-
1
-
-
81055125652
-
Programmed cell death in animal development and disease
-
Fuchs, Y., Steller, H. Programmed cell death in animal development and disease. Cell 147, 742-758 (2011)
-
(2011)
Cell
, vol.147
, pp. 742-758
-
-
Fuchs, Y.1
Steller, H.2
-
2
-
-
39749182234
-
Apoptosis: Controlled demolition at the cellular level
-
Taylor, R. C., Cullen, S. P., Martin, S. J. Apoptosis: controlled demolition at the cellular level. Nat. Rev. Mol. Cell Biol. 9, 231-241 (2008)
-
(2008)
Nat. Rev. Mol. Cell Biol
, vol.9
, pp. 231-241
-
-
Taylor, R.C.1
Cullen, S.P.2
Martin, S.J.3
-
3
-
-
84962777439
-
An outline of necrosome triggers
-
Vanden Berghe, T., Hassannia, B., Vandenabeele, P. An outline of necrosome triggers. Cell. Mol. Life Sci. 73, 2137-2152 (2016)
-
(2016)
Cell. Mol. Life Sci
, vol.73
, pp. 2137-2152
-
-
Vanden Berghe, T.1
Hassannia, B.2
Vandenabeele, P.3
-
4
-
-
84964042566
-
Developmental checkpoints guarded by regulated necrosis
-
Dillon, C. P., Tummers, B., Baran, K., Green, D. R. Developmental checkpoints guarded by regulated necrosis. Cell. Mol. Life Sci. 73, 2125-2136 (2016)
-
(2016)
Cell. Mol. Life Sci
, vol.73
, pp. 2125-2136
-
-
Dillon, C.P.1
Tummers, B.2
Baran, K.3
Green, D.R.4
-
5
-
-
84962909249
-
Poly-ubiquitination in TNFR1-mediated necroptosis
-
Dondelinger, Y., Darding, M., Bertrand, M. J. M., Walczak, H. Poly-ubiquitination in TNFR1-mediated necroptosis. Cell. Mol. Life Sci. 73, 2165-2176 (2016)
-
(2016)
Cell. Mol. Life Sci
, vol.73
, pp. 2165-2176
-
-
Dondelinger, Y.1
Darding, M.2
Bertrand, M.J.M.3
Walczak, H.4
-
6
-
-
84927745897
-
Pyroptotic cell death defends against intracellular pathogens
-
Jorgensen, I., Miao, E. A. Pyroptotic cell death defends against intracellular pathogens. Immunol. Rev. 265, 130-142 (2015)
-
(2015)
Immunol. Rev
, vol.265
, pp. 130-142
-
-
Jorgensen, I.1
Miao, E.A.2
-
7
-
-
79952622190
-
Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality
-
Remijsen, Q., et al. Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death Differ. 18, 581-588 (2011)
-
(2011)
Cell Death Differ
, vol.18
, pp. 581-588
-
-
Remijsen, Q.1
-
8
-
-
0029978844
-
Macrophage killing is an essential virulence mechanism of Salmonella typhimurium
-
Lindgren, S. W., Stojiljkovic, I., Heffron, F. Macrophage killing is an essential virulence mechanism of Salmonella typhimurium. Proc. Natl Acad. Sci. USA 93, 4197-4201 (1996)
-
(1996)
Proc. Natl Acad. Sci. USA
, vol.93
, pp. 4197-4201
-
-
Lindgren, S.W.1
Stojiljkovic, I.2
Heffron, F.3
-
9
-
-
78449269290
-
Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria
-
Miao, E. A., et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat. Immunol. 11, 1136-1142 (2010)
-
(2010)
Nat. Immunol
, vol.11
, pp. 1136-1142
-
-
Miao, E.A.1
-
10
-
-
0035859020
-
Plant pathogens and integrated defence responses to infection
-
Dangl, J. L., Jones, J. D. G. Plant pathogens and integrated defence responses to infection. Nature 411, 826-833 (2001)
-
(2001)
Nature
, vol.411
, pp. 826-833
-
-
Dangl, J.L.1
Jones, J.D.G.2
-
11
-
-
0037155687
-
RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis
-
Mackey, D., Holt, B. F., Wiig, A., Dangl, J. L. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108, 743-754 (2002)
-
(2002)
Cell
, vol.108
, pp. 743-754
-
-
Mackey, D.1
Holt, B.F.2
Wiig, A.3
Dangl, J.L.4
-
12
-
-
0037423306
-
Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance
-
Mackey, D., Belkhadir, Y., Alonso, J. M., Ecker, J. R., Dangl, J. L. Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112, 379-389 (2003)
-
(2003)
Cell
, vol.112
, pp. 379-389
-
-
Mackey, D.1
Belkhadir, Y.2
Alonso, J.M.3
Ecker, J.R.4
Dangl, J.L.5
-
13
-
-
84976516826
-
Inflammasomes: Mechanism of assembly, regulation and signalling
-
Broz, P., Dixit, V. M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16, 407-420 (2016)
-
(2016)
Nat. Rev. Immunol.
, vol.16
, pp. 407-420
-
-
Broz, P.1
Dixit, V.M.2
-
14
-
-
80455176839
-
Non-canonical inflammasome activation targets caspase-11
-
Kayagaki, N., et al. Non-canonical inflammasome activation targets caspase-11. Nature 479, 117-121 (2011)
-
(2011)
Nature
, vol.479
, pp. 117-121
-
-
Kayagaki, N.1
-
15
-
-
84883790050
-
Cytoplasmic LPS activates caspase-11: Implications in TLR4-independent endotoxic shock
-
Hagar, J. A., Powell, D. A., Aachoui, Y., Ernst, R. K., Miao, E. A. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341, 1250-1253 (2013)
-
(2013)
Science
, vol.341
, pp. 1250-1253
-
-
Hagar, J.A.1
Powell, D.A.2
Aachoui, Y.3
Ernst, R.K.4
Miao, E.A.5
-
16
-
-
84883775365
-
Noncanonical inflammasome activation by intracellular LPS independent of TLR4
-
Kayagaki, N., et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341, 1246-1249 (2013)
-
(2013)
Science
, vol.341
, pp. 1246-1249
-
-
Kayagaki, N.1
-
17
-
-
84906571225
-
Inflammatory caspases are innate immune receptors for intracellular LPS
-
Shi, J., et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514, 187-192 (2014)
-
(2014)
Nature
, vol.514
, pp. 187-192
-
-
Shi, J.1
-
18
-
-
84874189388
-
Caspase-11 protects against bacteria that escape the vacuole
-
Aachoui, Y., et al. Caspase-11 protects against bacteria that escape the vacuole. Science 339, 975-978 (2013)
-
(2013)
Science
, vol.339
, pp. 975-978
-
-
Aachoui, Y.1
-
19
-
-
84941317034
-
Canonical inflammasomes drive IFN-? to prime caspase-11 in defense against a cytosol-invasive bacterium
-
Aachoui, Y., et al. Canonical inflammasomes drive IFN-? to prime caspase-11 in defense against a cytosol-invasive bacterium. Cell Host Microbe 18, 320-332 (2015)
-
(2015)
Cell Host Microbe
, vol.18
, pp. 320-332
-
-
Aachoui, Y.1
-
20
-
-
84877844771
-
The Shigella OspC3 effector inhibits caspase-4, antagonizes inflammatory cell death, and promotes epithelial infection
-
Kobayashi, T., et al. The Shigella OspC3 effector inhibits caspase-4, antagonizes inflammatory cell death, and promotes epithelial infection. Cell Host Microbe 13, 570-583 (2013)
-
(2013)
Cell Host Microbe
, vol.13
, pp. 570-583
-
-
Kobayashi, T.1
-
21
-
-
84942892037
-
Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death
-
Shi, J., et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660-665 (2015)
-
(2015)
Nature
, vol.526
, pp. 660-665
-
-
Shi, J.1
-
22
-
-
84942856523
-
Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling
-
Kayagaki, N., et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666-671 (2015)
-
(2015)
Nature
, vol.526
, pp. 666-671
-
-
Kayagaki, N.1
-
23
-
-
84949091051
-
Gasdermin D is an executor of pyroptosis and required for interleukin-1 secretion
-
He, W.-T., et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1? secretion. Cell Res. 25, 1285-1298 (2015)
-
(2015)
Cell Res
, vol.25
, pp. 1285-1298
-
-
He, W.-T.1
-
24
-
-
77951805919
-
Inflammatory stimuli regulate caspase substrate profiles
-
Agard, N. J., Maltby, D., Wells, J. A. Inflammatory stimuli regulate caspase substrate profiles. Mol. Cell Proteom. 9, 880-893 (2010)
-
(2010)
Mol. Cell Proteom
, vol.9
, pp. 880-893
-
-
Agard, N.J.1
Maltby, D.2
Wells, J.A.3
-
25
-
-
84892030409
-
Gasdermin superfamily: A novel gene family functioning in epithelial cells
-
(eds Carrasco, J., Mota, M.
