메뉴 건너뛰기




Volumn 29, Issue 5, 2017, Pages 201-210

Mechanisms governing inflammasome activation, assembly and pyroptosis induction

Author keywords

ASC; Caspase 1; Cell death; NLRs; Pathogens

Indexed keywords

ADAPTOR PROTEIN; CASPASE 4; CASPASE 5; INFLAMMASOME; INTERLEUKIN 1BETA CONVERTING ENZYME; PATTERN RECOGNITION RECEPTOR; PYRIN; AIM2 PROTEIN, HUMAN; DNA BINDING PROTEIN; MULTIPROTEIN COMPLEX; NUCLEOTIDE BINDING OLIGOMERIZATION DOMAIN LIKE RECEPTOR;

EID: 85026413851     PISSN: 09538178     EISSN: 14602377     Source Type: Journal    
DOI: 10.1093/intimm/dxx018     Document Type: Review
Times cited : (183)

References (120)
  • 1
    • 77950343791 scopus 로고    scopus 로고
    • Pattern recognition receptors and inflammation
    • Takeuchi, O. and Akira, S. 2010. Pattern recognition receptors and inflammation. Cell 140:805.
    • (2010) Cell , vol.140 , pp. 805
    • Takeuchi, O.1    Akira, S.2
  • 2
    • 77950362382 scopus 로고    scopus 로고
    • The inflammasomes
    • Schroder, K. and Tschopp, J. 2010. The inflammasomes. Cell 140:821.
    • (2010) Cell , vol.140 , pp. 821
    • Schroder, K.1    Tschopp, J.2
  • 3
    • 84927639135 scopus 로고    scopus 로고
    • Innate immune pattern recognition: a cell biological perspective
    • Brubaker, S. W., Bonham, K. S., Zanoni, I. et al. 2015. Innate immune pattern recognition: a cell biological perspective. Annu. Rev. Immunol. 33:257.
    • (2015) Annu. Rev. Immunol. , vol.33 , pp. 257
    • Brubaker, S.W.1    Bonham, K.S.2    Zanoni, I.3
  • 4
    • 84927732725 scopus 로고    scopus 로고
    • Regulation of inflammasome activation
    • Man, S. M. and Kanneganti, T. D. 2015. Regulation of inflammasome activation. Immunol. Rev. 265:6.
    • (2015) Immunol. Rev. , vol.265 , pp. 6
    • Man, S.M.1    Kanneganti, T.D.2
  • 5
    • 84864755627 scopus 로고    scopus 로고
    • The mammalian PYHIN gene family: phylogeny, evolution and expression
    • Cridland, J. A., Curley, E. Z., Wykes, M. N. et al. 2012. The mammalian PYHIN gene family: phylogeny, evolution and expression. BMC Evol. Biol. 12:140.
    • (2012) BMC Evol. Biol. , vol.12 , pp. 140
    • Cridland, J.A.1    Curley, E.Z.2    Wykes, M.N.3
  • 6
    • 0037108346 scopus 로고    scopus 로고
    • Cutting edge: CATERPILLER: a large family of mammalian genes containing CARD, pyrin, nucleotide-binding, and leucine-rich repeat domains
    • Harton, J. A., Linhoff, M. W., Zhang, J. et al. 2002. Cutting edge: CATERPILLER: a large family of mammalian genes containing CARD, pyrin, nucleotide-binding, and leucine-rich repeat domains. J. Immunol. 169:4088.
    • (2002) J. Immunol. , vol.169 , pp. 4088
    • Harton, J.A.1    Linhoff, M.W.2    Zhang, J.3
  • 7
    • 0036671894 scopus 로고    scopus 로고
    • The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta
    • Martinon, F., Burns, K. and Tschopp, J. 2002. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell 10:417.
    • (2002) Mol. Cell , vol.10 , pp. 417
    • Martinon, F.1    Burns, K.2    Tschopp, J.3
  • 8
    • 35348932070 scopus 로고    scopus 로고
    • Intracellular NOD-like receptors in host defense and disease
    • Kanneganti, T. D., Lamkanfi, M. and Núñez, G. 2007. Intracellular NOD-like receptors in host defense and disease. Immunity 27:549.
    • (2007) Immunity , vol.27 , pp. 549
    • Kanneganti, T.D.1    Lamkanfi, M.2    Núñez, G.3
  • 9
    • 84952630550 scopus 로고    scopus 로고
    • Converging roles of caspases in inflammasome activation, cell death and innate immunity
    • Man, S. M. and Kanneganti, T. D. 2016. Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nat. Rev. Immunol. 16:7.
    • (2016) Nat. Rev. Immunol. , vol.16 , pp. 7
    • Man, S.M.1    Kanneganti, T.D.2
  • 10
    • 0033532091 scopus 로고    scopus 로고
    • Human CARD4 protein is a novel CED-4/Apaf-1 cell death family member that activates NF-kappaB
    • Bertin, J., Nir, W. J., Fischer, C. M. et al. 1999. Human CARD4 protein is a novel CED-4/Apaf-1 cell death family member that activates NF-kappaB. J. Biol. Chem. 274:12955.
    • (1999) J. Biol. Chem. , vol.274
    • Bertin, J.1    Nir, W.J.2    Fischer, C.M.3
  • 11
    • 0033591330 scopus 로고    scopus 로고
    • Nod1, an Apaf- 1-like activator of caspase-9 and nuclear factor-kappaB
    • Inohara, N., Koseki, T., del Peso, L. et al. 1999. Nod1, an Apaf- 1-like activator of caspase-9 and nuclear factor-kappaB. J. Biol. Chem. 274:14560.
    • (1999) J. Biol. Chem. , vol.274
    • Inohara, N.1    Koseki, T.2    del Peso, L.3
  • 12
    • 84975453384 scopus 로고    scopus 로고
    • The cell biology of inflammasomes: mechanisms of inflammasome activation and regulation
    • Sharma, D. and Kanneganti, T. D. 2016. The cell biology of inflammasomes: mechanisms of inflammasome activation and regulation. J. Cell Biol. 213:617.
    • (2016) J. Cell Biol. , vol.213 , pp. 617
    • Sharma, D.1    Kanneganti, T.D.2
  • 13
    • 80455176839 scopus 로고    scopus 로고
    • Noncanonical inflammasome activation targets caspase-11
    • Kayagaki, N., Warming, S., Lamkanfi, M. et al. 2011. Noncanonical inflammasome activation targets caspase-11. Nature 479:117.
