-
1
-
-
0030908893
-
The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation
-
Ansell R, Granath K, Hohmann S, Thevelein JM, Adler L. 1997. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J. 16:2179-2187.
-
(1997)
EMBO J
, vol.16
, pp. 2179-2187
-
-
Ansell, R.1
Granath, K.2
Hohmann, S.3
Thevelein, J.M.4
Adler, L.5
-
2
-
-
64749094343
-
Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae
-
Brat D, Boles E, Wiedemann B. 2009. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 75:2304-2311.
-
(2009)
Appl. Environ. Microbiol.
, vol.75
, pp. 2304-2311
-
-
Brat, D.1
Boles, E.2
Wiedemann, B.3
-
3
-
-
33644832381
-
In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production
-
Bro C, Regenberg B, Forster J, Nielsen J. 2006. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab. Eng. 8:102-111.
-
(2006)
Metab. Eng.
, vol.8
, pp. 102-111
-
-
Bro, C.1
Regenberg, B.2
Forster, J.3
Nielsen, J.4
-
4
-
-
0033856888
-
Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures
-
Eliasson A, Christensson C, Wahlbom CF, Hahn-Hagerdal B. 2000. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl. Environ. Microbiol. 66:3381-3386.
-
(2000)
Appl. Environ. Microbiol.
, vol.66
, pp. 3381-3386
-
-
Eliasson, A.1
Christensson, C.2
Wahlbom, C.F.3
Hahn-Hagerdal, B.4
-
5
-
-
0024266139
-
New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites
-
Gietz RD, Sugino A. 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527-534.
-
(1988)
Gene
, vol.74
, pp. 527-534
-
-
Gietz, R.D.1
Sugino, A.2
-
6
-
-
29044444888
-
Comparative metabolic network analysis of two xylose fermenting recombinant Saccharomyces cerevisiae strains
-
Grotkjaer T, Christakopoulos P, Nielsen J, Olsson L. 2005. Comparative metabolic network analysis of two xylose fermenting recombinant Saccharomyces cerevisiae strains. Metab. Eng. 7:437-444.
-
(2005)
Metab. Eng.
, vol.7
, pp. 437-444
-
-
Grotkjaer, T.1
Christakopoulos, P.2
Nielsen, J.3
Olsson, L.4
-
7
-
-
33947191174
-
Towards industrial pentose-fermenting yeast strains
-
Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF. 2007. Towards industrial pentose-fermenting yeast strains. Appl. Microbiol. Biotechnol. 74:937-953.
-
(2007)
Appl. Microbiol. Biotechnol.
, vol.74
, pp. 937-953
-
-
Hahn-Hägerdal, B.1
Karhumaa, K.2
Fonseca, C.3
Spencer-Martins, I.4
Gorwa-Grauslund, M.F.5
-
9
-
-
0043160450
-
Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway
-
Harhangi HR, et al. 2003. Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway. Arch. Microbiol. 180:134-141.
-
(2003)
Arch. Microbiol.
, vol.180
, pp. 134-141
-
-
Harhangi, H.R.1
-
10
-
-
33746891860
-
Cofactor engineering in Saccharomyces cerevisiae: expression of a H2O-forming NADH oxidase and impact on redox metabolism
-
Heux S, Cachon R, Dequin S. 2006. Cofactor engineering in Saccharomyces cerevisiae: expression of a H2O-forming NADH oxidase and impact on redox metabolism. Metab. Eng. 8:303-314.
-
(2006)
Metab. Eng.
, vol.8
, pp. 303-314
-
-
Heux, S.1
Cachon, R.2
Dequin, S.3
-
11
-
-
0036229317
-
Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis
-
Hoefnagel MH, et al. 2002. Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. Microbiology 148:1003-1013.
-
(2002)
Microbiology
, vol.148
, pp. 1003-1013
-
-
Hoefnagel, M.H.1
-
12
-
-
34447620451
-
Effect of the reversal of coenzyme specificity by expression of mutated Pichia stipitis xylitol dehydrogenase in recombinant Saccharomyces cerevisiae
-
Hou J, Shen Y, Li XP, Bao XM. 2007. Effect of the reversal of coenzyme specificity by expression of mutated Pichia stipitis xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Lett. Appl. Microbiol. 45:184-189.
-
(2007)
Lett. Appl. Microbiol.
, vol.45
, pp. 184-189
-
-
Hou, J.1
Shen, Y.2
Li, X.P.3
Bao, X.M.4
-
13
-
-
62949084480
-
Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xyloseutilizing Saccharomyces cerevisiae
-
Hou J, Vemuri GN, Bao X, Olsson L. 2009. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xyloseutilizing Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 82:909-919.
-
(2009)
Appl. Microbiol. Biotechnol.
, vol.82
, pp. 909-919
-
-
Hou, J.1
Vemuri, G.N.2
Bao, X.3
Olsson, L.4
-
14
-
-
33744914986
-
Engineering yeasts for xylose metabolism
-
Jeffries TW. 2006. Engineering yeasts for xylose metabolism. Curr. Opin. Biotechnol. 17:320-326.
