of Corynebacterium glutamicum
    • Hirao T., et al. l-Lysine production in continuous culture of an l-Lysine hyperproducing mutant of Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 1989, 32:269-273.
    • (1989) Appl. Microbiol. Biotechnol. , vol.32 , pp. 269-273
    • Hirao, T.1
  • 14
    • 0034927504 scopus 로고    scopus 로고
    • Glycerol production by microbial fermentation: a review
    • Wang Z.-X., et al. Glycerol production by microbial fermentation: a review. Biotechnol. Adv. 2001, 19:201-223.
    • (2001) Biotechnol. Adv. , vol.19 , pp. 201-223
    • Wang, Z.-X.1
  • 15
    • 0142027026 scopus 로고    scopus 로고
    • Metabolic engineering for the microbial production of 1,3-propanediol
    • Nakamura C.E., Whited G.M. Metabolic engineering for the microbial production of 1,3-propanediol. Curr. Opin. Biotechnol. 2003, 14:454-459.
    • (2003) Curr. Opin. Biotechnol. , vol.14 , pp. 454-459
    • Nakamura, C.E.1    Whited, G.M.2
  • 16
    • 58149473705 scopus 로고    scopus 로고
    • Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview
    • Garcia-Ochoa F., Gomez E. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol. Adv. 2009, 27:153-176.
    • (2009) Biotechnol. Adv. , vol.27 , pp. 153-176
    • Garcia-Ochoa, F.1    Gomez, E.2
  • 17
    • 70350508288 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine
    • Qian Z.-G., et al. Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine. Biotechnol. Bioeng. 2009, 104:651-662.
    • (2009) Biotechnol. Bioeng. , vol.104 , pp. 651-662
    • Qian, Z.-G.1
  • 18
    • 66249112842 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for enhanced production of (R)- and (S)-3-hydroxybutyrate
    • Tseng H.-C., et al. Metabolic engineering of Escherichia coli for enhanced production of (R)- and (S)-3-hydroxybutyrate. Appl. Environ. Microbiol. 2009, 75:3137-3145.
    • (2009) Appl. Environ. Microbiol. , vol.75 , pp. 3137-3145
    • Tseng, H.-C.1
  • 19
    • 70349985735 scopus 로고    scopus 로고
    • Microbial production of 1,3-propanediol: recent developments and emerging opportunities
    • Saxena R.K., et al. Microbial production of 1,3-propanediol: recent developments and emerging opportunities. Biotechnol. Adv. 2009, 27:895-913.
    • (2009) Biotechnol. Adv. , vol.27 , pp. 895-913
    • Saxena, R.K.1
  • 20
    • 44049105889 scopus 로고    scopus 로고
    • Succinic acid: a new platform chemical for biobased polymers from renewable resources
    • Bechthold I., et al. Succinic acid: a new platform chemical for biobased polymers from renewable resources. Chem. Eng. Technol. 2008, 31:647-654.
    • (2008) Chem. Eng. Technol. , vol.31 , pp. 647-654
    • Bechthold, I.1
  • 21
    • 21344432400 scopus 로고    scopus 로고
    • Feasibility of acrylic acid production by fermentation
    • Straathof A.J.J., et al. Feasibility of acrylic acid production by fermentation. Appl. Microbiol. Biotechnol. 2005, 67:727-734.
    • (2005) Appl. Microbiol. Biotechnol. , vol.67 , pp. 727-734
    • Straathof, A.J.J.1
  • 22
    • 0036526464 scopus 로고    scopus 로고
    • Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli
    • San K.-Y., et al. Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli. Metab. Eng. 2002, 4:182-192.
    • (2002) Metab. Eng. , vol.4 , pp. 182-192
    • San, K.-Y.1
  • 23
    • 0035862739 scopus 로고    scopus 로고
    • Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool
    • Nissen T.L., et al. Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool. Yeast 2001, 18:19-32.