    • (2011) Nature , vol.479 , pp. 117
    • Kayagaki, N.1    Warming, S.2    Lamkanfi, M.3
  • 14
    • 0032548919 scopus 로고    scopus 로고
    • Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE
    • Wang, S., Miura, M., Jung, Y. K. et al. 1998. Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92:501.
    • (1998) Cell , vol.92 , pp. 501
    • Wang, S.1    Miura, M.2    Jung, Y.K.3
  • 15
    • 79957576718 scopus 로고    scopus 로고
    • NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis
    • Elinav, E., Strowig, T., Kau, A. L. et al. 2011. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145:745.
    • (2011) Cell , vol.145 , pp. 745
    • Elinav, E.1    Strowig, T.2    Kau, A.L.3
  • 16
    • 79956061094 scopus 로고    scopus 로고
    • IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection
    • Kerur, N., Veettil, M. V., Sharma-Walia, N. et al. 2011. IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection. Cell Host Microbe 9:363.
    • (2011) Cell Host Microbe , vol.9 , pp. 363
    • Kerur, N.1    Veettil, M.V.2    Sharma-Walia, N.3
  • 17
    • 84858796861 scopus 로고    scopus 로고
    • An NLRP7- containing inflammasome mediates recognition of microbial lipopeptides in human macrophages
    • Khare, S., Dorfleutner, A., Bryan, N. B. et al. 2012. An NLRP7- containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity 36:464.
    • (2012) Immunity , vol.36 , pp. 464
    • Khare, S.1    Dorfleutner, A.2    Bryan, N.B.3
  • 18
    • 84879577117 scopus 로고    scopus 로고
    • Human astrocytes express a novel NLRP2 inflammasome
    • Minkiewicz, J., de Rivero Vaccari, J. P. and Keane, R. W. 2013. Human astrocytes express a novel NLRP2 inflammasome. Glia 61:1113.
    • (2013) Glia , vol.61 , pp. 1113
    • Minkiewicz, J.1    de Rivero Vaccari, J.P.2    Keane, R.W.3
  • 19
    • 74049126045 scopus 로고    scopus 로고
    • Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production
    • Poeck, H., Bscheider, M., Gross, O. et al. 2010. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat. Immunol. 11:63.
    • (2010) Nat. Immunol. , vol.11 , pp. 63
    • Poeck, H.1    Bscheider, M.2    Gross, O.3
  • 20
    • 84864317101 scopus 로고    scopus 로고
    • The NLRP12 inflammasome recognizes Yersinia pestis
    • Vladimer, G. I., Weng, D., Paquette, S. W. et al. 2012. The NLRP12 inflammasome recognizes Yersinia pestis. Immunity 37:96.
    • (2012) Immunity , vol.37 , pp. 96
    • Vladimer, G.I.1    Weng, D.2    Paquette, S.W.3
  • 21
    • 31744441475 scopus 로고    scopus 로고
    • Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin
    • Boyden, E. D. and Dietrich, W. F. 2006. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat. Genet. 38:240.
    • (2006) Nat. Genet. , vol.38 , pp. 240
    • Boyden, E.D.1    Dietrich, W.F.2
  • 22
    • 85007583900 scopus 로고    scopus 로고
    • Functional and evolutionary analyses identify proteolysis as a general mechanism for NLRP1 inflammasome activation
    • Chavarría-Smith, J., Mitchell, P. S., Ho, A. M. et al. 2016. Functional and evolutionary analyses identify proteolysis as a general mechanism for NLRP1 inflammasome activation. PLoS Pathog. 12:e1006052.
    • (2016) PLoS Pathog. , vol.12
    • Chavarría-Smith, J.1    Mitchell, P.S.2    Ho, A.M.3
  • 23
    • 84879508269 scopus 로고    scopus 로고
    • Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor
    • Chavarría-Smith, J. and Vance, R. E. 2013. Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor. PLoS Pathog. 9:e1003452.
    • (2013) PLoS Pathog. , vol.9
    • Chavarría-Smith, J.1    Vance, R.E.2
  • 24
    • 84869073837 scopus 로고    scopus 로고
    • Anthrax lethal factor cleaves mouse nlrp1b in both toxin-sensitive and toxin-resistant macrophages
    • Hellmich, K. A., Levinsohn, J. L., Fattah, R. et al. 2012. Anthrax lethal factor cleaves mouse nlrp1b in both toxin-sensitive and toxin-resistant macrophages. PLoS One 7:e49741.
    • (2012) PLoS One , vol.7
    • Hellmich, K.A.1    Levinsohn, J.L.2    Fattah, R.3
  • 25
    • 84861215715 scopus 로고    scopus 로고
    • Proteolytic processing of Nlrp1b is required for inflammasome activity
    • Frew, B. C., Joag, V. R. and Mogridge, J. 2012. Proteolytic processing of Nlrp1b is required for inflammasome activity. PLoS Pathog. 8:e1002659.
    • (2012) PLoS Pathog. , vol.8
    • Frew, B.C.1    Joag, V.R.2    Mogridge, J.3
  • 26
    • 84988622178 scopus 로고    scopus 로고
    • Germline NLRP1 mutations cause skin inflammatory and cancer susceptibility syndromes via inflammasome activation
    • Zhong, F. L., Mamaï, O., Sborgi, L. et al. 2016. Germline NLRP1 mutations cause skin inflammatory and cancer susceptibility syndromes via inflammasome activation. Cell 167:187.
    • (2016) Cell , vol.167 , pp. 187
    • Zhong, F.L.1    Mamaï, O.2    Sborgi, L.3
  • 27
    • 7944232105 scopus 로고    scopus 로고
    • Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome
    • Martinon, F., Agostini, L., Meylan, E. et al. 2004. Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr. Biol. 14:1929.
    • (2004) Curr. Biol. , vol.14 , pp. 1929
    • Martinon, F.1    Agostini, L.2    Meylan, E.3
  • 28
    • 32944462834 scopus 로고    scopus 로고
    • Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3
    • Kanneganti, T. D., Ozören, N., Body-Malapel, M. et al. 2006. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440:233.
    • (2006) Nature , vol.440 , pp. 233
    • Kanneganti, T.D.1    Ozören, N.2    Body-Malapel, M.3
  • 29
    • 32944470765 scopus 로고    scopus 로고
    • Cryopyrin activates the inflammasome in response to toxins and ATP
    • Mariathasan, S., Weiss, D. S., Newton, K. et al. 2006. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228.