-
(2006)
Curr. Opin. Biotechnol.
, vol.17
, pp. 320-326
-
-
Jeffries, T.W.1
-
15
-
-
33644879465
-
The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae
-
Jeppsson M, et al. 2006. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Biotechnol. Bioeng. 93: 665-673.
-
(2006)
Biotechnol. Bioeng.
, vol.93
, pp. 665-673
-
-
Jeppsson, M.1
-
16
-
-
0038748280
-
Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae
-
Jin YS, Jeffries TW. 2003. Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 105-108:277-286.
-
(2003)
Appl. Biochem. Biotechnol.
, vol.105-108
, pp. 277-286
-
-
Jin, Y.S.1
Jeffries, T.W.2
-
17
-
-
33845807902
-
High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae
-
Karhumaa K, Fromanger R, Hahn-Hagerdal B, Gorwa-Grauslund MF. 2007. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 73:1039-1046.
-
(2007)
Appl. Microbiol. Biotechnol.
, vol.73
, pp. 1039-1046
-
-
Karhumaa, K.1
Fromanger, R.2
Hahn-Hagerdal, B.3
Gorwa-Grauslund, M.F.4
-
18
-
-
33847202270
-
Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae
-
Karhumaa K, Garcia Sanchez R, Hahn-Hagerdal B, Gorwa-Grauslund MF. 2007. Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb. Cell Fact. 6:5.
-
(2007)
Microb. Cell Fact.
, vol.6
, pp. 5
-
-
Karhumaa, K.1
Garcia Sanchez, R.2
Hahn-Hagerdal, B.3
Gorwa-Grauslund, M.F.4
-
19
-
-
33845286497
-
Improved production of ethanol by deleting FPS1 and over-expressing GLT1 in Saccharomyces cerevisiae
-
Kong QX, et al. 2006. Improved production of ethanol by deleting FPS1 and over-expressing GLT1 in Saccharomyces cerevisiae. Biotechnol. Lett. 28:2033-2038.
-
(2006)
Biotechnol. Lett.
, vol.28
, pp. 2033-2038
-
-
Kong, Q.X.1
-
20
-
-
76649127721
-
Phylogenetic analysis of ascomycete yeasts that form coenzyme Q.-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces
-
Kurtzman CP, Suzuki M. 2010. Phylogenetic analysis of ascomycete yeasts that form coenzyme Q.-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces. Mycoscience 51:2-14.
-
(2010)
Mycoscience
, vol.51
, pp. 2-14
-
-
Kurtzman, C.P.1
Suzuki, M.2
-
21
-
-
12144288423
-
High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae?
-
Kuyper M, et al. 2003. High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res. 4:69-78.
-
(2003)
FEMS Yeast Res
, vol.4
, pp. 69-78
-
-
Kuyper, M.1
-
22
-
-
38649127524
-
Altering coenzyme specificity of Pichia stipitis xylose reductase by the semi-rational approach CASTing
-
Liang L, Zhang J, Lin Z. 2007. Altering coenzyme specificity of Pichia stipitis xylose reductase by the semi-rational approach CASTing. Microb. Cell Fact. 6:36.
-
(2007)
Microb. Cell Fact.
, vol.6
, pp. 36
-
-
Liang, L.1
Zhang, J.2
Lin, Z.3
-
23
-
-
72149123391
-
Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation
-
Liu EK, Hu Y. 2010. Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation. Biochem. Eng. J. 48:204-210.
-
(2010)
Biochem. Eng. J.
, vol.48
, pp. 204-210
-
-
Liu, E.K.1
Hu, Y.2
-
24
-
-
0031877248
-
Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase
-
Lopez de Felipe F, Kleerebezem M, de Vos WM, Hugenholtz J. 1998. Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase. J. Bacteriol. 180:3804-3808.
-
(1998)
J. Bacteriol.
, vol.180
, pp. 3804-3808
-
-
Lopez de Felipe, F.1
Kleerebezem, M.2
de Vos, W.M.3
Hugenholtz, J.4
-
25
-
-
63949086429
-
Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol
-
Madhavan A, et al. 2009. Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl. Microbiol. Biotechnol. 82:1067-1078.
-
(2009)
Appl. Microbiol. Biotechnol.
, vol.82
, pp. 1067-1078
-
-
Madhavan, A.1
-
26
-
-
68349109625
-
Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives
-
Matsushika A, Inoue H, Kodaki T, Sawayama S. 2009. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl. Microbiol. Biotechnol. 84:37-53.
-
(2009)
Appl. Microbiol. Biotechnol.
, vol.84
, pp. 37-53
-
-
Matsushika, A.1
Inoue, H.2
Kodaki, T.3
Sawayama, S.4
-
27
-
-
55649111344
-
Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae
-
Matsushika A, et al. 2008. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 81:243-255.
-
(2008)
Appl. Microbiol. Biotechnol.
