-
1
-
-
84863986133
-
Functions of DNA methylation: islands, start sites, gene bodies and beyond
-
Jones PA. 2012. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13: 484–92.
-
(2012)
Nat Rev Genet
, vol.13
, pp. 484-492
-
-
Jones, P.A.1
-
2
-
-
33847250332
-
DNMT1 knockout delivers a strong blow to genome stability and cell viability
-
Brown KD, Robertson KD. 2007. DNMT1 knockout delivers a strong blow to genome stability and cell viability. Nat Genet 39: 289–90.
-
(2007)
Nat Genet
, vol.39
, pp. 289-290
-
-
Brown, K.D.1
Robertson, K.D.2
-
3
-
-
0026708177
-
Targeted mutation of the DNA methyltransferase gene results in embryonic lethality
-
Li E, Bestor TH, Jaenisch R. 1992. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69: 915–26.
-
(1992)
Cell
, vol.69
, pp. 915-926
-
-
Li, E.1
Bestor, T.H.2
Jaenisch, R.3
-
4
-
-
0033615717
-
DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development
-
Okano M, Bell DW, Haber DA, Li E. 1999. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99: 247–57.
-
(1999)
Cell
, vol.99
, pp. 247-257
-
-
Okano, M.1
Bell, D.W.2
Haber, D.A.3
Li, E.4
-
5
-
-
45449114804
-
The colorful history of active DNA demethylation
-
Ooi SKT, Bestor TH. 2008. The colorful history of active DNA demethylation. Cell 133: 1145–8.
-
(2008)
Cell
, vol.133
, pp. 1145-1148
-
-
Ooi, S.K.T.1
Bestor, T.H.2
-
6
-
-
84879745846
-
A replication-dependent passive mechanism modulates DNA demethylation in mouse primordial germ cells
-
Ohno R, Nakayama M, Naruse C, Okashita N, et al. 2013. A replication-dependent passive mechanism modulates DNA demethylation in mouse primordial germ cells. Development 140: 2892–903.
-
(2013)
Development
, vol.140
, pp. 2892-2903
-
-
Ohno, R.1
Nakayama, M.2
Naruse, C.3
Okashita, N.4
-
7
-
-
84873570094
-
Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice
-
Kagiwada S, Kurimoto K, Hirota T, Yamaji M, et al. 2013. Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice. EMBO J 32: 340–53.
-
(2013)
EMBO J
, vol.32
, pp. 340-353
-
-
Kagiwada, S.1
Kurimoto, K.2
Hirota, T.3
Yamaji, M.4
-
8
-
-
77956095231
-
Active DNA demethylation: many roads lead to Rome
-
Wu SC, Zhang Y. 2010. Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 11: 607–20.
-
(2010)
Nat Rev Mol Cell Biol
, vol.11
, pp. 607-620
-
-
Wu, S.C.1
Zhang, Y.2
-
9
-
-
0034598784
-
Demethylation of the zygotic paternal genome
-
Mayer W, Niveleau A, Walter J, Fundele R, et al. 2000. Demethylation of the zygotic paternal genome. Nature 403: 501–2.
-
(2000)
Nature
, vol.403
, pp. 501-502
-
-
Mayer, W.1
Niveleau, A.2
Walter, J.3
Fundele, R.4
-
10
-
-
80053348585
-
The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes
-
Gu T-P, Guo F, Yang H, Wu H-P, et al. 2011. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477: 606–10.
-
(2011)
Nature
, vol.477
, pp. 606-610
-
-
Gu, T.-P.1
Guo, F.2
Yang, H.3
Wu, H.-P.4
-
11
-
-
79952763586
-
Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine
-
Iqbal K, Jin S-G, Pfeifer GP, Szabo PE. 2011. Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci USA 108: 3642–7.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 3642-3647
-
-
Iqbal, K.1
Jin, S.-G.2
Pfeifer, G.P.3
Szabo, P.E.4
-
12
-
-
79955538247
-
Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain
-
Guo JU, Su Y, Zhong C, Ming GL, et al. 2011. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145: 423–34.
-
(2011)
Cell
, vol.145
, pp. 423-434
-
-
Guo, J.U.1
Su, Y.2
Zhong, C.3
Ming, G.L.4
-
13
-
-
60749094831
-
Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis
-
Ma DK, Jang M-H, Guo JU, Kitabatake Y, et al. 2009. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323: 1074–7.
-
(2009)
Science
, vol.323
, pp. 1074-1077
-
-
Ma, D.K.1
Jang, M.-H.2
Guo, J.U.3
Kitabatake, Y.4
-
14
-
-
84878260646
-
TETonic shift: biological roles of TET proteins in DNA demethylation and transcription
-
Pastor WA, Aravind L, Rao A. 2013. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol 14: 341–56.
-
(2013)
Nat Rev Mol Cell Biol
, vol.14
, pp. 341-356
-
-
Pastor, W.A.1
Aravind, L.2
Rao, A.3
-
15
-
-
84866940776
-
The mammalian de novo DNA methyltransferases DNMT3A and DNMT3B are also DNA 5-hydroxymethylcytosine dehydroxymethylases
-
Chen CC, Wang KY, Shen CK. 2012. The mammalian de novo DNA methyltransferases DNMT3A and DNMT3B are also DNA 5-hydroxymethylcytosine dehydroxymethylases. J Biol Chem 287: 33116–21.
-
(2012)
J Biol Chem
, vol.287
, pp. 33116-33121
-
-
Chen, C.C.1
Wang, K.Y.2
Shen, C.K.3
-
16
-
-
84875990730
-
DNA 5-methylcytosine demethylation activities of the mammalian DNA methyltransferases
-
Chen CC, Wang KY, Shen CK. 2013. DNA 5-methylcytosine demethylation activities of the mammalian DNA methyltransferases. J Biol Chem 288: 9084–91.