-
Saeki, N., Sasaki, H. Gasdermin superfamily: A novel gene family functioning in epithelial cells in Endothelium and Epithelium (eds Carrasco, J., Mota, M. ) 193-211 (2012)
-
(2012)
Endothelium and Epithelium
, pp. 193-211
-
-
Saeki, N.1
Sasaki, H.2
-
26
-
-
84978419608
-
Pore-forming activity and structural autoinhibition of the gasdermin family
-
Ding, J., et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111-116 (2016)
-
(2016)
Nature
, vol.535
, pp. 111-116
-
-
Ding, J.1
-
27
-
-
84978128481
-
GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes
-
Aglietti, R. A., et al. GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc. Natl Acad. Sci. USA 113, 7858-7863 (2016)
-
(2016)
Proc. Natl Acad. Sci. USA
, vol.113
, pp. 7858-7863
-
-
Aglietti, R.A.1
-
28
-
-
84978374487
-
Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores
-
Liu, X., et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153-158 (2016)
-
(2016)
Nature
, vol.535
, pp. 153-158
-
-
Liu, X.1
-
29
-
-
84982102736
-
GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death
-
Sborgi, L., et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J. 35, 1766-1778 (2016)
-
(2016)
EMBO J
, vol.35
, pp. 1766-1778
-
-
Sborgi, L.1
-
30
-
-
55949107533
-
Physiology of cell volume regulation in vertebrates
-
Hoffmann, E. K., Lambert, I. H., Pedersen, S. F. Physiology of cell volume regulation in vertebrates. Physiol. Rev. 89, 193-277 (2009)
-
(2009)
Physiol. Rev
, vol.89
, pp. 193-277
-
-
Hoffmann, E.K.1
Lambert, I.H.2
Pedersen, S.F.3
-
31
-
-
20344402550
-
An emergency response team for membrane repair
-
McNeil, P. L., Kirchhausen, T. An emergency response team for membrane repair. Nat. Rev. Mol. Cell Biol. 6, 499-505 (2005)
-
(2005)
Nat. Rev. Mol. Cell Biol
, vol.6
, pp. 499-505
-
-
McNeil, P.L.1
Kirchhausen, T.2
-
32
-
-
84984822442
-
Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis
-
Chen, X., et al. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res. 26, 1007-1020 (2016)
-
(2016)
Cell Res
, vol.26
, pp. 1007-1020
-
-
Chen, X.1
-
33
-
-
80052687210
-
Coordinated host responses during pyroptosis: Caspase-1-dependent lysosome exocytosis and inflammatory cytokine maturation
-
Bergsbaken, T., Fink, S. L., Hartigh, den, A. B., Loomis, W. P., Cookson, B. T. Coordinated host responses during pyroptosis: caspase-1-dependent lysosome exocytosis and inflammatory cytokine maturation. J. Immunol. 187, 2748-2754 (2011)
-
(2011)
J. Immunol
, vol.187
, pp. 2748-2754
-
-
Bergsbaken, T.1
Fink, S.L.2
Hartigh Den, A.B.3
Loomis, W.P.4
Cookson, B.T.5
-
34
-
-
84867063450
-
Rapid induction of inflammatory lipid mediators by the inflammasome in vivo
-
Moltke, Von, J., et al. Rapid induction of inflammatory lipid mediators by the inflammasome in vivo. Nature 490, 107-111 (2012)
-
(2012)
Nature
, vol.490
, pp. 107-111
-
-
Von Moltke, J.1
-
35
-
-
84995483254
-
IL-1? IL-18, and eicosanoids promote neutrophil recruitment to pore-induced intracellular traps following pyroptosis
-
Jorgensen, I., Lopez, J. P., Laufer, S. A., Miao, E. A. IL-1?, IL-18, and eicosanoids promote neutrophil recruitment to pore-induced intracellular traps following pyroptosis. Eur. J. Immunol. 46, 2761-2766 (2016)
-
(2016)
Eur. J. Immunol
, vol.46
, pp. 2761-2766
-
-
Jorgensen, I.1
Lopez, J.P.2
Laufer, S.A.3
Miao, E.A.4
-
36
-
-
77649241461
-
Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome
-
Miao, E. A., et al. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc. Natl Acad. Sci. USA 107, 3076-3080 (2010)
-
(2010)
Proc. Natl Acad. Sci. USA
, vol.107
, pp. 3076-3080
-
-
Miao, E.A.1
-
37
-
-
79961065571
-
Listeria monocytogenes engineered to activate the Nlrc4 inflammasome are severely attenuated and are poor inducers of protective immunity
-
Sauer, J.-D., et al. Listeria monocytogenes engineered to activate the Nlrc4 inflammasome are severely attenuated and are poor inducers of protective immunity. Proc. Natl Acad. Sci. USA 108, 12419-12424 (2011)
-
(2011)
Proc. Natl Acad. Sci. USA
, vol.108
, pp. 12419-12424
-
-
Sauer, J.-D.1
-
38
-
-
79959756849
-
Generation of a Listeria vaccine strain by enhanced caspase-1 activation
-
Warren, S. E., et al. Generation of a Listeria vaccine strain by enhanced caspase-1 activation. Eur. J. Immunol. 41, 1934-1940 (2011)
-
(2011)
Eur. J. Immunol
, vol.41
, pp. 1934-1940
-
-
Warren, S.E.1
-
39
-
-
84947416929
-
Inflammasomes coordinate pyroptosis and natural killer cell cytotoxicity to clear infection by a ubiquitous environmental bacterium
-
Maltez, V. I., et al. Inflammasomes coordinate pyroptosis and natural killer cell cytotoxicity to clear infection by a ubiquitous environmental bacterium. Immunity 43, 987-997 (2015)
-
(2015)
Immunity
, vol.43
, pp. 987-997
-
-
Maltez, V.I.1
-
40
-
-
84988813074
-
Pyroptosis triggers pore-induced intracellular traps (PITs) that capture bacteria and lead to their clearance by efferocytosis
-
Jorgensen, I., Zhang, Y., Krantz, B. A., Miao, E. A. Pyroptosis triggers pore-induced intracellular traps (PITs) that capture bacteria and lead to their clearance by efferocytosis. J. Exp. Med. 213, 2113-2128 (2016)
-
(2016)
J. Exp. Med
, vol.213
, pp. 2113-2128
-
-
Jorgensen, I.1
Zhang, Y.2
Krantz, B.A.3
Miao, E.A.4
-
41
-
-
26844452231
-
Innate immunity against Francisella tularensis is dependent on the ASC/caspase-1 axis
-
Mariathasan, S., Weiss, D. S., Dixit, V. M., Monack, D. M. Innate immunity against Francisella tularensis is dependent on the ASC/caspase-1 axis. J. Exp. Med. 202, 1043-1049 (2005)
-
(2005)
J. Exp. Med
, vol.202
, pp. 1043-1049
-
-
Mariathasan, S.1
Weiss, D.S.2
Dixit, V.M.3
Monack, D.M.4
-
42
-
-
84855272667
-
Inflammasome-dependent pyroptosis and IL-18 protect against Burkholderia pseudomallei lung infection while IL-1 is deleterious
-
Ceballos-Olvera, I., Sahoo, M., Miller, M. A., Del Barrio, L., Re, F. Inflammasome-dependent pyroptosis and IL-18 protect against Burkholderia pseudomallei lung infection while IL-1? is deleterious. PLoS Pathog. 7, e1002452 (2011)
-
(2011)
PLoS Pathog
, vol.7
, pp. e1002452
-
-
Ceballos-Olvera, I.1
Sahoo, M.2
Miller, M.A.3
Del Barrio, L.4
Re, F.5
-
43
-
-
84881542521
-
Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection
-
Aachoui, Y., Sagulenko, V., Miao, E. A., Stacey, K. J. Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection. Curr. Opin. Microbiol. 16, 319-326 (2013)
-
(2013)
Curr. Opin. Microbiol
, vol.16
, pp. 319-326
-
-
Aachoui, Y.1
Sagulenko, V.2
Miao, E.A.3
Stacey, K.J.4
-
44
-
-
84957618366
-
Reassessing the evolutionary importance of inflammasomes
-
Maltez, V. I., Miao, E. A. Reassessing the evolutionary importance of inflammasomes. J. Immunol. 196, 956-962 (2016)
-
(2016)