    • (2006) Nature , vol.440 , pp. 228
    • Mariathasan, S.1    Weiss, D.S.2    Newton, K.3
  • 30
    • 32944468985 scopus 로고    scopus 로고
    • Gout-associated uric acid crystals activate the NALP3 inflammasome
    • Martinon, F., Pétrilli, V., Mayor, A. et al. 2006. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237.
    • (2006) Nature , vol.440 , pp. 237
    • Martinon, F.1    Pétrilli, V.2    Mayor, A.3
  • 31
    • 64049111768 scopus 로고    scopus 로고
    • The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA
    • Allen, I. C., Scull, M. A., Moore, C. B. et al. 2009. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30:556.
    • (2009) Immunity , vol.30 , pp. 556
    • Allen, I.C.1    Scull, M.A.2    Moore, C.B.3
  • 32
    • 64049096334 scopus 로고    scopus 로고
    • The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1
    • Thomas, P. G., Dash, P., Aldridge, J. R., Jr et al. 2009. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity 30:566.
    • (2009) Immunity , vol.30 , pp. 566
    • Thomas, P.G.1    Dash, P.2    Aldridge, J.R.3
  • 33
    • 67349271142 scopus 로고    scopus 로고
    • Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence
    • Gross, O., Poeck, H., Bscheider, M. et al. 2009. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459:433.
    • (2009) Nature , vol.459 , pp. 433
    • Gross, O.1    Poeck, H.2    Bscheider, M.3
  • 34
    • 33846014297 scopus 로고    scopus 로고
    • Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA
    • Kanneganti, T. D., Body-Malapel, M., Amer, A. et al. 2006. Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J. Biol. Chem. 281:36560.
    • (2006) J. Biol. Chem. , vol.281
    • Kanneganti, T.D.1    Body-Malapel, M.2    Amer, A.3
  • 35
    • 68949092245 scopus 로고    scopus 로고
    • Fungal zymosan and mannan activate the cryopyrin inflammasome
    • Lamkanfi, M., Malireddi, R. K. and Kanneganti, T. D. 2009. Fungal zymosan and mannan activate the cryopyrin inflammasome. J. Biol. Chem. 284:20574.
    • (2009) J. Biol. Chem. , vol.284
    • Lamkanfi, M.1    Malireddi, R.K.2    Kanneganti, T.D.3
  • 36
    • 77953464026 scopus 로고    scopus 로고
    • Nlrp3: an immune sensor of cellular stress and infection
    • Lamkanfi, M. and Kanneganti, T. D. 2010. Nlrp3: an immune sensor of cellular stress and infection. Int. J. Biochem. Cell Biol. 42:792.
    • (2010) Int. J. Biochem. Cell Biol. , vol.42 , pp. 792
    • Lamkanfi, M.1    Kanneganti, T.D.2
  • 37
    • 70249138036 scopus 로고    scopus 로고
    • Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression
    • Bauernfeind, F. G., Horvath, G., Stutz, A. et al. 2009. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. 183:787.
    • (2009) J. Immunol. , vol.183 , pp. 787
    • Bauernfeind, F.G.1    Horvath, G.2    Stutz, A.3
  • 38
    • 64049084303 scopus 로고    scopus 로고
    • Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages
    • Netea, M. G., Nold-Petry, C. A., Nold, M. F. et al. 2009. Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages. Blood 113:2324.
    • (2009) Blood , vol.113 , pp. 2324
    • Netea, M.G.1    Nold-Petry, C.A.2    Nold, M.F.3
  • 39
    • 84976516826 scopus 로고    scopus 로고
    • Inflammasomes: mechanism of assembly, regulation and signalling
    • Broz, P. and Dixit, V. M. 2016. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16:407.
    • (2016) Nat. Rev. Immunol. , vol.16 , pp. 407
    • Broz, P.1    Dixit, V.M.2
  • 40
    • 84879596906 scopus 로고    scopus 로고
    • K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter
    • Muñoz-Planillo, R., Kuffa, P., Martínez-Colón, G et al. 2013. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38:1142.
    • (2013) Immunity , vol.38 , pp. 1142
    • Muñoz-Planillo, R.1    Kuffa, P.2    Martínez-Colón, G.3
  • 41
    • 84994910645 scopus 로고    scopus 로고
    • K(+) effluxindependent NLRP3 inflammasome activation by small molecules targeting mitochondria
    • Groß, C. J., Mishra, R., Schneider, K. S. et al. 2016. K(+) effluxindependent NLRP3 inflammasome activation by small molecules targeting mitochondria. Immunity 45:761.
    • (2016) Immunity , vol.45 , pp. 761
    • Groß, C.J.1    Mishra, R.2    Schneider, K.S.3
  • 42
    • 84969142199 scopus 로고    scopus 로고
    • Disruption of glycolytic flux is a signal for inflammasome signaling and pyroptotic cell death
    • Sanman, L. E., Qian, Y., Eisele, N. A. et al. 2016. Disruption of glycolytic flux is a signal for inflammasome signaling and pyroptotic cell death. Elife 5:e13663.
    • (2016) Elife , vol.5 , pp. e13663
    • Sanman, L.E.1    Qian, Y.2    Eisele, N.A.3
  • 43
    • 84894271641 scopus 로고    scopus 로고
    • FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes
    • Gurung, P., Anand, P. K., Malireddi, R. K. et al. 2014. FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J. Immunol. 192:1835.
    • (2014) J. Immunol. , vol.192 , pp. 1835
    • Gurung, P.1    Anand, P.K.2    Malireddi, R.K.3
  • 44
    • 84964402403 scopus 로고    scopus 로고
    • NLRP3 inflammasome plays a redundant role with caspase 8 to promote IL-1beta-mediated osteomyelitis
    • Gurung, P., Burton, A., and Kanneganti, T. D. 2016. NLRP3 inflammasome plays a redundant role with caspase 8 to promote IL-1beta-mediated osteomyelitis. Proc. Natl Acad. Sci. USA 113:4452.