-
(2013)
J Biol Chem
, vol.288
, pp. 9084-9091
-
-
Chen, C.C.1
Wang, K.Y.2
Shen, C.K.3
-
17
-
-
84899517644
-
Direct decarboxylation of 5-carboxylcytosine by DNA C5-methyltransferases
-
Liutkeviciute Z, Kriukiene E, Licyte J, Rudyte M, et al. 2014. Direct decarboxylation of 5-carboxylcytosine by DNA C5-methyltransferases. J Am Chem Soc 136: 5884–7.
-
(2014)
J Am Chem Soc
, vol.136
, pp. 5884-5887
-
-
Liutkeviciute, Z.1
Kriukiene, E.2
Licyte, J.3
Rudyte, M.4
-
18
-
-
73349104113
-
Active DNA demethylation mediated by DNA glycosylases
-
Zhu J-K. 2009. Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet 43: 143–66.
-
(2009)
Annu Rev Genet
, vol.43
, pp. 143-166
-
-
Zhu, J.-K.1
-
20
-
-
80053917872
-
Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites
-
Maiti A, Drohat AC. 2011. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem 286: 35334–8.
-
(2011)
J Biol Chem
, vol.286
, pp. 35334-35338
-
-
Maiti, A.1
Drohat, A.C.2
-
21
-
-
84954133230
-
Uracil-DNA glycosylase UNG promotes Tet-mediated DNA demethylation
-
Xue JH, Xu GF, Gu TP, Chen GD, et al. 2016. Uracil-DNA glycosylase UNG promotes Tet-mediated DNA demethylation. J Biol Chem 291: 731–8.
-
(2016)
J Biol Chem
, vol.291
, pp. 731-738
-
-
Xue, J.H.1
Xu, G.F.2
Gu, T.P.3
Chen, G.D.4
-
22
-
-
84905582980
-
TET-mediated oxidation of methylcytosine causes TDG or NEIL glycosylase dependent gene reactivation
-
Muller U, Bauer C, Siegl M, Rottach A, et al. 2014. TET-mediated oxidation of methylcytosine causes TDG or NEIL glycosylase dependent gene reactivation. Nucleic Acids Res 42: 8592–604.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 8592-8604
-
-
Muller, U.1
Bauer, C.2
Siegl, M.3
Rottach, A.4
-
23
-
-
79959937861
-
Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair
-
Cortellino S, Xu J, Sannai M, Moore R, et al. 2011. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 146: 67–79.
-
(2011)
Cell
, vol.146
, pp. 67-79
-
-
Cortellino, S.1
Xu, J.2
Sannai, M.3
Moore, R.4
-
24
-
-
77954345408
-
Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway
-
Hajkova P, Jeffries SJ, Lee C, Miller N, et al. 2010. Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science 329: 78–82.
-
(2010)
Science
, vol.329
, pp. 78-82
-
-
Hajkova, P.1
Jeffries, S.J.2
Lee, C.3
Miller, N.4
-
25
-
-
84961992325
-
Minimal role of base excision repair in TET-induced global DNA demethylation in HEK293T cells
-
Jin C, Qin T, Barton MC, Jelinek J, et al. 2015. Minimal role of base excision repair in TET-induced global DNA demethylation in HEK293T cells. Epigenetics 10: 1006–13.
-
(2015)
Epigenetics
, vol.10
, pp. 1006-1013
-
-
Jin, C.1
Qin, T.2
Barton, M.C.3
Jelinek, J.4
-
26
-
-
84859265962
-
Active DNA demethylation by Gadd45 and DNA repair
-
Niehrs C, Schafer A. 2012. Active DNA demethylation by Gadd45 and DNA repair. Trends Cell Biol 22: 220–7.
-
(2012)
Trends Cell Biol
, vol.22
, pp. 220-227
-
-
Niehrs, C.1
Schafer, A.2
-
27
-
-
33846933274
-
Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation
-
Barreto G, Schafer A, Marhold J, Stach D, et al. 2007. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445: 671–5.
-
(2007)
Nature
, vol.445
, pp. 671-675
-
-
Barreto, G.1
Schafer, A.2
Marhold, J.3
Stach, D.4
-
28
-
-
84966293784
-
An interplay of the base excision repair and mismatch repair pathways in active DNA demethylation
-
Grin I, Ishchenko AA. 2016. An interplay of the base excision repair and mismatch repair pathways in active DNA demethylation. Nucleic Acids Res 44: 3713–27.
-
(2016)
Nucleic Acids Res
, vol.44
, pp. 3713-3727
-
-
Grin, I.1
Ishchenko, A.A.2
-
29
-
-
84860221291
-
Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation
-
Hashimoto H, Liu Y, Upadhyay AK, Chang Y, et al. 2012. Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res 40: 4841–9.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 4841-4849
-
-
Hashimoto, H.1
Liu, Y.2
Upadhyay, A.K.3
Chang, Y.4
-
30
-
-
0034268780
-
Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme
-
Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, et al. 2000. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102: 553–63.
-
(2000)
Cell
, vol.102
, pp. 553-563
-
-
Muramatsu, M.1
Kinoshita, K.2
Fagarasan, S.3
Yamada, S.4
-
31
-
-
0037083364
-
Requirement of the activation-induced deaminase (AID) gene for immunoglobulin gene conversion
-
Arakawa H, Hauschild J, Buerstedde JM. 2002. Requirement of the activation-induced deaminase (AID) gene for immunoglobulin gene conversion. Science 295: 1301–6.
-
(2002)
Science
, vol.295
, pp. 1301-1306
-
-
Arakawa, H.1
Hauschild, J.2
Buerstedde, J.M.3
-
32
-
-
0037019315
-
AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification
-
Petersen-Mahrt SK, Harris RS, Neuberger MS. 2002. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418: 99–103.
-
(2002)
Nature
, vol.418
, pp. 99-103
-
-
Petersen-Mahrt, S.K.1
Harris, R.S.2
Neuberger, M.S.3
-
33
-
-
0033603340
-
Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells
-
Muramatsu M, Sankaranand VS, Anant S, Sugai M, et al. 1999. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem 274: 18470–6.