J. Immunol.
, vol.196
, pp. 956-962
-
-
Maltez, V.I.1
Miao, E.A.2
-
45
-
-
84908024529
-
Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa
-
Sellin, M. E., et al. Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa. Cell Host Microbe 16, 237-248 (2014)
-
(2014)
Cell Host Microbe
, vol.16
, pp. 237-248
-
-
Sellin, M.E.1
-
46
-
-
84911992879
-
Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens
-
Knodler, L. A., et al. Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens. Cell Host Microbe 16, 249-256 (2014)
-
(2014)
Cell Host Microbe
, vol.16
, pp. 249-256
-
-
Knodler, L.A.1
-
47
-
-
77951269392
-
The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses
-
Rathinam, V. A. K., et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat. Immunol. 11, 395-402 (2010)
-
(2010)
Nat. Immunol
, vol.11
, pp. 395-402
-
-
Rathinam, V.A.K.1
-
48
-
-
79956061094
-
IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection
-
Kerur, N., et al. IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection. Cell Host Microbe 9, 363-375 (2011)
-
(2011)
Cell Host Microbe
, vol.9
, pp. 363-375
-
-
Kerur, N.1
-
49
-
-
84892739389
-
Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection
-
Doitsh, G., et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 505, 509-514 (2014)
-
(2014)
Nature
, vol.505
, pp. 509-514
-
-
Doitsh, G.1
-
50
-
-
84892946076
-
IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV
-
Monroe, K. M., et al. IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV. Science 343, 428-432 (2014)
-
(2014)
Science
, vol.343
, pp. 428-432
-
-
Monroe, K.M.1
-
51
-
-
84888002403
-
From the cover: IFI16 senses DNA forms of the lentiviral replication cycle and controls HIV-1 replication
-
Jakobsen, M. R., et al. From the cover: IFI16 senses DNA forms of the lentiviral replication cycle and controls HIV-1 replication. Proc. Natl Acad. Sci. USA 110, E4571-E4580 (2013)
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. E4571-E4580
-
-
Jakobsen, M.R.1
-
52
-
-
84858420051
-
DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA
-
Upton, J. W., Kaiser, W. J., Mocarski, E. S. DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 11, 290-297 (2012)
-
(2012)
Cell Host Microbe
, vol.11
, pp. 290-297
-
-
Upton, J.W.1
Kaiser, W.J.2
Mocarski, E.S.3
-
53
-
-
85022040336
-
ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways
-
Kuriakose, T., et al. ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Sci. Immunol. 1, aag2045 (2016)
-
(2016)
Sci. Immunol
, vol.1
, pp. aag2045
-
-
Kuriakose, T.1
-
54
-
-
84994731750
-
DAI senses influenza A virus genomic RNA and activates RIPK3-dependent cell death
-
Thapa, R. J., et al. DAI senses influenza A virus genomic RNA and activates RIPK3-dependent cell death. Cell Host Microbe 20, 674-681 (2016)
-
(2016)
Cell Host Microbe
, vol.20
, pp. 674-681
-
-
Thapa, R.J.1
-
55
-
-
67650812332
-
RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis
-
Zhang, D.-W., et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332-336 (2009)
-
(2009)
Science
, vol.325
, pp. 332-336
-
-
Zhang, D.-W.1
-
56
-
-
66449133280
-
Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation
-
Cho, Y. S., et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112-1123 (2009)
-
(2009)
Cell
, vol.137
, pp. 1112-1123
-
-
Cho, Y.S.1
-
57
-
-
66749183275
-
Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-?
-
He, S., et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-?. Cell 137, 1100-1111 (2009)
-
(2009)
Cell
, vol.137
, pp. 1100-1111
-
-
He, S.1
-
58
-
-
84862907788
-
Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase
-
Sun, L., et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213-227 (2012)
-
(2012)
Cell
, vol.148
, pp. 213-227
-
-
Sun, L.1
-
59
-
-
84884308522
-
The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism
-
Murphy, J. M., et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39, 443-453 (2013)
-
(2013)
Immunity
, vol.39
, pp. 443-453
-
-
Murphy, J.M.1
-
60
-
-
84901280344
-
MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates
-
Dondelinger, Y., et al. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep. 7, 971-981 (2014)
-
(2014)
Cell Rep
, vol.7
, pp. 971-981
-
-
Dondelinger, Y.1
-
61
-
-
84898027331
-
Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3
-
Wang, H., et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol. Cell 54, 133-146 (2014)
-
(2014)
Mol. Cell
, vol.54
, pp. 133-146
-
-
Wang, H.1
-
62
-
-
84891343566
-
Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis
-
Cai, Z., et al. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat. Cell Biol. 16, 55-65 (2014)
-
(2014)
Nat. Cell Biol
, vol.16
, pp. 55-65
-
-
Cai, Z.1
-
63
-
-
84943329766
-
Necroptosis signalling is tuned by phosphorylation of MLKL residues outside the pseudokinase domain activation loop
-
Tanzer, M. C., et al. Necroptosis signalling is tuned by phosphorylation of MLKL residues outside the pseudokinase domain activation loop. Biochem. J. 471, 255-265 (2015)
-
(2015)
Biochem. J
, vol.471
, pp. 255-265
-
-
Tanzer, M.C.1
-
64
-
-
84978648026
-
RIPK3 activates parallel pathways of MLKL-driven necroptosis and FADD-mediated apoptosis to protect against influenza A virus
-
Nogusa, S., et al. RIPK3 activates parallel pathways of MLKL-driven necroptosis and FADD-mediated apoptosis to protect against influenza A virus. Cell Host Microbe 20, 13-24 (2016)
-
(2016)
Cell Host Microbe
, vol.20
, pp. 13-24
-
-
Nogusa, S.1
-
65
-
-
84968538437
-
RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury
-
Newton, K., et al. RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. Cell Death Differ. 23, 1565-1576 (2016)
-
(2016)
Cell Death Differ
, vol.23
, pp. 1565-1576
-
-
Newton, K.1
-
66
-
-
84922925361
-
Herpes simplex virus suppresses necroptosis in human cells
-
Guo, H., et al. Herpes simplex virus suppresses necroptosis in human cells. Cell Host Microbe 17, 243-251 (2015)
-
(2015)
Cell Host Microbe
, vol.17
, pp. 243-251
-
-
Guo, H.1
-
67
-
-
84954115107
-
Herpes simplex virus 1 (HSV-1) and HSV-2 mediate species-specific modulations of programmed necrosis through the viral ribonucleotide reductase large subunit R1
-
Yu, X., et al. Herpes simplex virus 1 (HSV-1) and HSV-2 mediate species-specific modulations of programmed necrosis through the viral ribonucleotide reductase large subunit R1. J. Virol. 90, 1088-1095 (2016)
-
(2016)
J. Virol
, vol.90
, pp. 1088-1095
-
-
Yu, X.1
-
68
-
-
84922895437
-
RIP1/RIP3 binding to HSV-1 ICP6 initiates necroptosis to restrict virus propagation in mice
-
Huang, Z., et al. RIP1/RIP3 binding to HSV-1 ICP6 initiates necroptosis to restrict virus propagation in mice. Cell Host Microbe 17, 229-242 (2015)
-
(2015)
Cell Host Microbe
, vol.17
, pp. 229-242
-
-
Huang, Z.1
-
69
-
-
84908544668
-
Direct activation of RIP3/MLKL-dependent necrosis by herpes simplex virus 1 (HSV-1) protein ICP6 triggers host antiviral defense
-
Wang, X., et al. Direct activation of RIP3/MLKL-dependent necrosis by herpes simplex virus 1 (HSV-1) protein ICP6 triggers host antiviral defense. Proc. Natl Acad. Sci. USA 111, 15438-15443 (2014)
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. 15438-15443
-
-
Wang, X.1
-
70
-
-
84892608467
-
Cellular inhibitor of apoptosis protein cIAP2 protects against pulmonary tissue necrosis during influenza virus infection to promote host survival
-
Rodrigue-Gervais, I. G., et al. Cellular inhibitor of apoptosis protein cIAP2 protects against pulmonary tissue necrosis during influenza virus infection to promote host survival. Cell Host Microbe 15, 23-35 (2014)
-
(2014)
Cell Host Microbe
, vol.15
, pp. 23-35
-
-
Rodrigue-Gervais, I.G.1
-
71
-
-
80053087284
-
Complementary roles of Fas-associated death domain (FADD) and receptor interacting protein kinase-3 (RIPK3) in T-cell homeostasis and antiviral immunity
-
Lu, J. V., et al. Complementary roles of Fas-associated death domain (FADD) and receptor interacting protein kinase-3 (RIPK3) in T-cell homeostasis and antiviral immunity. Proc. Natl Acad. Sci. USA 108, 15312-15317 (2011)
-
(2011)
Proc. Natl Acad. Sci. USA
, vol.108
, pp. 15312-15317
-
-
Lu, J.V.1
-
72
-
-
84866544929
-
Type i interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium
-
Robinson, N., et al. Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium. Nat. Immunol. 13, 954-962 (2012)
-
(2012)
Nat. Immunol.