    • (2016) Proc. Natl Acad. Sci. USA , vol.113 , pp. 4452
    • Gurung, P.1    Burton, A.2    Kanneganti, T.D.3
  • 45
    • 84867241369 scopus 로고    scopus 로고
    • Toll or interleukin-1 receptor (TIR) domain-containing adaptor inducing interferon-ß (TRIF)-mediated caspase-11 protease production integrates Toll-like receptor 4 (TLR4) protein- and Nlrp3 inflammasome- mediated host defense against enteropathogens
    • Gurung, P., Malireddi, R. K., Anand, P. K. et al. 2012. Toll or interleukin-1 receptor (TIR) domain-containing adaptor inducing interferon-ß (TRIF)-mediated caspase-11 protease production integrates Toll-like receptor 4 (TLR4) protein- and Nlrp3 inflammasome- mediated host defense against enteropathogens. J. Biol. Chem. 287:34474.
    • (2012) J. Biol. Chem. , vol.287
    • Gurung, P.1    Malireddi, R.K.2    Anand, P.K.3
  • 46
    • 85022040336 scopus 로고    scopus 로고
    • ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways
    • Kuriakose, T., Man, S. M., Malireddi, R. K. et al. 2016. ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Sci. Immunol. 1:aag2045.
    • (2016) Sci. Immunol. , vol.1
    • Kuriakose, T.1    Man, S.M.2    Malireddi, R.K.3
  • 47
    • 84958971929 scopus 로고    scopus 로고
    • NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux
    • He, Y., Zeng, M. Y., Yang, D. et al. 2016. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 530:354.
    • (2016) Nature , vol.530 , pp. 354
    • He, Y.1    Zeng, M.Y.2    Yang, D.3
  • 48
    • 84952931119 scopus 로고    scopus 로고
    • A genome-wide CRISPR (clustered regularly interspaced short palindromic repeats) screen identifies NEK7 as an essential component of NLRP3 inflammasome activation
    • Schmid-Burgk, J. L., Chauhan, D., Schmidt, T. et al. 2016. A genome-wide CRISPR (clustered regularly interspaced short palindromic repeats) screen identifies NEK7 as an essential component of NLRP3 inflammasome activation. J. Biol. Chem. 291:103.
    • (2016) J. Biol. Chem. , vol.291 , pp. 103
    • Schmid-Burgk, J.L.1    Chauhan, D.2    Schmidt, T.3
  • 49
    • 84949595485 scopus 로고    scopus 로고
    • NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component
    • Shi, H., Wang, Y., Li, X. et al. 2016. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat. Immunol. 17:250.
    • (2016) Nat. Immunol. , vol.17 , pp. 250
    • Shi, H.1    Wang, Y.2    Li, X.3
  • 50
    • 84872782298 scopus 로고    scopus 로고
    • Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity
    • Py, B. F., Kim, M. S., Vakifahmetoglu-Norberg, H. et al. 2013. Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol. Cell 49:331.
    • (2013) Mol. Cell , vol.49 , pp. 331
    • Py, B.F.1    Kim, M.S.2    Vakifahmetoglu-Norberg, H.3
  • 51
    • 84988458393 scopus 로고    scopus 로고
    • NLRP3 tyrosine phosphorylation is controlled by protein tyrosine phosphatase PTPN22
    • Spalinger, M. R., Kasper, S., Gottier, C. et al. 2016. NLRP3 tyrosine phosphorylation is controlled by protein tyrosine phosphatase PTPN22. J. Clin. Invest. 126:1783.
    • (2016) J. Clin. Invest. , vol.126 , pp. 1783
    • Spalinger, M.R.1    Kasper, S.2    Gottier, C.3
  • 52
    • 0035958867 scopus 로고    scopus 로고
    • Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1
    • Poyet, J. L., Srinivasula, S. M., Tnani, M. et al. 2001. Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. J. Biol. Chem. 276:28309.
    • (2001) J. Biol. Chem. , vol.276 , pp. 28309
    • Poyet, J.L.1    Srinivasula, S.M.2    Tnani, M.3
  • 53
    • 33744464740 scopus 로고    scopus 로고
    • Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages
    • Franchi, L., Amer, A., Body-Malapel, M. et al. 2006. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat. Immunol. 7:576.
    • (2006) Nat. Immunol. , vol.7 , pp. 576
    • Franchi, L.1    Amer, A.2    Body-Malapel, M.3
  • 54
    • 33744493091 scopus 로고    scopus 로고
    • Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf
    • Miao, E. A., Alpuche-Aranda, C. M., Dors, M. et al. 2006. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat. Immunol. 7:569.
    • (2006) Nat. Immunol. , vol.7 , pp. 569
    • Miao, E.A.1    Alpuche-Aranda, C.M.2    Dors, M.3
  • 55
    • 77649241461 scopus 로고    scopus 로고
    • Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome
    • Miao, E. A., Mao, D. P., Yudkovsky, N. et al. 2010. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc. Natl Acad. Sci. USA 107:3076.
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 3076
    • Miao, E.A.1    Mao, D.P.2    Yudkovsky, N.3
  • 56
    • 80053349020 scopus 로고    scopus 로고
    • The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus
    • Zhao, Y., Yang, J., Shi, J. et al. 2011. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477:596.
    • (2011) Nature , vol.477 , pp. 596
    • Zhao, Y.1    Yang, J.2    Shi, J.3
  • 57
    • 80053379974 scopus 로고    scopus 로고
    • Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity
    • Kofoed, E. M. and Vance, R. E. 2011. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477:592.
    • (2011) Nature , vol.477 , pp. 592
    • Kofoed, E.M.1    Vance, R.E.2
  • 58
    • 84898031590 scopus 로고    scopus 로고
    • Molecular basis for specific recognition of bacterial ligands by NAIP/NLRC4 inflammasomes
    • Tenthorey, J. L., Kofoed, E. M., Daugherty, M. D. et al. 2014. Molecular basis for specific recognition of bacterial ligands by NAIP/NLRC4 inflammasomes. Mol. Cell 54:17.
    • (2014) Mol. Cell , vol.54 , pp. 17
    • Tenthorey, J.L.1    Kofoed, E.M.2    Daugherty, M.D.3
  • 59
    • 84883329029 scopus 로고    scopus 로고
    • Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation
    • Yang, J., Zhao, Y., Shi, J. et al. 2013. Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation. Proc. Natl Acad. Sci. USA 110:14408.
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 14408
    • Yang, J.1    Zhao, Y.2    Shi, J.3
  • 60
    • 84937706079 scopus 로고    scopus 로고
    • Cutting edge: inflammasome activation in primary human macrophages is dependent on flagellin
    • Kortmann, J., Brubaker, S. W. and Monack, D. M. 2015. Cutting edge: inflammasome activation in primary human macrophages is dependent on flagellin. J. Immunol. 195:815.