-
(1999)
J Biol Chem
, vol.274
, pp. 18470-18476
-
-
Muramatsu, M.1
Sankaranand, V.S.2
Anant, S.3
Sugai, M.4
-
34
-
-
84879978712
-
Fate mapping for activation-induced cytidine deaminase (AID) marks non-lymphoid cells during mouse development
-
Rommel PC, Bosque D, Gitlin AD, Croft GF, et al. 2013. Fate mapping for activation-induced cytidine deaminase (AID) marks non-lymphoid cells during mouse development. PLoS ONE 8: e69208.
-
(2013)
PLoS ONE
, vol.8
-
-
Rommel, P.C.1
Bosque, D.2
Gitlin, A.D.3
Croft, G.F.4
-
35
-
-
84876719182
-
Role of activation-induced cytidine deaminase in the development of oral squamous cell carcinoma
-
Nakanishi Y, Kondo S, Wakisaka N, Tsuji A, et al. 2013. Role of activation-induced cytidine deaminase in the development of oral squamous cell carcinoma. PLoS ONE 8: e62066.
-
(2013)
PLoS ONE
, vol.8
-
-
Nakanishi, Y.1
Kondo, S.2
Wakisaka, N.3
Tsuji, A.4
-
36
-
-
33845703967
-
Expression of activation-induced cytidine deaminase in human hepatocytes during hepatocarcinogenesis
-
Kou T, Marusawa H, Kinoshita K, Endo Y, et al. 2007. Expression of activation-induced cytidine deaminase in human hepatocytes during hepatocarcinogenesis. Int J Cancer 120: 469–76.
-
(2007)
Int J Cancer
, vol.120
, pp. 469-476
-
-
Kou, T.1
Marusawa, H.2
Kinoshita, K.3
Endo, Y.4
-
37
-
-
43049116095
-
Aberrant AID expression and human cancer development
-
Marusawa H. 2008. Aberrant AID expression and human cancer development. Int J Biochem Cell Biol 40: 1399–402.
-
(2008)
Int J Biochem Cell Biol
, vol.40
, pp. 1399-1402
-
-
Marusawa, H.1
-
38
-
-
0034264851
-
Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2)
-
Revy P, Muto T, Levy Y, Geissmann F, et al. 2000. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 102: 565–75.
-
(2000)
Cell
, vol.102
, pp. 565-575
-
-
Revy, P.1
Muto, T.2
Levy, Y.3
Geissmann, F.4
-
39
-
-
77649104794
-
Reprogramming towards pluripotency requires AID-dependent DNA demethylation
-
Bhutani N, Brady JJ, Damian M, Sacco A, et al. 2010. Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 463: 1042–7.
-
(2010)
Nature
, vol.463
, pp. 1042-1047
-
-
Bhutani, N.1
Brady, J.J.2
Damian, M.3
Sacco, A.4
-
40
-
-
84893771625
-
Establishment of methylation patterns in ES cells
-
Sabag O, Zamir A, Keshet I, Hecht M, et al. 2014. Establishment of methylation patterns in ES cells. Nat Struct Mol Biol 21: 110–2.
-
(2014)
Nat Struct Mol Biol
, vol.21
, pp. 110-112
-
-
Sabag, O.1
Zamir, A.2
Keshet, I.3
Hecht, M.4
-
41
-
-
84862823251
-
Embryonic stem cells induce pluripotency in somatic cell fusion through biphasic reprogramming
-
Foshay KM, Looney TJ, Chari S, Mao FF, et al. 2012. Embryonic stem cells induce pluripotency in somatic cell fusion through biphasic reprogramming. Mol Cell 46: 159–70.
-
(2012)
Mol Cell
, vol.46
, pp. 159-170
-
-
Foshay, K.M.1
Looney, T.J.2
Chari, S.3
Mao, F.F.4
-
42
-
-
84874590585
-
A critical role for AID in the initiation of reprogramming to induced pluripotent stem cells
-
Bhutani N, Decker MN, Brady JJ, Bussat RT, et al. 2013. A critical role for AID in the initiation of reprogramming to induced pluripotent stem cells. FASEB J 27: 1107–13.
-
(2013)
FASEB J
, vol.27
, pp. 1107-1113
-
-
Bhutani, N.1
Decker, M.N.2
Brady, J.J.3
Bussat, R.T.4
-
43
-
-
84881476513
-
AID stabilizes stem-cell phenotype by removing epigenetic memory of pluripotency genes
-
Kumar R, DiMenna L, Schrode N, Liu TC, et al. 2013. AID stabilizes stem-cell phenotype by removing epigenetic memory of pluripotency genes. Nature 500: 89–92.
-
(2013)
Nature
, vol.500
, pp. 89-92
-
-
Kumar, R.1
DiMenna, L.2
Schrode, N.3
Liu, T.C.4
-
44
-
-
84893040919
-
Activation-induced deaminase-coupled DNA demethylation is not crucial for the generation of induced pluripotent stem cells
-
Habib O, Habib G, Do JT, Moon SH, et al. 2014. Activation-induced deaminase-coupled DNA demethylation is not crucial for the generation of induced pluripotent stem cells. Stem Cells Dev 23: 209–18.
-
(2014)
Stem Cells Dev
, vol.23
, pp. 209-218
-
-
Habib, O.1
Habib, G.2
Do, J.T.3
Moon, S.H.4
-
45
-
-
84899546318
-
Generation and characterization of induced pluripotent stem cells from Aid-deficient mice
-
Shimamoto R, Amano N, Ichisaka T, Watanabe A, et al. 2014. Generation and characterization of induced pluripotent stem cells from Aid-deficient mice. PLoS ONE 9: e94735.
-
(2014)
PLoS ONE
, vol.9
-
-
Shimamoto, R.1
Amano, N.2
Ichisaka, T.3
Watanabe, A.4
-
46
-
-
84942836663
-
DNA methylation dynamics of germinal center B cells are mediated by AID
-
Dominguez PM, Teater M, Chambwe N, Kormaksson M, et al. 2015. DNA methylation dynamics of germinal center B cells are mediated by AID. Cell Rep 12: 2086–98.