, vol.13
, pp. 954-962
-
-
Robinson, N.1
-
73
-
-
77149132187
-
Induction of IFN- enables Listeria monocytogenes to suppress macrophage activation by IFN
-
Rayamajhi, M., Humann, J., Penheiter, K., Andreasen, K., Lenz, L. L. Induction of IFN- enables Listeria monocytogenes to suppress macrophage activation by IFN-. J. Exp. Med. 207, 327-337 (2010)
-
(2010)
J. Exp. Med
, vol.207
, pp. 327-337
-
-
Rayamajhi, M.1
Humann, J.2
Penheiter, K.3
Andreasen, K.4
Lenz, L.L.5
-
74
-
-
84901020402
-
Caspase-8 mediates caspase-1 processing and innate immune defense in response to bacterial blockade of NF-?B and MAPK signaling
-
Philip, N. H., et al. Caspase-8 mediates caspase-1 processing and innate immune defense in response to bacterial blockade of NF-?B and MAPK signaling. Proc. Natl Acad. Sci. USA 111, 7385-7390 (2014)
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. 7385-7390
-
-
Philip, N.H.1
-
75
-
-
84894271641
-
FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes
-
Gurung, P., et al. FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J. Immunol. 192, 1835-1846 (2014)
-
(2014)
J. Immunol
, vol.192
, pp. 1835-1846
-
-
Gurung, P.1
-
76
-
-
84901045151
-
Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death
-
Weng, D., et al. Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death. Proc. Natl Acad. Sci. USA 111, 7391-7396 (2014)
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. 7391-7396
-
-
Weng, D.1
-
77
-
-
84981703921
-
Necroptosis promotes Staphylococcus aureus clearance by inhibiting excessive inflammatory signaling
-
Kitur, K., et al. Necroptosis promotes Staphylococcus aureus clearance by inhibiting excessive inflammatory signaling. Cell Rep. 16, 2219-2230 (2016)
-
(2016)
Cell Rep
, vol.16
, pp. 2219-2230
-
-
Kitur, K.1
-
78
-
-
84929494277
-
Toxin-induced necroptosis is a major mechanism of Staphylococcus aureus lung damage
-
Kitur, K., et al. Toxin-induced necroptosis is a major mechanism of Staphylococcus aureus lung damage. PLoS Pathog. 11, e1004820 (2015)
-
(2015)
PLoS Pathog
, vol.11
, pp. e1004820
-
-
Kitur, K.1
-
79
-
-
84953310309
-
Pore-forming toxins induce macrophage necroptosis during acute bacterial pneumonia
-
Gonzlez-Juarbe, N., et al. Pore-forming toxins induce macrophage necroptosis during acute bacterial pneumonia. PLoS Pathog. 11, e1005337 (2015)
-
(2015)
PLoS Pathog
, vol.11
, pp. e1005337
-
-
Gonzlez-Juarbe, N.1
-
80
-
-
84896690342
-
Apoptotic cell clearance: Basic biology and therapeutic potential
-
Poon, I. K. H., Lucas, C. D., Rossi, A. G., Ravichandran, K. S. Apoptotic cell clearance: basic biology and therapeutic potential. Nat. Rev. Immunol. 14, 166-180 (2014)
-
(2014)
Nat. Rev. Immunol
, vol.14
, pp. 166-180
-
-
Poon, I.K.H.1
Lucas, C.D.2
Rossi, A.G.3
Ravichandran, K.S.4
-
81
-
-
77958184901
-
Manipulation of host cell death pathways during microbial infections
-
Lamkanfi, M., Dixit, V. M. Manipulation of host cell death pathways during microbial infections. Cell Host Microbe 8, 44-54 (2010)
-
(2010)
Cell Host Microbe
, vol.8
, pp. 44-54
-
-
Lamkanfi, M.1
Dixit, V.M.2
-
82
-
-
84964607369
-
The commonalities in bacterial effector inhibition of apoptosis
-
Robinson, K. S., Aw, R. The commonalities in bacterial effector inhibition of apoptosis. Trends Microbiol. 24, 665-680 (2016)
-
(2016)
Trends Microbiol
, vol.24
, pp. 665-680
-
-
Robinson, K.S.1
Aw, R.2
-
83
-
-
84979058863
-
Discoveries and controversies in BCL-2 protein-mediated apoptosis
-
Zheng, J. H., Viacava Follis, A., Kriwacki, R. W., Moldoveanu, T. Discoveries and controversies in BCL-2 protein-mediated apoptosis. FEBS J. 283, 2690-2700 (2016)
-
(2016)
FEBS J
, vol.283
, pp. 2690-2700
-
-
Zheng, J.H.1
Viacava Follis, A.2
Kriwacki, R.W.3
Moldoveanu, T.4
-
84
-
-
70350025502
-
Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis
-
Dewson, G., Kluck, R. M. Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis. J. Cell. Sci. 122, 2801-2808 (2009)
-
(2009)
J. Cell. Sci
, vol.122
, pp. 2801-2808
-
-
Dewson, G.1
Kluck, R.M.2
-
85
-
-
84919884654
-
Apoptotic caspases suppress mtDNA-induced STING-mediated type i IFN production
-
White, M. J., et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 159, 1549-1562 (2014)
-
(2014)
Cell
, vol.159
, pp. 1549-1562
-
-
White, M.J.1
-
86
-
-
84919898250
-
Apoptotic caspases prevent the induction of type i interferons by mitochondrial DNA
-
Rongvaux, A., et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 159, 1563-1577 (2014)
-
(2014)
Cell
, vol.159
, pp. 1563-1577
-
-
Rongvaux, A.1
-
87
-
-
84884151651
-
Masters marionettes and modulators: Intersection of pathogen virulence factors and mammalian death receptor signaling
-
Silke, J., Hartland, E. L. Masters, marionettes and modulators: intersection of pathogen virulence factors and mammalian death receptor signaling. Curr. Opin. Immunol. 25, 436-440 (2013)
-
(2013)
Curr. Opin. Immunol
, vol.25
, pp. 436-440
-
-
Silke, J.1
Hartland, E.L.2
-
88
-
-
79952811804
-
RIP3 mediates the embryonic lethality of caspase-8-deficient mice
-
Kaiser, W. J., et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471, 368-372 (2011)
-
(2011)
Nature
, vol.471
, pp. 368-372
-
-
Kaiser, W.J.1
-
89
-
-
79952810024
-
Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis
-
Oberst, A., et al. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471, 363-367 (2011)
-
(2011)
Nature
, vol.471
, pp. 363-367
-
-
Oberst, A.1
-
90
-
-
84897088275
-
Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis
-
Newton, K., et al. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science 343, 1357-1360 (2014)
-
(2014)
Science
, vol.343
, pp. 1357-1360
-
-
Newton, K.1
-
91
-
-
84912106351
-
RIP3 induces apoptosis independent of pronecrotic kinase activity
-
Mandal, P., et al. RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol. Cell 56, 481-495 (2014)
-
(2014)
Mol. Cell
, vol.56
, pp. 481-495
-
-
Mandal, P.1
-
92
-
-
84901422731
-
RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis
-
Rickard, J. A., et al. RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell 157, 1175-1188 (2014)
-
(2014)
Cell
, vol.157
, pp. 1175-1188
-
-
Rickard, J.A.1
-
93
-
-
84901386193
-
RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3
-
Dillon, C. P., et al. RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell 157, 1189-1202 (2014)
-
(2014)
Cell
, vol.157
, pp. 1189-1202
-
-
Dillon, C.P.1
-
94
-
-
84901649808
-
RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition
-
Kaiser, W. J., et al. RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition. Proc. Natl Acad. Sci. USA 111, 7753-7758 (2014)