    • (2001) Yeast , vol.18 , pp. 19-32
    • Nissen, T.L.1
  • 24
    • 40049104301 scopus 로고    scopus 로고
    • Coenzyme regeneration catalyzed by NADH oxidase from Lactobacillus brevis in the reaction of L-amino acid oxidation
    • Findrik Z., et al. Coenzyme regeneration catalyzed by NADH oxidase from Lactobacillus brevis in the reaction of L-amino acid oxidation. Biochem. Eng. J. 2008, 39:319-327.
    • (2008) Biochem. Eng. J. , vol.39 , pp. 319-327
    • Findrik, Z.1
  • 25
    • 78049239447 scopus 로고    scopus 로고
    • ATP synthase: from sequence to ring size to the p/o ration
    • Ferguson S.J. ATP synthase: from sequence to ring size to the p/o ration. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:16755-16756.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 16755-16756
    • Ferguson, S.J.1
  • 26
    • 76849092008 scopus 로고    scopus 로고
    • New applications and performance of bioelectrochemical systems
    • Hamelers H.V.M., et al. New applications and performance of bioelectrochemical systems. Appl. Microbiol. Biotechnol. 2010, 85:1673-1685.
    • (2010) Appl. Microbiol. Biotechnol. , vol.85 , pp. 1673-1685
    • Hamelers, H.V.M.1
  • 27
    • 67649379333 scopus 로고    scopus 로고
    • Microbial fuel cells operated with iron-chelated air cathodes
    • Aelterman P., et al. Microbial fuel cells operated with iron-chelated air cathodes. Electrochim. Acta 2009, 54:5754-5760.
    • (2009) Electrochim. Acta , vol.54 , pp. 5754-5760
    • Aelterman, P.1
  • 28
    • 0031884828 scopus 로고    scopus 로고
    • Fermentation of galacturonic acid and pectin-rich materials to ethanol by genetically modified strains of Erwinia
    • Grohmann K., et al. Fermentation of galacturonic acid and pectin-rich materials to ethanol by genetically modified strains of Erwinia. Biotechnol. Lett. 1998, 20:195-200.
    • (1998) Biotechnol. Lett. , vol.20 , pp. 195-200
    • Grohmann, K.1
  • 29
    • 34249936957 scopus 로고    scopus 로고
    • Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry
    • Yazdani S.S., Gonzalez R. Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr. Opin. Biotechnol. 2007, 18:213-219.
    • (2007) Curr. Opin. Biotechnol. , vol.18 , pp. 213-219
    • Yazdani, S.S.1    Gonzalez, R.2
  • 30
    • 0035156129 scopus 로고    scopus 로고
    • Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succinoproducens using glycerol as a carbon source
    • Lee P.C., et al. Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succinoproducens using glycerol as a carbon source. Biotechnol. Bioeng. 2000, 72:41-48.
    • (2000) Biotechnol. Bioeng. , vol.72 , pp. 41-48
    • Lee, P.C.1
  • 31
    • 73449129351 scopus 로고    scopus 로고
    • The auxiliary substrate concept: from simple considerations to heuristically valuable knowledge
    • Babel W. The auxiliary substrate concept: from simple considerations to heuristically valuable knowledge. Eng. Life Sci. 2009, 9:285-290.
    • (2009) Eng. Life Sci. , vol.9 , pp. 285-290
    • Babel, W.1
  • 32
    • 33751279921 scopus 로고    scopus 로고
    • Engineering NADH metabolism in Saccharomyces cerevisiae: formate as an electron donor for glycerol production by anaerobic, glucose-limited chemostat cultures
    • Geertman J.-M., et al. Engineering NADH metabolism in Saccharomyces cerevisiae: formate as an electron donor for glycerol production by anaerobic, glucose-limited chemostat cultures. FEMS Yeast Res. 2006, 6:1193-1203.