-
(2015)
Cell Rep
, vol.12
, pp. 2086-2098
-
-
Dominguez, P.M.1
Teater, M.2
Chambwe, N.3
Kormaksson, M.4
-
48
-
-
84879415206
-
A comprehensive analysis of the effects of the deaminase AID on the transcriptome and methylome of activated B cells
-
Fritz EL, Rosenberg BR, Lay K, Mihailovic A, et al. 2013. A comprehensive analysis of the effects of the deaminase AID on the transcriptome and methylome of activated B cells. Nat Immunol 14: 749–55.
-
(2013)
Nat Immunol
, vol.14
, pp. 749-755
-
-
Fritz, E.L.1
Rosenberg, B.R.2
Lay, K.3
Mihailovic, A.4
-
49
-
-
57649196594
-
DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45
-
Rai K, Huggins IJ, James SR, Karpf AR, et al. 2008. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 135: 1201–12.
-
(2008)
Cell
, vol.135
, pp. 1201-1212
-
-
Rai, K.1
Huggins, I.J.2
James, S.R.3
Karpf, A.R.4
-
50
-
-
84919800882
-
No evidence for AID/MBD4-coupled DNA demethylation in zebrafish embryos
-
Shimoda N, Hirose K, Kaneto R, Izawa T, et al. 2014. No evidence for AID/MBD4-coupled DNA demethylation in zebrafish embryos. PLoS ONE 9: e114816.
-
(2014)
PLoS ONE
, vol.9
-
-
Shimoda, N.1
Hirose, K.2
Kaneto, R.3
Izawa, T.4
-
51
-
-
77249148019
-
Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency
-
Popp C, Dean W, Feng S, Cokus SJ, et al. 2010. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 463: 1101–5.
-
(2010)
Nature
, vol.463
, pp. 1101-1105
-
-
Popp, C.1
Dean, W.2
Feng, S.3
Cokus, S.J.4
-
52
-
-
84865329141
-
AID/APOBEC deaminases disfavor modified cytosines implicated in DNA demethylation
-
Nabel CS, Jia H, Ye Y, Shen L, et al. 2012. AID/APOBEC deaminases disfavor modified cytosines implicated in DNA demethylation. Nat Chem Biol 8: 751–8.
-
(2012)
Nat Chem Biol
, vol.8
, pp. 751-758
-
-
Nabel, C.S.1
Jia, H.2
Ye, Y.3
Shen, L.4
-
53
-
-
84865165385
-
AID enzymatic activity is inversely proportional to the size of cytosine C5 orbital cloud
-
Rangam G, Schmitz KM, Cobb AJ, Petersen-Mahrt SK. 2012. AID enzymatic activity is inversely proportional to the size of cytosine C5 orbital cloud. PLoS ONE 7: e43279.
-
(2012)
PLoS ONE
, vol.7
-
-
Rangam, G.1
Schmitz, K.M.2
Cobb, A.J.3
Petersen-Mahrt, S.K.4
-
54
-
-
10644229388
-
Methylation protects cytidines from AID-mediated deamination
-
Larijani M, Frieder D, Sonbuchner TM, Bransteitter R, et al. 2005. Methylation protects cytidines from AID-mediated deamination. Mol Immunol 42: 599–604.
-
(2005)
Mol Immunol
, vol.42
, pp. 599-604
-
-
Larijani, M.1
Frieder, D.2
Sonbuchner, T.M.3
Bransteitter, R.4
-
55
-
-
84878578715
-
Zebrafish AID is capable of deaminating methylated deoxycytidines
-
Abdouni H, King JJ, Suliman M, Quinlan M, et al. 2013. Zebrafish AID is capable of deaminating methylated deoxycytidines. Nucleic Acids Res 41: 5457–68.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 5457-5468
-
-
Abdouni, H.1
King, J.J.2
Suliman, M.3
Quinlan, M.4
-
56
-
-
0037388165
-
Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase
-
Bransteitter R, Pham P, Scharff MD, Goodman MF. 2003. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc Natl Acad Sci USA 100: 4102–7.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 4102-4107
-
-
Bransteitter, R.1
Pham, P.2
Scharff, M.D.3
Goodman, M.F.4
-
57
-
-
84867270112
-
Efficient deamination of 5-methylcytosines in DNA by human APOBEC3A, but not by AID or APOBEC3G
-
Wijesinghe P, Bhagwat AS. 2012. Efficient deamination of 5-methylcytosines in DNA by human APOBEC3A, but not by AID or APOBEC3G. Nucleic Acids Res 40: 9206–17.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 9206-9217
-
-
Wijesinghe, P.1
Bhagwat, A.S.2
-
58
-
-
0027093283
-
High frequency mutagenesis by a DNA methyltransferase
-
Shen JC, Rideout WM, 3rd, Jones PA. 1992. High frequency mutagenesis by a DNA methyltransferase. Cell 71: 1073–80.
-
(1992)
Cell
, vol.71
, pp. 1073-1080
-
-
Shen, J.C.1
Rideout, W.M.2
Jones, P.A.3
-
59
-
-
84886911144
-
Cytosine-to-uracil deamination by SssI DNA methyltransferase
-
Stier I, Kiss A. 2013. Cytosine-to-uracil deamination by SssI DNA methyltransferase. PLoS ONE 8: e79003.
-
(2013)
PLoS ONE
, vol.8
-
-
Stier, I.1
Kiss, A.2
-
60
-
-
84904269017
-
Processive DNA demethylation via DNA deaminase-induced lesion resolution
-
Franchini DM, Chan CF, Morgan H, Incorvaia E, et al. 2014. Processive DNA demethylation via DNA deaminase-induced lesion resolution. PLoS ONE 9: e97754.
-
(2014)
PLoS ONE
, vol.9
-
-
Franchini, D.M.1
Chan, C.F.2
Morgan, H.3
Incorvaia, E.4
-
61
-
-
84887354987
-
Active demethylation in mouse zygotes involves cytosine deamination and base excision repair
-
Santos F, Peat J, Burgess H, Rada C, et al. 2013. Active demethylation in mouse zygotes involves cytosine deamination and base excision repair. Epigenetics Chromatin 6: 39.