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. 7753-7758
-
-
Kaiser, W.J.1
-
95
-
-
85000542319
-
RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation
-
Lin, J., et al. RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation. Nature 540, 124-128 (2016)
-
(2016)
Nature
, vol.540
, pp. 124-128
-
-
Lin, J.1
-
96
-
-
85000659718
-
RIPK1 inhibits ZBP1-driven necroptosis during development
-
Newton, K., et al. RIPK1 inhibits ZBP1-driven necroptosis during development. Nature 540, 129-133 (2016)
-
(2016)
Nature
, vol.540
, pp. 129-133
-
-
Newton, K.1
-
97
-
-
27744561393
-
Rip1 mediates the Trif-dependent toll-like receptor 3-and 4-induced NF-?B activation but does not contribute to interferon regulatory factor 3 activation
-
Cusson-Hermance, N., Khurana, S., Lee, T. H., Fitzgerald, K. A., Kelliher, M. A. Rip1 mediates the Trif-dependent toll-like receptor 3-and 4-induced NF-?B activation but does not contribute to interferon regulatory factor 3 activation. J. Biol. Chem. 280, 36560-36566 (2005)
-
(2005)
J. Biol. Chem
, vol.280
, pp. 36560-36566
-
-
Cusson-Hermance, N.1
Khurana, S.2
Lee, T.H.3
Fitzgerald, K.A.4
Kelliher, M.A.5
-
98
-
-
2442642691
-
RIP1 is an essential mediator of Toll-like receptor 3-induced NF-?B activation
-
Meylan, E., et al. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-?B activation. Nat. Immunol. 5, 503-507 (2004)
-
(2004)
Nat. Immunol
, vol.5
, pp. 503-507
-
-
Meylan, E.1
-
99
-
-
84908128377
-
The necroptosis adaptor RIPK3 promotes injury-induced cytokine expression and tissue repair
-
Moriwaki, K., et al. The necroptosis adaptor RIPK3 promotes injury-induced cytokine expression and tissue repair. Immunity 41, 567-578 (2014)
-
(2014)
Immunity
, vol.41
, pp. 567-578
-
-
Moriwaki, K.1
-
100
-
-
84932601454
-
Caspase-8 scaffolding function and MLKL regulate NLRP3 inflammasome activation downstream of TLR3
-
Kang, S., et al. Caspase-8 scaffolding function and MLKL regulate NLRP3 inflammasome activation downstream of TLR3. Nat. Commun. 6, 7515 (2015)
-
(2015)
Nat. Commun
, vol.6
, pp. 7515
-
-
Kang, S.1
-
101
-
-
1542287347
-
Neutrophil extracellular traps kill bacteria
-
Brinkmann, V., et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532-1535 (2004)
-
(2004)
Science
, vol.303
, pp. 1532-1535
-
-
Brinkmann, V.1
-
102
-
-
84908135568
-
Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens
-
Branzk, N., et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat. Immunol. 15, 1017-1025 (2014)
-
(2014)
Nat. Immunol
, vol.15
, pp. 1017-1025
-
-
Branzk, N.1
-
103
-
-
34147188469
-
Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood
-
Clark, S. R., et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 13, 463-469 (2007)
-
(2007)
Nat. Med
, vol.13
, pp. 463-469
-
-
Clark, S.R.1
-
104
-
-
84866177387
-
Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus
-
Parker, H., Dragunow, M., Hampton, M. B., Kettle, A. J., Winterbourn, C. C. Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. J. Leukoc. Biol. 92, 841-849 (2012)
-
(2012)
J. Leukoc. Biol
, vol.92
, pp. 841-849
-
-
Parker, H.1
Dragunow, M.2
Hampton, M.B.3
Kettle, A.J.4
Winterbourn, C.C.5
-
105
-
-
78049496216
-
Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps
-
Papayannopoulos, V., Metzler, K. D., Hakkim, A., Zychlinsky, A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell Biol. 191, 677-691 (2010)
-
(2010)
J. Cell Biol
, vol.191
, pp. 677-691
-
-
Papayannopoulos, V.1
Metzler, K.D.2
Hakkim, A.3
Zychlinsky, A.4
-
106
-
-
84868632379
-
Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo
-
Yipp, B. G., et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat. Med. 18, 1386-1393 (2012)
-
(2012)
Nat. Med
, vol.18
, pp. 1386-1393
-
-
Yipp, B.G.1
-
107
-
-
84887439544
-
Salmonella infection induces recruitment of caspase-8 to the inflammasome to modulate IL-1 production
-
Man, S. M., et al. Salmonella infection induces recruitment of caspase-8 to the inflammasome to modulate IL-1? production. J. Immunol. 191, 5239-5246 (2013)
-
(2013)
J. Immunol
, vol.191
, pp. 5239-5246
-
-
Man, S.M.1
-
108
-
-
84907033643
-
Caspase-8 modulates dectin-1 and complement receptor 3-driven IL-1 production in response to -glucans and the fungal pathogen Candida albicans
-
Ganesan, S., et al. Caspase-8 modulates dectin-1 and complement receptor 3-driven IL-1? production in response to ?-glucans and the fungal pathogen Candida albicans. J. Immunol. 193, 2519-2530 (2014)
-
(2014)
J. Immunol
, vol.193
, pp. 2519-2530
-
-
Ganesan, S.1
-
109
-
-
84906852294
-
Mitochondrial apoptosis is dispensable for NLRP3 inflammasome activation but non-apoptotic caspase-8 is required for inflammasome priming
-
Allam, R., et al. Mitochondrial apoptosis is dispensable for NLRP3 inflammasome activation but non-apoptotic caspase-8 is required for inflammasome priming. EMBO Rep. 15, 982-990 (2014)
-
(2014)
EMBO Rep
, vol.15
, pp. 982-990
-
-
Allam, R.1
-
110
-
-
84872764927
-
Caspase-8 blocks kinase RIPK3-mediated activation of the NLRP3 inflammasome
-
Kang, T.-B., Yang, S.-H., Toth, B., Kovalenko, A., Wallach, D. Caspase-8 blocks kinase RIPK3-mediated activation of the NLRP3 inflammasome. Immunity 38, 27-40 (2012)
-
(2012)
Immunity
, vol.38
, pp. 27-40
-
-
Kang, T.-B.1
Yang, S.-H.2
Toth, B.3
Kovalenko, A.4
Wallach, D.5
-
111
-
-
84873834109
-
Deubiquitinases regulate the activity of caspase-1 and interleukin-1 secretion via assembly of the inflammasome
-
Lopez-Castejon, G., et al. Deubiquitinases regulate the activity of caspase-1 and interleukin-1? secretion via assembly of the inflammasome. J. Biol. Chem. 288, 2721-2733 (2013)
-
(2013)
J. Biol. Chem
, vol.288
, pp. 2721-2733
-
-
Lopez-Castejon, G.1
-
112
-
-
84867770402
-
Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation
-
Juliana, C., et al. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J. Biol. Chem. 287, 36617-36622 (2012)
-
(2012)
J. Biol. Chem
, vol.287
, pp. 36617-36622
-
-
Juliana, C.1
-
113
-
-
84872782298
-
Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity
-
Py, B. F., Kim, M.-S., Vakifahmetoglu-Norberg, H., Yuan, J. Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol. Cell 49, 331-338 (2013)
-
(2013)
Mol. Cell
, vol.49
, pp. 331-338
-
-
Py, B.F.1
Kim, M.-S.2
Vakifahmetoglu-Norberg, H.3
Yuan, J.4
-
114
-
-
84923674191
-
RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL
-
Lawlor, K. E., et al. RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat. Commun. 6, 6282 (2015)
-
(2015)
Nat. Commun
, vol.6
, pp. 6282
-
-
Lawlor, K.E.1
-
115
-
-
84896381627
-
Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation
-
Cai, X., et al. Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell 156, 1207-1222 (2014)
-
(2014)
Cell
, vol.156
, pp. 1207-1222
-
-
Cai, X.1
-
116
-
-
84896332642
-
Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes
-
Lu, A., et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156, 1193-1206 (2014)
-
(2014)
Cell
, vol.156
, pp. 1193-1206
-
-
Lu, A.1
-
117
-
-
84866087868
-
AIM2/ASC triggers caspase-8-dependent apoptosis in Francisella-infected caspase-1-deficient macrophages
-
Pierini, R., et al. AIM2/ASC triggers caspase-8-dependent apoptosis in Francisella-infected caspase-1-deficient macrophages. Cell Death Differ. 19, 1709-1721 (2012)
-
(2012)
Cell Death Differ
, vol.19
, pp. 1709-1721
-
-
Pierini, R.1
-
118
-
-
84882280029
-
AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC
-
Sagulenko, V., et al. AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC. Cell Death Differ. 20, 1149-1160 (2013)
-
(2013)
Cell Death Differ
, vol.20
, pp. 1149-1160
-
-
Sagulenko, V.1
-
119
-
-
84951814419
-
The inflammasome adaptor ASC induces procaspase-8 death effector domain filaments
-
Vajjhala, P. R., et al. The inflammasome adaptor ASC induces procaspase-8 death effector domain filaments. J. Biol. Chem. 290, 29217-29230 (2015)
-
(2015)
J. Biol. Chem
, vol.290
, pp. 29217-29230
-
-
Vajjhala, P.R.1
-
120
-
-
84871001488
-
The Yersinia virulence effector YopM binds caspase-1 to arrest inflammasome assembly and processing
-
LaRock, C. N., Cookson, B. T. The Yersinia virulence effector YopM binds caspase-1 to arrest inflammasome assembly and processing. Cell Host Microbe 12, 799-805 (2012)
-
(2012)
Cell Host Microbe
, vol.12
, pp. 799-805
-
-
LaRock, C.N.1
Cookson, B.T.2
-
121
-
-
84885136821
-
ASC controls IFN- levels in an IL-18-dependent manner in caspase-1-deficient mice infected with Francisella novicida
-
Pierini, R., et al. ASC controls IFN-? levels in an IL-18-dependent manner in caspase-1-deficient mice infected with Francisella novicida. J. Immunol. 191, 3847-3857 (2013)
-
(2013)
J. Immunol
, vol.191
, pp. 3847-3857
-
-
Pierini, R.1
-
122
-
-
51049100571
-
Stimulation of Toll-like receptor 3 and 4 induces interleukin-1 maturation by caspase-8
-
Maelfait, J., et al. Stimulation of Toll-like receptor 3 and 4 induces interleukin-1? maturation by caspase-8. J. Exp. Med. 205, 1967-1973 (2008)
-
(2008)
J. Exp. Med
, vol.205
, pp. 1967-1973
-
-
Maelfait, J.1
-
123
-
-
84871125002
-
Cutting edge: FAS (CD95) mediates noncanonical IL-1? and IL-18 maturation via caspase-8 in an RIP3-independent manner
-
Bossaller, L., et al. Cutting edge: FAS (CD95) mediates noncanonical IL-1? and IL-18 maturation via caspase-8 in an RIP3-independent manner. J. Immunol. 189, 5508-5512 (2012)
-
(2012)
J. Immunol
, vol.189
, pp. 5508-5512
-
-
Bossaller, L.1
-
124
-
-
84939608936
-
Caspase-8 as an effector andregulator of NLRP3 inflammasome signaling
-
Antonopoulos, C., et al. Caspase-8 as an effector andregulator of NLRP3 inflammasome signaling. J. Biol. Chem. 290, 20167-20184 (2015)
-
(2015)
J. Biol. Chem
, vol.290
, pp. 20167-20184
-
-
Antonopoulos, C.1
-
125
-
-
84857404572
-
Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation
-
Vince, J. E., et al. Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation. Immunity 36, 215-227 (2012)
-
(2012)
Immunity
, vol.36
, pp. 215-227
-
-
Vince, J.E.1
-
126
-
-
0028608085
-
CD8+ T cell-mediated protection against an intracellular bacterium by perforin-dependent cytotoxicity
-
K?gi, D., Ledermann, B., B?rki, K., Hengartner, H., Zinkernagel, R. M. CD8+ T cell-mediated protection against an intracellular bacterium by perforin-dependent cytotoxicity. Eur. J. Immunol. 24, 3068-3072 (1994)
-
(1994)
Eur. J. Immunol
, vol.24
, pp. 3068-3072
-
-
Kgi, D.1
Ledermann, B.2
Brki, K.3
Hengartner, H.4
Zinkernagel, R.M.5
-
127
-
-
0031013561
-
Perforin, a cytotoxic molecule which mediates cell necrosis, is not required for the early control of mycobacterial infection in mice
-
Laochumroonvorapong, P., et al. Perforin, a cytotoxic molecule which mediates cell necrosis, is not required for the early control of mycobacterial infection in mice. Infect. Immun. 65, 127-132 (1997)
-
(1997)
Infect. Immun
, vol.65
, pp. 127-132
-
-
Laochumroonvorapong, P.1
-
128
-
-
84978796164
-
An NK cell perforin response elicited via IL-18 controls mucosal inflammation kinetics during Salmonella gut infection
-
M?ller, A. A., et al. An NK cell perforin response elicited via IL-18 controls mucosal inflammation kinetics during Salmonella gut infection. PLoS Pathog. 12, e1005723-e1005730 (2016)
-
(2016)
PLoS Pathog
, vol.12
, pp. e1005723-e1005730
-
-
Mller, A.A.1
-
129
-
-
84961250343
-
Lack of the programmed death-1 receptor renders host susceptible to enteric microbial infection through impairing the production of the mucosal natural killer cell effector molecules
-
Solaymani-Mohammadi, S., et al. Lack of the programmed death-1 receptor renders host susceptible to enteric microbial infection through impairing the production of the mucosal natural killer cell effector molecules. J. Leukoc. Biol. 99, 475-482 (2016)
-
(2016)
J. Leukoc. Biol
, vol.99
, pp. 475-482
-
-
Solaymani-Mohammadi, S.1
-
130
-
-
84902108865
-
Cytotoxic cells kill intracellular bacteria through granulysin-mediated delivery of granzymes
-
Walch, M., et al. Cytotoxic cells kill intracellular bacteria through granulysin-mediated delivery of granzymes. Cell 157, 1309-1323 (2014)
-
(2014)
Cell
, vol.157
, pp. 1309-1323
-
-
Walch, M.1
-
131
-
-
84957441649
-
Killer lymphocytes use granulysin, perforin and granzymes to kill intracellular parasites
-
Dotiwala, F., et al. Killer lymphocytes use granulysin, perforin and granzymes to kill intracellular parasites. Nat. Med. 22, 210-216 (2016)
-
(2016)
Nat. Med
, vol.22
, pp. 210-216
-
-
Dotiwala, F.1
-
132
-
-
0031133280
-
Programmed cell death of Mycobacterium avium serovar 4-infected human macrophages prevents the mycobacteria from spreading and induces mycobacterial growth inhibition by freshly added, uninfected macrophages
-
Fratazzi, C., Arbeit, R. D., Carini, C., Remold, H. G. Programmed cell death of Mycobacterium avium serovar 4-infected human macrophages prevents the mycobacteria from spreading and induces mycobacterial growth inhibition by freshly added, uninfected macrophages. J. Immunol. 158, 4320-4327 (1997)
-
(1997)
J. Immunol
, vol.158
, pp. 4320-4327
-
-
Fratazzi, C.1
Arbeit, R.D.2
Carini, C.3
Remold, H.G.4
-
133
-
-
77955661920
-
Evasion of innate immunity by Mycobacterium tuberculosis: Is death an exit strategy?
