메뉴 건너뛰기




Volumn 78, Issue 4, 2012, Pages 1081-1086

Decreased xylitol formation during xylose fermentation in saccharomyces cerevisiae due to overexpression of water-forming NADH oxidase

Author keywords

[No Author keywords available]

Indexed keywords

COFACTORS; CONTROL STRAIN; D-XYLOSE; ETHANOL PRODUCTION; ETHANOL YIELD; LACTOCOCCUS LACTIS; NADH OXIDASE; OVER-EXPRESSION; SACCHAROMYCES CEREVISIAE STRAINS; XYLOSE FERMENTATION; XYLOSE REDUCTASE; YEAST STRAIN;

EID: 84863182778     PISSN: 00992240     EISSN: 10985336     Source Type: Journal    
DOI: 10.1128/AEM.06635-11     Document Type: Article
Times cited : (46)

References (40)
  • 1
    • 0030908893 scopus 로고    scopus 로고
    • The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation
    • Ansell R, Granath K, Hohmann S, Thevelein JM, Adler L. 1997. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J. 16:2179-2187.
    • (1997) EMBO J , vol.16 , pp. 2179-2187
    • Ansell, R.1    Granath, K.2    Hohmann, S.3    Thevelein, J.M.4    Adler, L.5
  • 2
    • 64749094343 scopus 로고    scopus 로고
    • Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae
    • Brat D, Boles E, Wiedemann B. 2009. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 75:2304-2311.
    • (2009) Appl. Environ. Microbiol. , vol.75 , pp. 2304-2311
    • Brat, D.1    Boles, E.2    Wiedemann, B.3
  • 3
    • 33644832381 scopus 로고    scopus 로고
    • In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production
    • Bro C, Regenberg B, Forster J, Nielsen J. 2006. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab. Eng. 8:102-111.
    • (2006) Metab. Eng. , vol.8 , pp. 102-111
    • Bro, C.1    Regenberg, B.2    Forster, J.3    Nielsen, J.4
  • 4
    • 0033856888 scopus 로고    scopus 로고
    • Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures
    • Eliasson A, Christensson C, Wahlbom CF, Hahn-Hagerdal B. 2000. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl. Environ. Microbiol. 66:3381-3386.
    • (2000) Appl. Environ. Microbiol. , vol.66 , pp. 3381-3386
    • Eliasson, A.1    Christensson, C.2    Wahlbom, C.F.3    Hahn-Hagerdal, B.4
  • 5
    • 0024266139 scopus 로고
    • New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites
    • Gietz RD, Sugino A. 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527-534.
    • (1988) Gene , vol.74 , pp. 527-534
    • Gietz, R.D.1    Sugino, A.2
  • 6
    • 29044444888 scopus 로고    scopus 로고
    • Comparative metabolic network analysis of two xylose fermenting recombinant Saccharomyces cerevisiae strains
    • Grotkjaer T, Christakopoulos P, Nielsen J, Olsson L. 2005. Comparative metabolic network analysis of two xylose fermenting recombinant Saccharomyces cerevisiae strains. Metab. Eng. 7:437-444.
    • (2005) Metab. Eng. , vol.7 , pp. 437-444
    • Grotkjaer, T.1    Christakopoulos, P.2    Nielsen, J.3    Olsson, L.4
  • 9
    • 0043160450 scopus 로고    scopus 로고
    • Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway
    • Harhangi HR, et al. 2003. Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway. Arch. Microbiol. 180:134-141.
    • (2003) Arch. Microbiol. , vol.180 , pp. 134-141
    • Harhangi, H.R.1
  • 10
    • 33746891860 scopus 로고    scopus 로고
    • Cofactor engineering in Saccharomyces cerevisiae: expression of a H2O-forming NADH oxidase and impact on redox metabolism
    • Heux S, Cachon R, Dequin S. 2006. Cofactor engineering in Saccharomyces cerevisiae: expression of a H2O-forming NADH oxidase and impact on redox metabolism. Metab. Eng. 8:303-314.
    • (2006) Metab. Eng. , vol.8 , pp. 303-314
    • Heux, S.1    Cachon, R.2    Dequin, S.3
  • 11
    • 0036229317 scopus 로고    scopus 로고
    • Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis
    • Hoefnagel MH, et al. 2002. Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. Microbiology 148:1003-1013.
    • (2002) Microbiology , vol.148 , pp. 1003-1013
    • Hoefnagel, M.H.1
  • 12
    • 34447620451 scopus 로고    scopus 로고
    • Effect of the reversal of coenzyme specificity by expression of mutated Pichia stipitis xylitol dehydrogenase in recombinant Saccharomyces cerevisiae
    • Hou J, Shen Y, Li XP, Bao XM. 2007. Effect of the reversal of coenzyme specificity by expression of mutated Pichia stipitis xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Lett. Appl. Microbiol. 45:184-189.
    • (2007) Lett. Appl. Microbiol. , vol.45 , pp. 184-189
    • Hou, J.1    Shen, Y.2    Li, X.P.3    Bao, X.M.4
  • 13
    • 62949084480 scopus 로고    scopus 로고
    • Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xyloseutilizing Saccharomyces cerevisiae
    • Hou J, Vemuri GN, Bao X, Olsson L. 2009. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xyloseutilizing Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 82:909-919.
    • (2009) Appl. Microbiol. Biotechnol. , vol.82 , pp. 909-919
    • Hou, J.1    Vemuri, G.N.2    Bao, X.3    Olsson, L.4
  • 14
    • 33744914986 scopus 로고    scopus 로고
    • Engineering yeasts for xylose metabolism
    • Jeffries TW. 2006. Engineering yeasts for xylose metabolism. Curr. Opin. Biotechnol. 17:320-326.
    • (2006) Curr. Opin. Biotechnol. , vol.17 , pp. 320-326
    • Jeffries, T.W.1
  • 15
    • 33644879465 scopus 로고    scopus 로고
    • The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae
    • Jeppsson M, et al. 2006. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Biotechnol. Bioeng. 93: 665-673.
    • (2006) Biotechnol. Bioeng. , vol.93 , pp. 665-673
    • Jeppsson, M.1
  • 16
    • 0038748280 scopus 로고    scopus 로고
    • Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae
    • Jin YS, Jeffries TW. 2003. Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 105-108:277-286.
    • (2003) Appl. Biochem. Biotechnol. , vol.105-108 , pp. 277-286
    • Jin, Y.S.1    Jeffries, T.W.2
  • 17
    • 33845807902 scopus 로고    scopus 로고
    • High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae
    • Karhumaa K, Fromanger R, Hahn-Hagerdal B, Gorwa-Grauslund MF. 2007. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 73:1039-1046.
    • (2007) Appl. Microbiol. Biotechnol. , vol.73 , pp. 1039-1046
    • Karhumaa, K.1    Fromanger, R.2    Hahn-Hagerdal, B.3    Gorwa-Grauslund, M.F.4
  • 18
    • 33847202270 scopus 로고    scopus 로고
    • Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae
    • Karhumaa K, Garcia Sanchez R, Hahn-Hagerdal B, Gorwa-Grauslund MF. 2007. Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb. Cell Fact. 6:5.
    • (2007) Microb. Cell Fact. , vol.6 , pp. 5
    • Karhumaa, K.1    Garcia Sanchez, R.2    Hahn-Hagerdal, B.3    Gorwa-Grauslund, M.F.4
  • 19
    • 33845286497 scopus 로고    scopus 로고
    • Improved production of ethanol by deleting FPS1 and over-expressing GLT1 in Saccharomyces cerevisiae
    • Kong QX, et al. 2006. Improved production of ethanol by deleting FPS1 and over-expressing GLT1 in Saccharomyces cerevisiae. Biotechnol. Lett. 28:2033-2038.
    • (2006) Biotechnol. Lett. , vol.28 , pp. 2033-2038
    • Kong, Q.X.1
  • 20
    • 76649127721 scopus 로고    scopus 로고
    • Phylogenetic analysis of ascomycete yeasts that form coenzyme Q.-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces
    • Kurtzman CP, Suzuki M. 2010. Phylogenetic analysis of ascomycete yeasts that form coenzyme Q.-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces. Mycoscience 51:2-14.