-
(2013)
Epigenetics Chromatin
, vol.6
, pp. 39
-
-
Santos, F.1
Peat, J.2
Burgess, H.3
Rada, C.4
-
62
-
-
84923071162
-
Activation-induced cytidine deaminase and active cytidine demethylation
-
Ramiro AR, Barreto VM. 2015. Activation-induced cytidine deaminase and active cytidine demethylation. Trends Biochem Sci 40: 172–81.
-
(2015)
Trends Biochem Sci
, vol.40
, pp. 172-181
-
-
Ramiro, A.R.1
Barreto, V.M.2
-
63
-
-
77957659555
-
Cytidine deaminases: AIDing DNA demethylation
-
Fritz EL, Papavasiliou FN. 2010. Cytidine deaminases: AIDing DNA demethylation? Genes Dev 24: 2107–14.
-
(2010)
Genes Dev
, vol.24
, pp. 2107-2114
-
-
Fritz, E.L.1
Papavasiliou, F.N.2
-
64
-
-
84954105591
-
Oxidative DNA demethylation mediated by Tet enzymes
-
Xu G-L, Wong, J. 2015. Oxidative DNA demethylation mediated by Tet enzymes. Nat Sci Rev 2: 318–28.
-
(2015)
Nat Sci Rev
, vol.2
, pp. 318-328
-
-
Xu, G.-L.1
Wong, J.2
-
65
-
-
66149146320
-
Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
-
Tahiliani M, Koh KP, Shen Y, Pastor WA, et al. 2009. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324: 930–5.
-
(2009)
Science
, vol.324
, pp. 930-935
-
-
Tahiliani, M.1
Koh, K.P.2
Shen, Y.3
Pastor, W.A.4
-
66
-
-
66149123748
-
The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain
-
Kriaucionis S, Heintz N. 2009. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324: 929–30.
-
(2009)
Science
, vol.324
, pp. 929-930
-
-
Kriaucionis, S.1
Heintz, N.2
-
67
-
-
80052461558
-
Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine
-
Ito S, Shen L, Dai Q, Wu SC, et al. 2011. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333: 1300–3.
-
(2011)
Science
, vol.333
, pp. 1300-1303
-
-
Ito, S.1
Shen, L.2
Dai, Q.3
Wu, S.C.4
-
69
-
-
84946217906
-
Structural insight into substrate preference for TET-mediated oxidation
-
Hu L, Lu J, Cheng J, Rao Q, et al. 2015. Structural insight into substrate preference for TET-mediated oxidation. Nature 527: 118–22.
-
(2015)
Nature
, vol.527
, pp. 118-122
-
-
Hu, L.1
Lu, J.2
Cheng, J.3
Rao, Q.4
-
70
-
-
0037350661
-
TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23)
-
Lorsbach RB, Moore J, Mathew S, Raimondi SC, et al. 2003. TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia 17: 637–41.
-
(2003)
Leukemia
, vol.17
, pp. 637-641
-
-
Lorsbach, R.B.1
Moore, J.2
Mathew, S.3
Raimondi, S.C.4
-
71
-
-
84923566739
-
Insights into DNA hydroxymethylation in the honeybee from in-depth analyses of TET dioxygenase
-
Wojciechowski M, Rafalski D, Kucharski R, Misztal K, et al. 2014. Insights into DNA hydroxymethylation in the honeybee from in-depth analyses of TET dioxygenase. Open Biol 4: 140110.
-
(2014)
Open Biol
, vol.4
, pp. 140110
-
-
Wojciechowski, M.1
Rafalski, D.2
Kucharski, R.3
Misztal, K.4
-
72
-
-
84894257068
-
Structure of a Naegleria Tet-like dioxygenase in complex with 5-methylcytosine DNA
-
Hashimoto H, Pais JE, Zhang X, Saleh L, et al. 2014. Structure of a Naegleria Tet-like dioxygenase in complex with 5-methylcytosine DNA. Nature 506: 391–5.
-
(2014)
Nature
, vol.506
, pp. 391-395
-
-
Hashimoto, H.1
Pais, J.E.2
Zhang, X.3
Saleh, L.4
-
73
-
-
84929484734
-
Biochemical characterization of a Naegleria TET-like oxygenase and its application in single molecule sequencing of 5-methylcytosine
-
Pais JE, Dai N, Tamanaha E, Vaisvila R, et al. 2015. Biochemical characterization of a Naegleria TET-like oxygenase and its application in single molecule sequencing of 5-methylcytosine. Proc Natl Acad Sci USA 112: 4316–21.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, pp. 4316-4321
-
-
Pais, J.E.1
Dai, N.2
Tamanaha, E.3
Vaisvila, R.4
-
74
-
-
66749152204
-
Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids
-
Iyer LM, Tahiliani M, Rao A, Aravind L. 2009. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle 8: 1698–710.
-
(2009)
Cell Cycle
, vol.8
, pp. 1698-1710
-
-
Iyer, L.M.1
Tahiliani, M.2
Rao, A.3
Aravind, L.4
-
75
-
-
84877582944
-
Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX
-
Ko M, An J, Bandukwala HS, Chavez L, et al. 2013. Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. Nature 497: 122–6.
-
(2013)
Nature
, vol.497
, pp. 122-126
-
-
Ko, M.1
An, J.2
Bandukwala, H.S.3
Chavez, L.4
-
76
-
-
84953313336
-
Tet3 reads 5-carboxylcytosine through its CXXC domain and is a potential guardian against neurodegeneration
-
Jin SG, Zhang ZM, Dunwell TL, Harter MR, et al. 2016. Tet3 reads 5-carboxylcytosine through its CXXC domain and is a potential guardian against neurodegeneration. Cell Rep 14: 493–505.