-
Behar, S. M., Divangahi, M., Remold, H. G. Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy? Nat. Rev. Microbiol. 8, 668-674 (2010)
-
(2010)
Nat. Rev. Microbiol
, vol.8
, pp. 668-674
-
-
Behar, S.M.1
Divangahi, M.2
Remold, H.G.3
-
134
-
-
84866403046
-
Efferocytosis Is an Innate Antibacterial Mechanism
-
Martin, C. J., et al. Efferocytosis Is an Innate Antibacterial Mechanism. Cell Host Microbe 12, 289-300 (2012)
-
(2012)
Cell Host Microbe
, vol.12
, pp. 289-300
-
-
Martin, C.J.1
-
135
-
-
84866348007
-
Neutrophils exert protection in the early tuberculous granuloma by oxidative killing of mycobacteria phagocytosed from infected macrophages
-
Yang, C.-T., et al. Neutrophils exert protection in the early tuberculous granuloma by oxidative killing of mycobacteria phagocytosed from infected macrophages. Cell Host Microbe 12, 301-312 (2012)
-
(2012)
Cell Host Microbe
, vol.12
, pp. 301-312
-
-
Yang, C.-T.1
-
136
-
-
81355132255
-
Interactions between na?ve and infected macrophages reduce Mycobacterium tuberculosis viability
-
Hartman, M. L., Kornfeld, H. Interactions between na?ve and infected macrophages reduce Mycobacterium tuberculosis viability. PLoS ONE 6, e27972 (2011)
-
(2011)
PLoS ONE
, vol.6
, pp. e27972
-
-
Hartman, M.L.1
Kornfeld, H.2
-
137
-
-
84899912557
-
Listeria monocytogenes exploits efferocytosis to promote cell-to-cell spread
-
Czuczman, M. A., et al. Listeria monocytogenes exploits efferocytosis to promote cell-to-cell spread. Nature 509, 230-234 (2014)
-
(2014)
Nature
, vol.509
, pp. 230-234
-
-
Czuczman, M.A.1
-
138
-
-
0034054028
-
Virus clearance through apoptosis-dependent phagocytosis of influenza A virus-infected cells by macrophages
-
Fujimoto, I., Pan, J., Takizawa, T., Nakanishi, Y. Virus clearance through apoptosis-dependent phagocytosis of influenza A virus-infected cells by macrophages. J. Virol. 74, 3399-3403 (2000)
-
(2000)
J. Virol
, vol.74
, pp. 3399-3403
-
-
Fujimoto, I.1
Pan, J.2
Takizawa, T.3
Nakanishi, Y.4
-
140
-
-
32944463724
-
Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms
-
Urban, C. F., Reichard, U., Brinkmann, V., Zychlinsky, A. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell. Microbiol. 8, 668-676 (2006)
-
(2006)
Cell. Microbiol
, vol.8
, pp. 668-676
-
-
Urban, C.F.1
Reichard, U.2
Brinkmann, V.3
Zychlinsky, A.4
-
141
-
-
84856598960
-
Killing by neutrophil extracellular traps: Fact or folklore?
-
Menegazzi, R., Decleva, E., Dri, P. Killing by neutrophil extracellular traps: fact or folklore? Blood 119, 1214-1216 (2012)
-
(2012)
Blood
, vol.119
, pp. 1214-1216
-
-
Menegazzi, R.1
Decleva, E.2
Dri, P.3
-
142
-
-
84891505072
-
NETosis: How vital is it?
-
Yipp, B. G., Kubes, P. NETosis: how vital is it? Blood 122, 2784-2794 (2013)
-
(2013)
Blood
, vol.122
, pp. 2784-2794
-
-
Yipp, B.G.1
Kubes, P.2
-
143
-
-
84866386143
-
Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis
-
McDonald, B., Urrutia, R., Yipp, B. G., Jenne, C. N., Kubes, P. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe 12, 324-333 (2012)
-
(2012)
Cell Host Microbe
, vol.12
, pp. 324-333
-
-
McDonald, B.1
Urrutia, R.2
Yipp, B.G.3
Jenne, C.N.4
Kubes, P.5
-
144
-
-
62449323653
-
M1 protein allows Group A streptococcal survival in phagocyte extracellular traps through cathelicidin inhibition
-
Lauth, X., et al. M1 protein allows Group A streptococcal survival in phagocyte extracellular traps through cathelicidin inhibition. J. Innate Immun. 1, 202-214 (2009)
-
(2009)
J. Innate Immun
, vol.1
, pp. 202-214
-
-
Lauth, X.1
-
145
-
-
84987815185
-
Pondering neutrophil extracellular traps with healthy skepticism
-
Nauseef, W. M., Kubes, P. Pondering neutrophil extracellular traps with healthy skepticism. Cell. Microbiol. 18, 1349-1357 (2016)
-
(2016)
Cell. Microbiol
, vol.18
, pp. 1349-1357
-
-
Nauseef, W.M.1
Kubes, P.2
-
146
-
-
32944482526
-
An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps
-
Beiter, K., et al. An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps. Curr. Biol. 16, 401-407 (2006)
-
(2006)
Curr. Biol
, vol.16
, pp. 401-407
-
-
Beiter, K.1
-
147
-
-
84884679672
-
Vibrio cholerae evades neutrophil extracellular traps by the activity of two extracellular nucleases
-
Seper, A., et al. Vibrio cholerae evades neutrophil extracellular traps by the activity of two extracellular nucleases. PLoS Pathog. 9, e1003614 (2013)
-
(2013)
PLoS Pathog
, vol.9
, pp. e1003614
-
-
Seper, A.1
-
148
-
-
84982104146
-
Yersinia enterocolitica-mediated degradation of neutrophil extracellular traps (NETs
-
Mllerherm, H., et al. Yersinia enterocolitica-mediated degradation of neutrophil extracellular traps (NETs). FEMS Microbiology Letters 362, fnv192 (2015)
-
(2015)
FEMS Microbiology Letters
, vol.362
, pp. fnv192
-
-
Mllerherm, H.1
-
149
-
-
84936884538
-
A thermonuclease of Neisseria gonorrhoeae enhances bacterial escape from killing by neutrophil extracellular traps
-
Juneau, R. A., Stevens, J. S., Apicella, M. A., Criss, A. K. A thermonuclease of Neisseria gonorrhoeae enhances bacterial escape from killing by neutrophil extracellular traps. J. Infect. Dis. 212, 316-324 (2015)
-
(2015)
J. Infect. Dis
, vol.212
, pp. 316-324
-
-
Juneau, R.A.1
Stevens, J.S.2
Apicella, M.A.3
Criss, A.K.4
-
150
-
-
68049125271
-
Survival of bacterial biofilms within neutrophil extracellular traps promotes nontypeable Haemophilus influenzae persistence in the chinchilla model for otitis media
-
Hong, W., Juneau, R. A., Pang, B., Swords, W. E. Survival of bacterial biofilms within neutrophil extracellular traps promotes nontypeable Haemophilus influenzae persistence in the chinchilla model for otitis media. J. Innate Immun. 1, 215-224 (2009)
-
(2009)
J. Innate Immun
, vol.1
, pp. 215-224
-
-
Hong, W.1
Juneau, R.A.2
Pang, B.3
Swords, W.E.4
-
151
-
-
84903692703
-
Regulation of biofilm formation in Pseudomonas and Burkholderia species
-
Fazli, M., et al. Regulation of biofilm formation in Pseudomonas and Burkholderia species. Environ. Microbiol. 16, 1961-1981 (2014)
-
(2014)
Environ. Microbiol
, vol.16
, pp. 1961-1981
-
-
Fazli, M.1
-
152
-
-
65649114348
-
Streptococcus pneumoniae forms surface-attached communities in the middle ear of experimentally infected chinchillas
-
Reid, S. D., et al. Streptococcus pneumoniae forms surface-attached communities in the middle ear of experimentally infected chinchillas. J. Infect. Dis. 199, 786-794 (2009)
-
(2009)
J. Infect. Dis
, vol.199
, pp. 786-794
-
-
Reid, S.D.1
-
153
-
-
34047259058
-
Capsule and D-alanylated lipoteichoic acids protect Streptococcus pneumoniae against neutrophil extracellular traps
-
Wartha, F., et al. Capsule and D-alanylated lipoteichoic acids protect Streptococcus pneumoniae against neutrophil extracellular traps. Cell. Microbiol. 9, 1162-1171 (2007)
-
(2007)
Cell. Microbiol
, vol.9
, pp. 1162-1171
-
-
Wartha, F.1
-
154
-
-
79952159557
-
M protein and hyaluronic acid capsule are essential for in vivo selection of covRS mutations characteristic of invasive serotype M1T1 group A Streptococcus
-
Cole, J. N., et al. M protein and hyaluronic acid capsule are essential for in vivo selection of covRS mutations characteristic of invasive serotype M1T1 group A Streptococcus. mBio 1, e00191 (2010)
-
(2010)
MBio
, vol.1
, pp. e00191
-
-
Cole, J.N.1
-
155
-
-
84964318498
-
Interaction of bacterial exotoxins with neutrophil extracellular traps: Impact for the infected host
-
Kockritz-Blickwede, von, M., Blodkamp, S., Nizet, V. Interaction of bacterial exotoxins with neutrophil extracellular traps: impact for the infected host. Front. Microbiol. 7, 402 (2016)
-
(2016)
Front. Microbiol.