    • (2006) FEMS Yeast Res. , vol.6 , pp. 1193-1203
    • Geertman, J.-M.1
  • 33
    • 2442587515 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for d-mannitol formation in whole-cell biotransformation
    • Kaup B., et al. Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for d-mannitol formation in whole-cell biotransformation. Appl. Microbiol. Biotechnol. 2005, 64:333-339.
    • (2005) Appl. Microbiol. Biotechnol. , vol.64 , pp. 333-339
    • Kaup, B.1
  • 34
    • 70350521215 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: current status and challenges
    • Abbott D.A., et al. Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: current status and challenges. FEMS Yeast Res. 2009, 9:1123-1136.
    • (2009) FEMS Yeast Res. , vol.9 , pp. 1123-1136
    • Abbott, D.A.1
  • 35
    • 0024723183 scopus 로고
    • The fermentation pathways of Escherichia coli
    • Clark D.P. The fermentation pathways of Escherichia coli. Micobiol. Rev. 1989, 63:223-234.
    • (1989) Micobiol. Rev. , vol.63 , pp. 223-234
    • Clark, D.P.1
  • 36
    • 33947510995 scopus 로고    scopus 로고
    • Bio-refinery as the bio-inspired process to bulk chemicals
    • Sanders J., et al. Bio-refinery as the bio-inspired process to bulk chemicals. Macromol. Biosci. 2007, 7:105-117.
    • (2007) Macromol. Biosci. , vol.7 , pp. 105-117
    • Sanders, J.1
  • 37
    • 0019128005 scopus 로고
    • 2 fixation in Methanobacterium thermoautotrophicum
    • 2 fixation in Methanobacterium thermoautotrophicum. Arch. Microbiol. 1980, 127:267-272.
    • (1980) Arch. Microbiol. , vol.127 , pp. 267-272
    • Fuchs, G.1    Stupperich, E.2
  • 38
    • 63649098478 scopus 로고    scopus 로고
    • 2 pathway in Escherichia coli BL21(DE3)
    • 2 pathway in Escherichia coli BL21(DE3). Metab. Eng. 2009, 11:139-147.
    • (2009) Metab. Eng. , vol.11 , pp. 139-147
    • Akhtar, M.K.1    Jones, P.R.2
  • 39
    • 33646045867 scopus 로고    scopus 로고
    • Effect of overexpression of a soluble pyridine nucleotide transhydrogenase (UdhA) on the production of poly(3-hydroxybutyrate) in Escherichia coli
    • Sánchez A.M., et al. Effect of overexpression of a soluble pyridine nucleotide transhydrogenase (UdhA) on the production of poly(3-hydroxybutyrate) in Escherichia coli. Biotechnol. Prog. 2006, 22:420-425.
    • (2006) Biotechnol. Prog. , vol.22 , pp. 420-425
    • Sánchez, A.M.1
  • 40
    • 1342325419 scopus 로고    scopus 로고
    • The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli
    • Sauer U., et al. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J. Biol. Chem. 2004, 279:6613-6619.
    • (2004) J. Biol. Chem. , vol.279 , pp. 6613-6619
    • Sauer, U.1
  • 41
    • 57049150799 scopus 로고    scopus 로고
    • Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways
    • Martínez I., et al. Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways. Metab. Eng. 2008, 10:352-359.
    • (2008) Metab. Eng. , vol.10 , pp. 352-359
    • Martínez, I.1
  • 42
    • 0142136153 scopus 로고    scopus 로고
    • Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae
    • Verho R., et al. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2003, 69:5892-5897.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 5892-5897
    • Verho, R.1
  • 43
    • 61649119614 scopus 로고    scopus 로고
    • Pathway identification combining metabolic flux and functional genomics analyses: acetate and propionate activation by Corynebacterium glutamicum
    • Veit A., et al. Pathway identification combining metabolic flux and functional genomics analyses: acetate and propionate activation by Corynebacterium glutamicum. J. Biotechnol. 2009, 140:75-83.
    • (2009) J. Biotechnol. , vol.140 , pp. 75-83
    • Veit, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.