-
(2016)
Cell Rep
, vol.14
, pp. 493-505
-
-
Jin, S.G.1
Zhang, Z.M.2
Dunwell, T.L.3
Harter, M.R.4
-
77
-
-
84898482006
-
Loss of Tet enzymes compromises proper differentiation of embryonic stem cells
-
Dawlaty MM, Breiling A, Le T, Barrasa MI, et al. 2014. Loss of Tet enzymes compromises proper differentiation of embryonic stem cells. Dev Cell 29: 102–11.
-
(2014)
Dev Cell
, vol.29
, pp. 102-111
-
-
Dawlaty, M.M.1
Breiling, A.2
Le, T.3
Barrasa, M.I.4
-
78
-
-
84943201892
-
Age-dependent levels of 5-methyl-, 5-hydroxymethyl-, and 5-formylcytosine in human and mouse brain tissues
-
Wagner M, Steinbacher J, Kraus TF, Michalakis S, et al. 2015. Age-dependent levels of 5-methyl-, 5-hydroxymethyl-, and 5-formylcytosine in human and mouse brain tissues. Angew Chem Int Ed Engl 54: 12511–4.
-
(2015)
Angew Chem Int Ed Engl
, vol.54
, pp. 12511-12514
-
-
Wagner, M.1
Steinbacher, J.2
Kraus, T.F.3
Michalakis, S.4
-
79
-
-
84874771985
-
Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives
-
Spruijt CG, Gnerlich F, Smits AH, Pfaffeneder T, et al. 2013. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152: 1146–59.
-
(2013)
Cell
, vol.152
, pp. 1146-1159
-
-
Spruijt, C.G.1
Gnerlich, F.2
Smits, A.H.3
Pfaffeneder, T.4
-
80
-
-
80052495940
-
Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA
-
He Y-F, Li B-Z, Li Z, Liu P, et al. 2011. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333: 1303–7.
-
(2011)
Science
, vol.333
, pp. 1303-1307
-
-
He, Y.-F.1
Li, B.-Z.2
Li, Z.3
Liu, P.4
-
81
-
-
84960155228
-
Biochemical reconstitution of TET1-TDG-BER-dependent active DNA demethylation reveals a highly coordinated mechanism
-
Weber AR, Krawczyk C, Robertson AB, Kusnierczyk A, et al. 2016. Biochemical reconstitution of TET1-TDG-BER-dependent active DNA demethylation reveals a highly coordinated mechanism. Nat Commun 7: 10806.
-
(2016)
Nat Commun
, vol.7
, pp. 10806
-
-
Weber, A.R.1
Krawczyk, C.2
Robertson, A.B.3
Kusnierczyk, A.4
-
82
-
-
84897989106
-
Tet and TDG mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming
-
Hu X, Zhang L, Mao SQ, Li Z, et al. 2014. Tet and TDG mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming. Cell Stem Cell 14: 512–22.
-
(2014)
Cell Stem Cell
, vol.14
, pp. 512-522
-
-
Hu, X.1
Zhang, L.2
Mao, S.Q.3
Li, Z.4
-
83
-
-
84877978530
-
Mechanisms and models of somatic cell reprogramming
-
Buganim Y, Faddah DA, Jaenisch R. 2013. Mechanisms and models of somatic cell reprogramming. Nat Rev Genet 14: 427–39.
-
(2013)
Nat Rev Genet
, vol.14
, pp. 427-439
-
-
Buganim, Y.1
Faddah, D.A.2
Jaenisch, R.3
-
84
-
-
84875923762
-
Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming
-
Gao Y, Chen J, Li K, Wu T, et al. 2013. Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming. Cell Stem Cell 12: 453–69.
-
(2013)
Cell Stem Cell
, vol.12
, pp. 453-469
-
-
Gao, Y.1
Chen, J.2
Li, K.3
Wu, T.4
-
85
-
-
84923217903
-
The combination of Tet1 with Oct4 generates high-quality mouse-induced pluripotent stem cells
-
Chen J, Gao Y, Huang H, Xu K, et al. 2015. The combination of Tet1 with Oct4 generates high-quality mouse-induced pluripotent stem cells. Stem Cells 33: 686–98.
-
(2015)
Stem Cells
, vol.33
, pp. 686-698
-
-
Chen, J.1
Gao, Y.2
Huang, H.3
Xu, K.4
-
86
-
-
84907507329
-
Role of Tet proteins in enhancer activity and telomere elongation
-
Lu F, Liu Y, Jiang L, Yamaguchi S, et al. 2014. Role of Tet proteins in enhancer activity and telomere elongation. Genes Dev 28: 2103–19.
-
(2014)
Genes Dev
, vol.28
, pp. 2103-2119
-
-
Lu, F.1
Liu, Y.2
Jiang, L.3
Yamaguchi, S.4
-
87
-
-
84908204470
-
5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation
-
Hon GC, Song C-X, Du T, Jin F, et al. 2014. 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation. Mol Cell 56: 286–97.
-
(2014)
Mol Cell
, vol.56
, pp. 286-297
-
-
Hon, G.C.1
Song, C.-X.2
Du, T.3
Jin, F.4
-
88
-
-
84922789354
-
Haploinsufficiency, but not defective paternal 5mC oxidation, accounts for the developmental defects of maternal Tet3 knockouts
-
Inoue A, Shen L, Matoba S, Zhang Y. 2015. Haploinsufficiency, but not defective paternal 5mC oxidation, accounts for the developmental defects of maternal Tet3 knockouts. Cell Rep 10: 463–70.
-
(2015)
Cell Rep
, vol.10
, pp. 463-470
-
-
Inoue, A.1
Shen, L.2
Matoba, S.3
Zhang, Y.4
-
89
-
-
79961139741
-
Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development
-
Dawlaty MM, Ganz K, Powell BE, Hu Y-C, et al. 2011. Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development. Cell Stem Cell 9: 166–75.
-
(2011)
Cell Stem Cell
, vol.9
, pp. 166-175
-
-
Dawlaty, M.M.1
Ganz, K.2
Powell, B.E.3
Hu, Y.-C.4
-
90
-
-
80052285127
-
Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies
-
Li Z, Cai X, Cai C-L, Wang J, et al. 2011. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood 118: 4509–18.