    • (2015) J. Immunol. , vol.195 , pp. 815
    • Kortmann, J.1    Brubaker, S.W.2    Monack, D.M.3
  • 61
    • 3142654767 scopus 로고    scopus 로고
    • Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf
    • Mariathasan, S., Newton, K., Monack, D. M. et al. 2004. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430:213.
    • (2004) Nature , vol.430 , pp. 213
    • Mariathasan, S.1    Newton, K.2    Monack, D.M.3
  • 62
    • 84887439544 scopus 로고    scopus 로고
    • Salmonella infection induces recruitment of Caspase-8 to the inflammasome to modulate IL-1ß production
    • Man, S. M., Tourlomousis, P., Hopkins, L. et al. 2013. Salmonella infection induces recruitment of Caspase-8 to the inflammasome to modulate IL-1ß production. J. Immunol. 191:5239.
    • (2013) J. Immunol. , vol.191 , pp. 5239
    • Man, S.M.1    Tourlomousis, P.2    Hopkins, L.3
  • 63
    • 84927126118 scopus 로고    scopus 로고
    • An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome
    • Canna, S. W., de Jesus, A. A., Gouni, S. et al. 2014. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat. Genet. 46:1140.
    • (2014) Nat. Genet. , vol.46 , pp. 1140
    • Canna, S.W.1    de Jesus, A.A.2    Gouni, S.3
  • 64
    • 84867861468 scopus 로고    scopus 로고
    • Phosphorylation of NLRC4 is critical for inflammasome activation
    • Qu, Y., Misaghi, S., Izrael-Tomasevic, A. et al. 2012. Phosphorylation of NLRC4 is critical for inflammasome activation. Nature 490:539.
    • (2012) Nature , vol.490 , pp. 539
    • Qu, Y.1    Misaghi, S.2    Izrael-Tomasevic, A.3
  • 65
    • 84895771345 scopus 로고    scopus 로고
    • Shigella type III secretion protein MxiI is recognized by Naip2 to induce Nlrc4 inflammasome activation independently of Pkcd
    • Suzuki, S., Franchi, L., He, Y. et al. 2014. Shigella type III secretion protein MxiI is recognized by Naip2 to induce Nlrc4 inflammasome activation independently of Pkcd. PLoS Pathog. 10:e1003926.
    • (2014) PLoS Pathog. , vol.10 , pp. e1003926
    • Suzuki, S.1    Franchi, L.2    He, Y.3
  • 66
    • 84922311780 scopus 로고    scopus 로고
    • Flagellin-induced NLRC4 phosphorylation primes the inflammasome for activation by NAIP5
    • Matusiak, M., Van Opdenbosch, N., Vande Walle, L. et al. 2015. Flagellin-induced NLRC4 phosphorylation primes the inflammasome for activation by NAIP5. Proc. Natl Acad. Sci. USA 112:1541.
    • (2015) Proc. Natl Acad. Sci. USA , vol.112 , pp. 1541
    • Matusiak, M.1    Van Opdenbosch, N.2    Vande Walle, L.3
  • 67
    • 63649145255 scopus 로고    scopus 로고
    • AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA
    • Fernandes-Alnemri, T., Yu, J. W., Datta, P. et al. 2009. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458:509.
    • (2009) Nature , vol.458 , pp. 509
    • Fernandes-Alnemri, T.1    Yu, J.W.2    Datta, P.3
  • 68
    • 63649133278 scopus 로고    scopus 로고
    • AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC
    • Hornung, V., Ablasser, A., Charrel-Dennis, M. et al. 2009. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:514.
    • (2009) Nature , vol.458 , pp. 514
    • Hornung, V.1    Ablasser, A.2    Charrel-Dennis, M.3
  • 69
    • 60749136484 scopus 로고    scopus 로고
    • An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome
    • Bürckstümmer, T., Baumann, C., Blüml, S. et al. 2009. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat. Immunol. 10:266.
    • (2009) Nat. Immunol. , vol.10 , pp. 266
    • Bürckstümmer, T.1    Baumann, C.2    Blüml, S.3
  • 70
    • 60749104535 scopus 로고    scopus 로고
    • HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA
    • Roberts, T. L., Idris, A., Dunn, J. A. et al. 2009. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 323:1057.
    • (2009) Science , vol.323 , pp. 1057
    • Roberts, T.L.1    Idris, A.2    Dunn, J.A.3
  • 71
    • 40449097257 scopus 로고    scopus 로고
    • The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response
    • Muruve, D. A., Pétrilli, V., Zaiss, A. K. et al. 2008. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452:103.
    • (2008) Nature , vol.452 , pp. 103
    • Muruve, D.A.1    Pétrilli, V.2    Zaiss, A.K.3
  • 72
    • 77951263260 scopus 로고    scopus 로고
    • The AIM2 inflammasome is critical for innate immunity to Francisella tularensis
    • Fernandes-Alnemri, T., Yu, J. W., Juliana, C. et al. 2010. The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat. Immunol. 11:385.
    • (2010) Nat. Immunol. , vol.11 , pp. 385
    • Fernandes-Alnemri, T.1    Yu, J.W.2    Juliana, C.3
  • 73
    • 77951269392 scopus 로고    scopus 로고
    • The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses
    • Rathinam, V. A., Jiang, Z., Waggoner, S. N. et al. 2010. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat. Immunol. 11:395.
    • (2010) Nat. Immunol. , vol.11 , pp. 395
    • Rathinam, V.A.1    Jiang, Z.2    Waggoner, S.N.3
  • 74
    • 77953116282 scopus 로고    scopus 로고
    • Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis
    • Jones, J. W., Kayagaki, N., Broz, P. et al. 2010. Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc. Natl Acad. Sci. USA 107:9771.
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 9771
    • Jones, J.W.1    Kayagaki, N.2    Broz, P.3
  • 75
    • 77955294800 scopus 로고    scopus 로고
    • Listeria monocytogenes triggers AIM2-mediated pyroptosis upon infrequent bacteriolysis in the macrophage cytosol
    • Sauer, J. D., Witte, C. E., Zemansky, J. et al. 2010. Listeria monocytogenes triggers AIM2-mediated pyroptosis upon infrequent bacteriolysis in the macrophage cytosol. Cell Host Microbe 7:412.