    • (2010) Mycoscience , vol.51 , pp. 2-14
    • Kurtzman, C.P.1    Suzuki, M.2
  • 21
    • 12144288423 scopus 로고    scopus 로고
    • High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae?
    • Kuyper M, et al. 2003. High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res. 4:69-78.
    • (2003) FEMS Yeast Res , vol.4 , pp. 69-78
    • Kuyper, M.1
  • 22
    • 38649127524 scopus 로고    scopus 로고
    • Altering coenzyme specificity of Pichia stipitis xylose reductase by the semi-rational approach CASTing
    • Liang L, Zhang J, Lin Z. 2007. Altering coenzyme specificity of Pichia stipitis xylose reductase by the semi-rational approach CASTing. Microb. Cell Fact. 6:36.
    • (2007) Microb. Cell Fact. , vol.6 , pp. 36
    • Liang, L.1    Zhang, J.2    Lin, Z.3
  • 23
    • 72149123391 scopus 로고    scopus 로고
    • Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation
    • Liu EK, Hu Y. 2010. Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation. Biochem. Eng. J. 48:204-210.
    • (2010) Biochem. Eng. J. , vol.48 , pp. 204-210
    • Liu, E.K.1    Hu, Y.2
  • 24
    • 0031877248 scopus 로고    scopus 로고
    • Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase
    • Lopez de Felipe F, Kleerebezem M, de Vos WM, Hugenholtz J. 1998. Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase. J. Bacteriol. 180:3804-3808.
    • (1998) J. Bacteriol. , vol.180 , pp. 3804-3808
    • Lopez de Felipe, F.1    Kleerebezem, M.2    de Vos, W.M.3    Hugenholtz, J.4
  • 25
    • 63949086429 scopus 로고    scopus 로고
    • Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol
    • Madhavan A, et al. 2009. Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl. Microbiol. Biotechnol. 82:1067-1078.
    • (2009) Appl. Microbiol. Biotechnol. , vol.82 , pp. 1067-1078
    • Madhavan, A.1
  • 26
    • 68349109625 scopus 로고    scopus 로고
    • Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives
    • Matsushika A, Inoue H, Kodaki T, Sawayama S. 2009. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl. Microbiol. Biotechnol. 84:37-53.
    • (2009) Appl. Microbiol. Biotechnol. , vol.84 , pp. 37-53
    • Matsushika, A.1    Inoue, H.2    Kodaki, T.3    Sawayama, S.4
  • 27
    • 55649111344 scopus 로고    scopus 로고
    • Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae
    • Matsushika A, et al. 2008. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 81:243-255.
    • (2008) Appl. Microbiol. Biotechnol. , vol.81 , pp. 243-255
    • Matsushika, A.1
  • 28
    • 42449145157 scopus 로고    scopus 로고
    • Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae
    • Petschacher B, Nidetzky B. 2008. Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb. Cell Fact. 7:9.
    • (2008) Microb. Cell Fact. , vol.7 , pp. 9
    • Petschacher, B.1    Nidetzky, B.2
  • 29
    • 0033856517 scopus 로고    scopus 로고
    • Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae: role of the cytosolic Mg(2+) and mitochondrial K(+) acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation
    • Remize F, Andrieu E, Dequin S. 2000. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae: role of the cytosolic Mg(2+) and mitochondrial K(+) acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation. Appl. Environ. Microbiol. 66:3151-3159.
    • (2000) Appl. Environ. Microbiol. , vol.66 , pp. 3151-3159
    • Remize, F.1    Andrieu, E.2    Dequin, S.3
  • 30
    • 0002459726 scopus 로고
    • Purification and properties of theNAD+-xylitol-dehydrogenase from the yeast Pichia stipitis