-
(2011)
Blood
, vol.118
, pp. 4509-4518
-
-
Li, Z.1
Cai, X.2
Cai, C.-L.3
Wang, J.4
-
91
-
-
84873707539
-
Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development
-
Dawlaty MM, Breiling A, Le T, Raddatz G, et al. 2013. Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dev Cell 24: 310–23.
-
(2013)
Dev Cell
, vol.24
, pp. 310-323
-
-
Dawlaty, M.M.1
Breiling, A.2
Le, T.3
Raddatz, G.4
-
92
-
-
84994051865
-
DNA demethylation by TET dioxygenases controls gastrula patterning by regulating Lefty-1 Nodal signaling
-
Dai HQ, Wang BA, Yang L, Chen JJ, et al. 2016. DNA demethylation by TET dioxygenases controls gastrula patterning by regulating Lefty-1 Nodal signaling. Nature 538: 528–532.
-
(2016)
Nature
, vol.538
, pp. 528-532
-
-
Dai, H.Q.1
Wang, B.A.2
Yang, L.3
Chen, J.J.4
-
93
-
-
84870883633
-
Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for Xenopus eye and neural development
-
Xu Y, Xu C, Kato A, Tempel W, et al. 2012. Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for Xenopus eye and neural development. Cell 151: 1200–13.
-
(2012)
Cell
, vol.151
, pp. 1200-1213
-
-
Xu, Y.1
Xu, C.2
Kato, A.3
Tempel, W.4
-
94
-
-
84941025514
-
Overlapping requirements for Tet2 and Tet3 in normal development and hematopoietic stem cell emergence
-
Li C, Lan Y, Schwartz-Orbach L, Korol E, et al. 2015. Overlapping requirements for Tet2 and Tet3 in normal development and hematopoietic stem cell emergence. Cell Rep 12: 1133–43.
-
(2015)
Cell Rep
, vol.12
, pp. 1133-1143
-
-
Li, C.1
Lan, Y.2
Schwartz-Orbach, L.3
Korol, E.4
-
95
-
-
67649876132
-
Acquired mutations in TET2 are common in myelodysplastic syndromes
-
Langemeijer SMC, Kuiper RP, Berends M, Knops R, et al. 2009. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet 41: 838–42.
-
(2009)
Nat Genet
, vol.41
, pp. 838-842
-
-
Langemeijer, S.M.C.1
Kuiper, R.P.2
Berends, M.3
Knops, R.4
-
96
-
-
66249137734
-
Mutation in TET2 in myeloid cancers
-
Delhommeau F, Dupont S, Della Valle V, James C, et al. 2009. Mutation in TET2 in myeloid cancers. N Engl J Med 360: 2289–301.
-
(2009)
N Engl J Med
, vol.360
, pp. 2289-2301
-
-
Delhommeau, F.1
Dupont, S.2
Della Valle, V.3
James, C.4
-
97
-
-
73149094518
-
TET2 gene mutation is a frequent and adverse event in chronic myelomonocytic leukemia
-
Kosmider O, Gelsi-Boyer V, Ciudad M, Racoeur C, et al. 2009. TET2 gene mutation is a frequent and adverse event in chronic myelomonocytic leukemia. Haematologica 94: 1676–81.
-
(2009)
Haematologica
, vol.94
, pp. 1676-1681
-
-
Kosmider, O.1
Gelsi-Boyer, V.2
Ciudad, M.3
Racoeur, C.4
-
98
-
-
26444570010
-
Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations
-
Pollard PJ, Briere JJ, Alam NA, Barwell J, et al. 2005. Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet 14: 2231–9.
-
(2005)
Hum Mol Genet
, vol.14
, pp. 2231-2239
-
-
Pollard, P.J.1
Briere, J.J.2
Alam, N.A.3
Barwell, J.4
-
99
-
-
77953702324
-
Cancer-associated IDH1 mutations produce 2-hydroxyglutarate
-
Dang L, White DW, Gross S, Bennett BD, et al. 2010. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 465: 966.
-
(2010)
Nature
, vol.465
, pp. 966
-
-
Dang, L.1
White, D.W.2
Gross, S.3
Bennett, B.D.4
-
100
-
-
84885130399
-
Deamination, oxidation, and C-C bond cleavage reactivity of 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine
-
Schiesser S, Pfaffeneder T, Sadeghian K, Hackner B, et al. 2013. Deamination, oxidation, and C-C bond cleavage reactivity of 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine. J Am Chem Soc 135: 14593–9.
-
(2013)
J Am Chem Soc
, vol.135
, pp. 14593-14599
-
-
Schiesser, S.1
Pfaffeneder, T.2
Sadeghian, K.3
Hackner, B.4
-
101
-
-
3042584653
-
Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting
-
Kaneda M, Okano M, Hata K, Sado T, et al. 2004. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429: 900–3.
-
(2004)
Nature
, vol.429
, pp. 900-903
-
-
Kaneda, M.1
Okano, M.2
Hata, K.3
Sado, T.4
-
102
-
-
0035930660
-
Dnmt3L and the establishment of maternal genomic imprints
-
Bourc'his D, Xu GL, Lin CS, Bollman B, et al. 2001. Dnmt3L and the establishment of maternal genomic imprints. Science 294: 2536–9.
-
(2001)
Science
, vol.294
, pp. 2536-2539
-
-
Bourc'his, D.1
Xu, G.L.2
Lin, C.S.3
Bollman, B.4
-
103
-
-
28744442731
-
Meiotic and epigenetic aberrations in Dnmt3L-deficient male germ cells
-
Hata K, Kusumi M, Yokomine T, Li E, et al. 2006. Meiotic and epigenetic aberrations in Dnmt3L-deficient male germ cells. Mol Reprod Dev 73: 116–22.
-
(2006)
Mol Reprod Dev
, vol.73
, pp. 116-122
-
-
Hata, K.1
Kusumi, M.2
Yokomine, T.3
Li, E.4
-
104
-
-
0036333103
-
Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice
-
Hata K, Okano M, Lei H, Li E. 2002. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129: 1983–93.