    • (2010) Cell Host Microbe , vol.7 , pp. 412
    • Sauer, J.D.1    Witte, C.E.2    Zemansky, J.3
  • 76
    • 34249044447 scopus 로고    scopus 로고
    • Type I interferon signaling is required for activation of the inflammasome during Francisella infection
    • Henry, T., Brotcke, A., Weiss, D. S. et al. 2007. Type I interferon signaling is required for activation of the inflammasome during Francisella infection. J. Exp. Med. 204:987.
    • (2007) J. Exp. Med. , vol.204 , pp. 987
    • Henry, T.1    Brotcke, A.2    Weiss, D.S.3
  • 77
    • 84928545520 scopus 로고    scopus 로고
    • The transcription factor IRF1 and guanylate-binding proteins target activation of the AIM2 inflammasome by Francisella infection
    • Man, S. M., Karki, R., Malireddi, R. K. et al. 2015. The transcription factor IRF1 and guanylate-binding proteins target activation of the AIM2 inflammasome by Francisella infection. Nat. Immunol. 16:467.
    • (2015) Nat. Immunol. , vol.16 , pp. 467
    • Man, S.M.1    Karki, R.2    Malireddi, R.K.3
  • 78
    • 84990856288 scopus 로고    scopus 로고
    • IRGB10 liberates bacterial ligands for sensing by the AIM2 and Caspase-11-NLRP3 inflammasomes
    • Man, S. M., Karki, R., Sasai, M. et al. 2016. IRGB10 liberates bacterial ligands for sensing by the AIM2 and Caspase-11-NLRP3 inflammasomes. Cell 167:382.
    • (2016) Cell , vol.167 , pp. 382
    • Man, S.M.1    Karki, R.2    Sasai, M.3
  • 79
    • 84928538482 scopus 로고    scopus 로고
    • Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida
    • Meunier, E., Wallet, P., Dreier, R. F. et al. 2015. Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida. Nat. Immunol. 16:476.
    • (2015) Nat. Immunol. , vol.16 , pp. 476
    • Meunier, E.1    Wallet, P.2    Dreier, R.F.3
  • 80
    • 84902655075 scopus 로고    scopus 로고
    • Increased expression and activation of absent in melanoma 2 inflammasome components in lymphocytic infiltrates of abdominal aortic aneurysms
    • Dihlmann, S., Erhart, P., Mehrabi, A. et al. 2014. Increased expression and activation of absent in melanoma 2 inflammasome components in lymphocytic infiltrates of abdominal aortic aneurysms. Mol. Med. 20:230.
    • (2014) Mol. Med. , vol.20 , pp. 230
    • Dihlmann, S.1    Erhart, P.2    Mehrabi, A.3
  • 81
    • 79955897768 scopus 로고    scopus 로고
    • Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions
    • Dombrowski, Y., Peric, M., Koglin, S. et al. 2011. Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions. Sci. Transl. Med. 3:82ra38.
    • (2011) Sci. Transl. Med. , vol.3
    • Dombrowski, Y.1    Peric, M.2    Koglin, S.3
  • 82
    • 75649151209 scopus 로고    scopus 로고
    • Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus
    • Javierre, B. M., Fernandez, A. F., Richter, J. et al. 2010. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res. 20:170.
    • (2010) Genome Res. , vol.20 , pp. 170
    • Javierre, B.M.1    Fernandez, A.F.2    Richter, J.3
  • 83
    • 84934346989 scopus 로고    scopus 로고
    • Critical role for the DNA sensor AIM2 in stem cell proliferation and cancer
    • Man, S. M., Zhu, Q., Zhu, L. et al. 2015. Critical role for the DNA sensor AIM2 in stem cell proliferation and cancer. Cell 162:45.
    • (2015) Cell , vol.162 , pp. 45
    • Man, S.M.1    Zhu, Q.2    Zhu, L.3
  • 84
    • 84938996802 scopus 로고    scopus 로고
    • Inflammasomeindependent role of AIM2 in suppressing colon tumorigenesis via DNA-PK and Akt
    • Wilson, J. E., Petrucelli, A. S., Chen, L. et al. 2015. Inflammasomeindependent role of AIM2 in suppressing colon tumorigenesis via DNA-PK and Akt. Nat. Med. 21:906.
    • (2015) Nat. Med. , vol.21 , pp. 906
    • Wilson, J.E.1    Petrucelli, A.S.2    Chen, L.3
  • 85
    • 84992597199 scopus 로고    scopus 로고
    • PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation
    • Xie, M., Yu, Y., Kang, R. et al. 2016. PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation. Nat. Commun. 7:13280.
    • (2016) Nat. Commun. , vol.7 , pp. 13280
    • Xie, M.1    Yu, Y.2    Kang, R.3
  • 86
    • 84994507182 scopus 로고    scopus 로고
    • The DNA-sensing AIM2 inflammasome controls radiation-induced cell death and tissue injury
    • Hu, B., Jin, C., Li, H. B. et al. 2016. The DNA-sensing AIM2 inflammasome controls radiation-induced cell death and tissue injury. Science 354:765.
    • (2016) Science , vol.354 , pp. 765
    • Hu, B.1    Jin, C.2    Li, H.B.3
  • 87
    • 84982972146 scopus 로고    scopus 로고
    • AIM2 inflammasome is activated by pharmacological disruption of nuclear envelope integrity
    • Di Micco, A., Frera, G., Lugrin, J. et al. 2016. AIM2 inflammasome is activated by pharmacological disruption of nuclear envelope integrity. Proc. Natl Acad. Sci. USA 113:E4671.
    • (2016) Proc. Natl Acad. Sci. USA , vol.113 , pp. E4671
    • Di Micco, A.1    Frera, G.2    Lugrin, J.3
  • 88
    • 79956299492 scopus 로고    scopus 로고
    • Gain-of-function Pyrin mutations induce NLRP3 protein-independent interleukin- 1ß activation and severe autoinflammation in mice
    • Chae, J. J., Cho, Y. H., Lee, G. S. et al. 2011. Gain-of-function Pyrin mutations induce NLRP3 protein-independent interleukin- 1ß activation and severe autoinflammation in mice. Immunity 34:755.
    • (2011) Immunity , vol.34 , pp. 755
    • Chae, J.J.1    Cho, Y.H.2    Lee, G.S.3
  • 89
    • 16944365196 scopus 로고    scopus 로고
    • A candidate gene for familial Mediterranean fever
    • French FMF Consortium. 1997. A candidate gene for familial Mediterranean fever. Nat. Genet. 17:25.