, vol.7
, pp. 402
-
-
Von Kockritz-Blickwede, M.1
Blodkamp, S.2
Nizet, V.3
-
157
-
-
84967189059
-
Evasion and interference: Intracellular pathogens modulate caspase-dependent inflammatory responses
-
Stewart, M. K., Cookson, B. T. Evasion and interference: intracellular pathogens modulate caspase-dependent inflammatory responses. Nat. Rev. Microbiol. 14, 346-359 (2016)
-
(2016)
Nat. Rev. Microbiol
, vol.14
, pp. 346-359
-
-
Stewart, M.K.1
Cookson, B.T.2
-
158
-
-
84866067768
-
-
Wiersinga, W. J., Currie, B. J., Peacock, S. J. Melioidosis. N. Engl. J. Med. 367, 1035-1044 (2012)
-
(2012)
Melioidosis. N. Engl. J. Med
, vol.367
, pp. 1035-1044
-
-
Wiersinga, W.J.1
Currie, B.J.2
Peacock, S.J.3
-
159
-
-
84876416949
-
Glanders in animals: A review on epidemiology, clinical presentation, diagnosis and countermeasures
-
Khan, I., et al. Glanders in animals: a review on epidemiology, clinical presentation, diagnosis and countermeasures. Transbound Emerg. Dis. 60, 204-221 (2013)
-
(2013)
Transbound Emerg. Dis
, vol.60
, pp. 204-221
-
-
Khan, I.1
-
160
-
-
79952780505
-
Functional complementation between FADD and RIP1 in embryos and lymphocytes
-
Zhang, H., et al. Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature 471, 373-376 (2011)
-
(2011)
Nature
, vol.471
, pp. 373-376
-
-
Zhang, H.1
-
161
-
-
84861712290
-
Survival function of the FADD-CASPASE-8-cFLIPL complex
-
Dillon, C. P., et al. Survival function of the FADD-CASPASE-8-cFLIPL complex. Cell Rep. 1, 401-407 (2012)
-
(2012)
Cell Rep
, vol.1
, pp. 401-407
-
-
Dillon, C.P.1
-
162
-
-
84879596906
-
K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter
-
Mu?oz-Planillo, R., et al. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38, 1142-1153 (2013)
-
(2013)
Immunity
, vol.38
, pp. 1142-1153
-
-
Muoz-Planillo, R.1
-
163
-
-
84884332722
-
Mechanisms of NOD-like receptor-associated inflammasome activation
-
Wen, H., Miao, E. A., Ting, J. P.-Y. Mechanisms of NOD-like receptor-associated inflammasome activation. Immunity 39, 432-441 (2013)
-
(2013)
Immunity
, vol.39
, pp. 432-441
-
-
Wen, H.1
Miao, E.A.2
Ting, J.P.-Y.3
-
164
-
-
84943200249
-
Caspase-11 activates a canonical NLRP3 inflammasome by promoting K+ efflux
-
R?hl, S., Broz, P. Caspase-11 activates a canonical NLRP3 inflammasome by promoting K+ efflux. Eur. J. Immunol. 45, 2927-2936 (2015)
-
(2015)
Eur. J. Immunol
, vol.45
, pp. 2927-2936
-
-
Rhl, S.1
Broz, P.2
-
165
-
-
84943198707
-
Caspase-4 mediates non-canonical activation of the NLRP3 inflammasome in human myeloid cells
-
Schmid-Burgk, J. L., et al. Caspase-4 mediates non-canonical activation of the NLRP3 inflammasome in human myeloid cells. Eur. J. Immunol. 45, 2911-2917 (2015)
-
(2015)
Eur. J. Immunol
, vol.45
, pp. 2911-2917
-
-
Schmid-Burgk, J.L.1
-
166
-
-
84911192502
-
RNA viruses promote activation of the NLRP3 inflammasome through a RIP1-RIP3-DRP1 signaling pathway
-
Wang, X., et al. RNA viruses promote activation of the NLRP3 inflammasome through a RIP1-RIP3-DRP1 signaling pathway. Nat. Immunol. 15, 1126-1133 (2014)
-
(2014)
Nat. Immunol
, vol.15
, pp. 1126-1133
-
-
Wang, X.1
-
167
-
-
84870275730
-
Extensive evolutionary and functional diversity among mammalian AIM2-like receptors
-
Brunette, R. L., et al. Extensive evolutionary and functional diversity among mammalian AIM2-like receptors. J. Exp. Med. 209, 1969-1983 (2012)
-
(2012)
J. Exp. Med
, vol.209
, pp. 1969-1983
-
-
Brunette, R.L.1
-
168
-
-
84907270863
-
Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome
-
Xu, H., et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513, 237-241 (2014)
-
(2014)
Nature
, vol.513
, pp. 237-241
-
-
Xu, H.1
-
169
-
-
80053349020
-
The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus
-
Zhao, Y., et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477, 596-600 (2011)
-
(2011)
Nature
, vol.477
, pp. 596-600
-
-
Zhao, Y.1
-
170
-
-
80053379974
-
Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity
-
Kofoed, E. M., Vance, R. E. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477, 592-595 (2011)
-
(2011)
Nature
, vol.477
, pp. 592-595
-
-
Kofoed, E.M.1
Vance, R.E.2
-
171
-
-
84861214708
-
Anthrax lethal factor cleavage of nlrp1 is required for activation of the inflammasome
-
Levinsohn, J. L., et al. Anthrax lethal factor cleavage of nlrp1 is required for activation of the inflammasome. PLoS Pathog. 8, e1002638 (2012)
-
(2012)
PLoS Pathog
, vol.8
, pp. e1002638
-
-
Levinsohn, J.L.1
-
172
-
-
84879508269
-
Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor
-
Chavarr?a-Smith, J., Vance, R. E. Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor. PLoS Pathog. 9, e1003452 (2013)
-
(2013)
PLoS Pathog
, vol.9
, pp. e1003452
-
-
Chavarra-Smith, J.1
Vance, R.E.2
-
173
-
-
4344622049
-
Signaling of apoptosis through TLRs critically involves toll/IL-1 receptor domain-containing adapter inducing IFN-beta, but not MyD88, in bacteria-infected murine macrophages
-
Ruckdeschel, K., et al. Signaling of apoptosis through TLRs critically involves toll/IL-1 receptor domain-containing adapter inducing IFN-beta, but not MyD88, in bacteria-infected murine macrophages. J. Immunol. 173, 3320-3328 (2004)
-
(2004)
J. Immunol
, vol.173
, pp. 3320-3328
-
-
Ruckdeschel, K.1
-
174
-
-
2442605662
-
Mechanisms of the TRIF-induced interferon-stimulated response element and NF-?B activation and apoptosis pathways
-
Han, K.-J., et al. Mechanisms of the TRIF-induced interferon-stimulated response element and NF-?B activation and apoptosis pathways. J. Biol. Chem. 279, 15652-15661 (2004)
-
(2004)
J. Biol. Chem
, vol.279
, pp. 15652-15661
-
-
Han, K.-J.1
-
175
-
-
17144413785
-
Apoptosis induced by the toll-like receptor adaptor TRIF is dependent on its receptor interacting protein homotypic interaction motif
-
Kaiser, W. J., Offermann, M. K. Apoptosis induced by the toll-like receptor adaptor TRIF is dependent on its receptor interacting protein homotypic interaction motif. J. Immunol. 174, 4942-4952 (2005)
-
(2005)
J. Immunol
, vol.174
, pp. 4942-4952
-
-
Kaiser, W.J.1
Offermann, M.K.2
-
176
-
-
0033214236
-
Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis
-
Lin, Y., Devin, A., Rodriguez, Y., Liu, Z. G. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev. 13, 2514-2526 (1999)
-
(1999)
Genes Dev
, vol.13
, pp. 2514-2526
-
-
Lin, Y.1
Devin, A.2
Rodriguez, Y.3
Liu, Z.G.4
-
177
-
-
34548437549
-
Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain
-
Feng, S., et al. Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell. Signall. 19, 2056-2067 (2007)
-
(2007)
Cell. Signall
, vol.19
, pp. 2056-2067
-
-
Feng, S.1
-
178
-
-
79960922705
-
CIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms
-
Feoktistova, M., et al. cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol. Cell 43, 449-463 (2011)
-
(2011)
Mol. Cell
, vol.43
, pp. 449-463
-
-
Feoktistova, M.1
-
179
-
-
84055181328
-
Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway
-
He, S., Liang, Y., Shao, F., Wang, X. Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc. Natl Acad. Sci. USA 108, 20054-20059 (2011)
-
(2011)
Proc. Natl Acad. Sci. USA
, vol.108
, pp. 20054-20059
-
-
He, S.1
Liang, Y.2
Shao, F.3
Wang, X.4
-
180
-
-
84886656964
-
Toll-like receptor 3-mediated necrosis via TRIF RIP3, and MLKL
-
Kaiser, W. J., et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J. Biol. Chem. 288, 31268-31279 (2013)
-
(2013)
J. Biol. Chem
, vol.288
, pp. 31268-31279
-
-
Kaiser, W.J.1
|