    • Rizzi M, Harwart K, Erlemann P, Bui-Thanh N-A, Dellweg H. 1989. Purification and properties of theNAD+-xylitol-dehydrogenase from the yeast Pichia stipitis. J. Ferment. Bioeng. 67:20-24.
    • (1989) J. Ferment. Bioeng. , vol.67 , pp. 20-24
    • Rizzi, M.1    Harwart, K.2    Erlemann, P.3    Bui-Thanh, N.-A.4    Dellweg, H.5
  • 31
    • 0032080753 scopus 로고    scopus 로고
    • The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae
    • Rodriguez-Peña JM, Cid VJ, Arroyo J, Nombela C. 1998. The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae. FEMS Microbiol. Lett. 162:155-160.
    • (1998) FEMS Microbiol. Lett. , vol.162 , pp. 155-160
    • Rodriguez-Peña, J.M.1    Cid, V.J.2    Arroyo, J.3    Nombela, C.4
  • 32
    • 78650327471 scopus 로고    scopus 로고
    • Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase
    • Runquist D, Hahn-Hagerdal B, Bettiga M. 2010. Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase. Appl. Environ. Microbiol. 76:7796-7802.
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 7796-7802
    • Runquist, D.1    Hahn-Hagerdal, B.2    Bettiga, M.3
  • 33
    • 0024799254 scopus 로고
    • High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier
    • Schiestl RH, Gietz RD. 1989. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16:339-346.
    • (1989) Curr. Genet. , vol.16 , pp. 339-346
    • Schiestl, R.H.1    Gietz, R.D.2
  • 35
    • 0021959310 scopus 로고
    • Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis
    • Verduyn C, et al. 1985. Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Biochem. J. 226: 669-677.
    • (1985) Biochem. J. , vol.226 , pp. 669-677
    • Verduyn, C.1
  • 36
    • 0142136153 scopus 로고    scopus 로고
    • Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae
    • Verho R, Londesborough J, Penttila M, Richard P. 2003. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 69:5892-5897.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 5892-5897
    • Verho, R.1    Londesborough, J.2    Penttila, M.3    Richard, P.4
  • 37
    • 0029909726 scopus 로고    scopus 로고
    • Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase
    • Walfridsson M, et al. 1996. Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl. Environ. Microbiol. 62:4648-4651.
    • (1996) Appl. Environ. Microbiol. , vol.62 , pp. 4648-4651
    • Walfridsson, M.1
  • 38
    • 34948882785 scopus 로고    scopus 로고
    • Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADHpreferring xylose reductase from Pichia stipitis
    • Watanabe S, et al. 2007. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADHpreferring xylose reductase from Pichia stipitis. Microbiology 153:3044-3054.
    • (2007) Microbiology , vol.153 , pp. 3044-3054
    • Watanabe, S.1
  • 39
    • 15544372361 scopus 로고    scopus 로고
    • Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc
    • Watanabe S, Kodaki T, Makino K. 2005. Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. J. Biol. Chem. 280:10340-10349.
    • (2005) J. Biol. Chem. , vol.280 , pp. 10340-10349
    • Watanabe, S.1    Kodaki, T.2    Makino, K.3
  • 40
    • 34347390887 scopus 로고    scopus 로고
    • The positive effect of the decreased NADPHpreferring activity of xylose reductase from Pichia stipitis on ethanol production using xylose-fermenting recombinant Saccharomyces cerevisiae
    • Watanabe S, et al. 2007. The positive effect of the decreased NADPHpreferring activity of xylose reductase from Pichia stipitis on ethanol production using xylose-fermenting recombinant Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 71:1365-1369.
    • (2007) Biosci. Biotechnol. Biochem. , vol.71 , pp. 1365-1369
    • Watanabe, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.