    • (1997) Nat. Genet. , vol.17 , pp. 25
  • 90
    • 33745631232 scopus 로고    scopus 로고
    • The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1beta production
    • Chae, J. J., Wood, G., Masters, S. L. et al. 2006. The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1beta production. Proc. Natl Acad. Sci. USA 103:9982.
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 9982
    • Chae, J.J.1    Wood, G.2    Masters, S.L.3
  • 91
    • 84870595842 scopus 로고    scopus 로고
    • Genetic loss of murine pyrin, the Familial Mediterranean fever protein, increases interleukin-1ß levels
    • Hesker, P. R., Nguyen, M., Kovarova, M. et al. 2012. Genetic loss of murine pyrin, the Familial Mediterranean fever protein, increases interleukin-1ß levels. PLoS One 7:e51105.
    • (2012) PLoS One , vol.7 , pp. e51105
    • Hesker, P.R.1    Nguyen, M.2    Kovarova, M.3
  • 92
    • 84859403876 scopus 로고    scopus 로고
    • Activation of the pyrin inflammasome by intracellular Burkholderia cenocepacia
    • Gavrilin, M. A., Abdelaziz, D. H., Mostafa, M. et al. 2012. Activation of the pyrin inflammasome by intracellular Burkholderia cenocepacia. J. Immunol. 188:3469.
    • (2012) J. Immunol. , vol.188 , pp. 3469
    • Gavrilin, M.A.1    Abdelaziz, D.H.2    Mostafa, M.3
  • 93
    • 84964664672 scopus 로고    scopus 로고
    • A Burkholderia type vi effector deamidates Rho GTPases to activate the Pyrin inflammasome and trigger inflammation
    • Aubert, D. F., Xu, H., Yang, J. et al. 2016. A Burkholderia type vi effector deamidates Rho GTPases to activate the Pyrin inflammasome and trigger inflammation. Cell Host Microbe 19:664.
    • (2016) Cell Host Microbe , vol.19 , pp. 664
    • Aubert, D.F.1    Xu, H.2    Yang, J.3
  • 94
    • 84907270863 scopus 로고    scopus 로고
    • Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome
    • Xu, H., Yang, J., Gao, W. et al. 2014. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513:237.
    • (2014) Nature , vol.513 , pp. 237
    • Xu, H.1    Yang, J.2    Gao, W.3
  • 95
    • 84962744592 scopus 로고    scopus 로고
    • Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of pyrin activation
    • Masters, S. L., Lagou, V., Jéru, I. et al. 2016. Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of pyrin activation. Sci. Transl. Med. 8:332ra45.
    • (2016) Sci. Transl. Med. , vol.8
    • Masters, S.L.1    Lagou, V.2    Jéru, I.3
  • 96
    • 84976329660 scopus 로고    scopus 로고
    • Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS
    • Park, Y. H., Wood, G., Kastner, D. L. et al. 2016. Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat. Immunol. 17:914.
    • (2016) Nat. Immunol. , vol.17 , pp. 914
    • Park, Y.H.1    Wood, G.2    Kastner, D.L.3
  • 97
    • 60549111042 scopus 로고    scopus 로고
    • Pyrin and ASC colocalize to cellular sites that are rich in polymerizing actin
    • Waite, A. L., Schaner, P., Hu, C. et al. 2009. Pyrin and ASC colocalize to cellular sites that are rich in polymerizing actin. Exp. Biol. Med. 234:40.
    • (2009) Exp. Biol. Med. , vol.234 , pp. 40
    • Waite, A.L.1    Schaner, P.2    Hu, C.3
  • 98
    • 84940453310 scopus 로고    scopus 로고
    • Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-1ß
    • Kim, M. L., Chae, J. J., Park, Y. H. et al. 2015. Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-1ß. J. Exp. Med. 212:927.
    • (2015) J. Exp. Med. , vol.212 , pp. 927
    • Kim, M.L.1    Chae, J.J.2    Park, Y.H.3
  • 99
    • 84976313489 scopus 로고    scopus 로고
    • Control of the innate immune response by the mevalonate pathway
    • Akula, M. K., Shi, M., Jiang, Z. et al. 2016. Control of the innate immune response by the mevalonate pathway. Nat. Immunol. 17:922.
    • (2016) Nat. Immunol. , vol.17 , pp. 922
    • Akula, M.K.1    Shi, M.2    Jiang, Z.3
  • 100
    • 84960432718 scopus 로고    scopus 로고
    • TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity
    • Kimura, T., Jain, A., Choi, S. W. et al. 2015. TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity. J. Cell Biol. 210:973.
    • (2015) J. Cell Biol. , vol.210 , pp. 973
    • Kimura, T.1    Jain, A.2    Choi, S.W.3
  • 101
    • 84949201317 scopus 로고    scopus 로고
    • Cryoelectron tomography of the NAIP5/NLRC4 inflammasome: implications for NLR activation
    • Diebolder, C. A., Halff, E. F., Koster, A. J. et al. 2015. Cryoelectron tomography of the NAIP5/NLRC4 inflammasome: implications for NLR activation. Structure 23:2349.
    • (2015) Structure , vol.23 , pp. 2349
    • Diebolder, C.A.1    Halff, E.F.2    Koster, A.J.3
  • 102
    • 84869044838 scopus 로고    scopus 로고
    • Formation and structure of a NAIP5-NLRC4 inflammasome induced by direct interactions with conserved N- and C-terminal regions of flagellin
    • Halff, E. F., Diebolder, C. A., Versteeg, M. et al. 2012. Formation and structure of a NAIP5-NLRC4 inflammasome induced by direct interactions with conserved N- and C-terminal regions of flagellin. J. Biol. Chem. 287:38460.
    • (2012) J. Biol. Chem. , vol.287 , pp. 38460
    • Halff, E.F.1    Diebolder, C.A.2    Versteeg, M.3
  • 103
    • 84944748927 scopus 로고    scopus 로고
    • Structural and biochemical basis for induced self-propagation of NLRC4
    • Hu, Z., Zhou, Q., Zhang, C. et al. 2015. Structural and biochemical basis for induced self-propagation of NLRC4. Science 350:399.
    • (2015) Science , vol.350 , pp. 399
    • Hu, Z.1    Zhou, Q.2    Zhang, C.3
  • 104
    • 84944747007 scopus 로고    scopus 로고
    • Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization
    • Zhang, L., Chen, S., Ruan, J. et al. 2015. Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science 350:404.