, vol.81
, pp. 243-255
-
-
Matsushika, A.1
-
28
-
-
42449145157
-
Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae
-
Petschacher B, Nidetzky B. 2008. Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb. Cell Fact. 7:9.
-
(2008)
Microb. Cell Fact.
, vol.7
, pp. 9
-
-
Petschacher, B.1
Nidetzky, B.2
-
29
-
-
0033856517
-
Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae: role of the cytosolic Mg(2+) and mitochondrial K(+) acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation
-
Remize F, Andrieu E, Dequin S. 2000. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae: role of the cytosolic Mg(2+) and mitochondrial K(+) acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation. Appl. Environ. Microbiol. 66:3151-3159.
-
(2000)
Appl. Environ. Microbiol.
, vol.66
, pp. 3151-3159
-
-
Remize, F.1
Andrieu, E.2
Dequin, S.3
-
30
-
-
0002459726
-
Purification and properties of theNAD+-xylitol-dehydrogenase from the yeast Pichia stipitis
-
Rizzi M, Harwart K, Erlemann P, Bui-Thanh N-A, Dellweg H. 1989. Purification and properties of theNAD+-xylitol-dehydrogenase from the yeast Pichia stipitis. J. Ferment. Bioeng. 67:20-24.
-
(1989)
J. Ferment. Bioeng.
, vol.67
, pp. 20-24
-
-
Rizzi, M.1
Harwart, K.2
Erlemann, P.3
Bui-Thanh, N.-A.4
Dellweg, H.5
-
31
-
-
0032080753
-
The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae
-
Rodriguez-Peña JM, Cid VJ, Arroyo J, Nombela C. 1998. The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae. FEMS Microbiol. Lett. 162:155-160.
-
(1998)
FEMS Microbiol. Lett.
, vol.162
, pp. 155-160
-
-
Rodriguez-Peña, J.M.1
Cid, V.J.2
Arroyo, J.3
Nombela, C.4
-
32
-
-
78650327471
-
Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase
-
Runquist D, Hahn-Hagerdal B, Bettiga M. 2010. Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase. Appl. Environ. Microbiol. 76:7796-7802.
-
(2010)
Appl. Environ. Microbiol.
, vol.76
, pp. 7796-7802
-
-
Runquist, D.1
Hahn-Hagerdal, B.2
Bettiga, M.3
-
33
-
-
0024799254
-
High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier
-
Schiestl RH, Gietz RD. 1989. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16:339-346.
-
(1989)
Curr. Genet.
, vol.16
, pp. 339-346
-
-
Schiestl, R.H.1
Gietz, R.D.2
-
34
-
-
33847785682
-
Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae
-
Vemuri GN, Eiteman MA, McEwen JE, Olsson L, Nielsen J. 2007. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 104:2402-2407.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 2402-2407
-
-
Vemuri, G.N.1
Eiteman, M.A.2
McEwen, J.E.3
Olsson, L.4
Nielsen, J.5
-
35
-
-
0021959310
-
Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis
-
Verduyn C, et al. 1985. Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Biochem. J. 226: 669-677.
-
(1985)
Biochem. J.
, vol.226
, pp. 669-677
-
-
Verduyn, C.1
-
36
-
-
0142136153
-
Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae
-
Verho R, Londesborough J, Penttila M, Richard P. 2003. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 69:5892-5897.
-
(2003)
Appl. Environ. Microbiol.
, vol.69
, pp. 5892-5897
-
-
Verho, R.1
Londesborough, J.2
Penttila, M.3
Richard, P.4
-
37
-
-
0029909726
-
Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase
-
Walfridsson M, et al. 1996. Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl. Environ. Microbiol. 62:4648-4651.
-
(1996)
Appl. Environ. Microbiol.
, vol.62
, pp. 4648-4651
-
-
Walfridsson, M.1
-
38
-
-
34948882785
-
Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADHpreferring xylose reductase from Pichia stipitis
-
Watanabe S, et al. 2007. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADHpreferring xylose reductase from Pichia stipitis. Microbiology 153:3044-3054.
-
(2007)
Microbiology
, vol.153
, pp. 3044-3054
-
-
Watanabe, S.1
-
39
-
-
15544372361
-
Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc
-
Watanabe S, Kodaki T, Makino K. 2005. Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. J. Biol. Chem. 280:10340-10349.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 10340-10349
-
-
Watanabe, S.1
Kodaki, T.2
Makino, K.3
-
40
-
-
34347390887
-
The positive effect of the decreased NADPHpreferring activity of xylose reductase from Pichia stipitis on ethanol production using xylose-fermenting recombinant Saccharomyces cerevisiae
-
Watanabe S, et al. 2007. The positive effect of the decreased NADPHpreferring activity of xylose reductase from Pichia stipitis on ethanol production using xylose-fermenting recombinant Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 71:1365-1369.
-
(2007)
Biosci. Biotechnol. Biochem.
, vol.71
, pp. 1365-1369
-
-
Watanabe, S.1
|