    • (2015) Science , vol.350 , pp. 404
    • Zhang, L.1    Chen, S.2    Ruan, J.3
  • 105
    • 84901008921 scopus 로고    scopus 로고
    • Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex
    • Man, S. M., Hopkins, L. J., Nugent, E. et al. 2014. Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex. Proc. Natl Acad. Sci. USA 111:7403.
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 7403
    • Man, S.M.1    Hopkins, L.J.2    Nugent, E.3
  • 106
    • 84971577029 scopus 로고    scopus 로고
    • NLRP3 recruitment by NLRC4 during Salmonella infection
    • Qu, Y., Misaghi, S., Newton, K. et al. 2016. NLRP3 recruitment by NLRC4 during Salmonella infection. J. Exp. Med. 213:877.
    • (2016) J. Exp. Med. , vol.213 , pp. 877
    • Qu, Y.1    Misaghi, S.2    Newton, K.3
  • 107
    • 84926164932 scopus 로고    scopus 로고
    • Concerted activation of the AIM2 and NLRP3 inflammasomes orchestrates host protection against Aspergillus infection
    • Karki, R., Man, S. M., Malireddi, R. K. et al. 2015. Concerted activation of the AIM2 and NLRP3 inflammasomes orchestrates host protection against Aspergillus infection. Cell Host Microbe 17:357.
    • (2015) Cell Host Microbe , vol.17 , pp. 357
    • Karki, R.1    Man, S.M.2    Malireddi, R.K.3
  • 108
    • 84859986329 scopus 로고    scopus 로고
    • Structures of the HIN domain:DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor
    • Jin, T., Perry, A., Jiang, J. et al. 2012. Structures of the HIN domain:DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor. Immunity 36:561.
    • (2012) Immunity , vol.36 , pp. 561
    • Jin, T.1    Perry, A.2    Jiang, J.3
  • 109
    • 84951838786 scopus 로고    scopus 로고
    • Plasticity in PYD assembly revealed by cryo-EM structure of the PYD filament of AIM2
    • Lu, A., Li, Y., Yin, Q. et al. 2015. Plasticity in PYD assembly revealed by cryo-EM structure of the PYD filament of AIM2. Cell Discov. 1:15013.
    • (2015) Cell Discov. , vol.1 , pp. 15013
    • Lu, A.1    Li, Y.2    Yin, Q.3
  • 110
    • 84904646033 scopus 로고    scopus 로고
    • The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response
    • Baroja-Mazo, A., Martín-Sánchez, F., Gomez, A. I. et al. 2014. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat. Immunol. 15:738.
    • (2014) Nat. Immunol. , vol.15 , pp. 738
    • Baroja-Mazo, A.1    Martín-Sánchez, F.2    Gomez, A.I.3
  • 111
    • 84904692363 scopus 로고    scopus 로고
    • The adaptor ASC has extracellular and 'prionoid' activities that propagate inflammation
    • Franklin, B. S., Bossaller, L., De Nardo, D. et al. 2014. The adaptor ASC has extracellular and 'prionoid' activities that propagate inflammation. Nat. Immunol. 15:727.
    • (2014) Nat. Immunol. , vol.15 , pp. 727
    • Franklin, B.S.1    Bossaller, L.2    De Nardo, D.3
  • 112
    • 84896332642 scopus 로고    scopus 로고
    • Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes
    • Lu, A., Magupalli, V. G., Ruan, J. et al. 2014. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156:1193.
    • (2014) Cell , vol.156 , pp. 1193
    • Lu, A.1    Magupalli, V.G.2    Ruan, J.3
  • 113
    • 84976315206 scopus 로고    scopus 로고
    • ASC filament formation serves as a signal amplification mechanism for inflammasomes
    • Dick, M. S., Sborgi, L., Rühl, S. et al. 2016. ASC filament formation serves as a signal amplification mechanism for inflammasomes. Nat. Commun. 7:11929.
    • (2016) Nat. Commun. , vol.7 , pp. 11929
    • Dick, M.S.1    Sborgi, L.2    Rühl, S.3
  • 114
    • 16244362671 scopus 로고    scopus 로고
    • Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells
    • Fink, S. L. and Cookson, B. T. 2005. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect. Immun. 73:1907.
    • (2005) Infect. Immun. , vol.73 , pp. 1907
    • Fink, S.L.1    Cookson, B.T.2
  • 115
    • 84942892037 scopus 로고    scopus 로고
    • Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death
    • Shi, J., Zhao, Y., Wang, K. et al. 2015. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660.
    • (2015) Nature , vol.526 , pp. 660
    • Shi, J.1    Zhao, Y.2    Wang, K.3
  • 116
    • 84885813096 scopus 로고    scopus 로고
    • Functional conservation of Gsdma cluster genes specifically duplicated in the mouse genome
    • Tanaka, S., Mizushina, Y., Kato, Y. et al. 2013. Functional conservation of Gsdma cluster genes specifically duplicated in the mouse genome. G3 (Bethesda) 3:1843.
    • (2013) G3 (Bethesda) , vol.3 , pp. 1843
    • Tanaka, S.1    Mizushina, Y.2    Kato, Y.3
  • 117
    • 84942856523 scopus 로고    scopus 로고
    • Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling
    • Kayagaki, N., Stowe, I. B., Lee, B. L. et al. 2015. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526:666.
    • (2015) Nature , vol.526 , pp. 666
    • Kayagaki, N.1    Stowe, I.B.2    Lee, B.L.3
  • 118
    • 84978128481 scopus 로고    scopus 로고
    • GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes
    • Aglietti, R. A., Estevez, A., Gupta, A. et al. 2016. GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc. Natl Acad. Sci. USA 113:7858.
    • (2016) Proc. Natl Acad. Sci. USA , vol.113 , pp. 7858
    • Aglietti, R.A.1    Estevez, A.2    Gupta, A.3
  • 119
    • 84978419608 scopus 로고    scopus 로고
    • Pore-forming activity and structural autoinhibition of the gasdermin family
    • Ding, J., Wang, K., Liu, W. et al. 2016. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535:111.
    • (2016) Nature , vol.535 , pp. 111
    • Ding, J.1    Wang, K.2    Liu, W.3
  • 120
    • 84982102736 scopus 로고    scopus 로고
    • GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death
    • Sborgi, L., Rühl, S., Mulvihill, E. et al. 2016. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J. 35:1766.
    • (2016) EMBO J. , vol.35 , pp. 1766
    • Sborgi, L.1    Rühl, S.2    Mulvihill, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.