-
(2002)
Development
, vol.129
, pp. 1983-1993
-
-
Hata, K.1
Okano, M.2
Lei, H.3
Li, E.4
-
105
-
-
84862681459
-
Mechanism and stem-cell activity of 5-carboxycytosine decarboxylation determined by isotope tracing
-
Schiesser S, Hackner B, Pfaffeneder T, Muller M, et al. 2012. Mechanism and stem-cell activity of 5-carboxycytosine decarboxylation determined by isotope tracing. Angew Chem Int Ed Engl 51: 6516–20.
-
(2012)
Angew Chem Int Ed Engl
, vol.51
, pp. 6516-6520
-
-
Schiesser, S.1
Hackner, B.2
Pfaffeneder, T.3
Muller, M.4
-
106
-
-
80053406780
-
Mechanism of the orotidine 5′-monophosphate decarboxylase-catalyzed reaction: importance of residues in the orotate binding site
-
Iiams V, Desai BJ, Fedorov AA, Fedorov EV, et al. 2011. Mechanism of the orotidine 5′-monophosphate decarboxylase-catalyzed reaction: importance of residues in the orotate binding site. Biochemistry 50: 8497–507.
-
(2011)
Biochemistry
, vol.50
, pp. 8497-8507
-
-
Iiams, V.1
Desai, B.J.2
Fedorov, A.A.3
Fedorov, E.V.4
-
107
-
-
0037115911
-
Uracil in DNA-occurrence, consequences and repair
-
Krokan HE, Drablos F, Slupphaug G. 2002. Uracil in DNA-occurrence, consequences and repair. Oncogene 21: 8935–48.
-
(2002)
Oncogene
, vol.21
, pp. 8935-8948
-
-
Krokan, H.E.1
Drablos, F.2
Slupphaug, G.3
-
108
-
-
84922598841
-
5-Formylcytosine alters the structure of the DNA double helix
-
Raiber EA, Murat P, Chirgadze DY, Beraldi D, et al. 2015. 5-Formylcytosine alters the structure of the DNA double helix. Nat Struct Mol Biol 22: 44–9.
-
(2015)
Nat Struct Mol Biol
, vol.22
, pp. 44-49
-
-
Raiber, E.A.1
Murat, P.2
Chirgadze, D.Y.3
Beraldi, D.4
-
109
-
-
84922663293
-
Differential stabilities and sequence-dependent base pair opening dynamics of Watson-Crick base pairs with 5-hydroxymethylcytosine, 5-formylcytosine, or 5-carboxylcytosine
-
Szulik MW, Pallan PS, Nocek B, Voehler M, et al. 2015. Differential stabilities and sequence-dependent base pair opening dynamics of Watson-Crick base pairs with 5-hydroxymethylcytosine, 5-formylcytosine, or 5-carboxylcytosine. Biochemistry 54: 1294–305.
-
(2015)
Biochemistry
, vol.54
, pp. 1294-1305
-
-
Szulik, M.W.1
Pallan, P.S.2
Nocek, B.3
Voehler, M.4
-
110
-
-
84886468317
-
Divergent mechanisms for enzymatic excision of 5-formylcytosine and 5-carboxylcytosine from DNA
-
Maiti A, Michelson AZ, Armwood CJ, Lee JK, et al. 2013. Divergent mechanisms for enzymatic excision of 5-formylcytosine and 5-carboxylcytosine from DNA. J Am Chem Soc 135: 15813–22.
-
(2013)
J Am Chem Soc
, vol.135
, pp. 15813-15822
-
-
Maiti, A.1
Michelson, A.Z.2
Armwood, C.J.3
Lee, J.K.4
-
111
-
-
84902153677
-
Guanine-5-carboxylcytosine base pairs mimic mismatches during DNA replication
-
Shibutani T, Ito S, Toda M, Kanao R, et al. 2014. Guanine-5-carboxylcytosine base pairs mimic mismatches during DNA replication. Sci Rep 4: 5220.
-
(2014)
Sci Rep
, vol.4
, pp. 5220
-
-
Shibutani, T.1
Ito, S.2
Toda, M.3
Kanao, R.4
-
112
-
-
84959360038
-
Weakened N3 hydrogen bonding by 5-formylcytosine and 5-carboxylcytosine reduces their base-pairing stability
-
Dai Q, Sanstead PJ, Peng CS, Han D, et al. 2016. Weakened N3 hydrogen bonding by 5-formylcytosine and 5-carboxylcytosine reduces their base-pairing stability. ACS Chem Biol 11: 470–7.
-
(2016)
ACS Chem Biol
, vol.11
, pp. 470-477
-
-
Dai, Q.1
Sanstead, P.J.2
Peng, C.S.3
Han, D.4
-
113
-
-
84952342375
-
Glycosidic bond cleavage in DNA nucleosides: effect of nucleobase damage and activation on the mechanism and barrier
-
Lenz SAP, Kellie JL, Wetmore SD. 2015. Glycosidic bond cleavage in DNA nucleosides: effect of nucleobase damage and activation on the mechanism and barrier. J Phys Chem B 119: 15601–12.
-
(2015)
J Phys Chem B
, vol.119
, pp. 15601-15612
-
-
Lenz, S.A.P.1
Kellie, J.L.2
Wetmore, S.D.3
-
114
-
-
0031149139
-
How do DNA repair proteins locate damaged bases in the genome
-
Verdine GL, Bruner SD. 1997. How do DNA repair proteins locate damaged bases in the genome? Chem Biol 4: 329–34.
-
(1997)
Chem Biol
, vol.4
, pp. 329-334
-
-
Verdine, G.L.1
Bruner, S.D.2
-
115
-
-
84878667424
-
Activity and crystal structure of human thymine DNA glycosylase mutant N140A with 5-carboxylcytosine DNA at low pH
-
Hashimoto H, Zhang X, Cheng X. 2013. Activity and crystal structure of human thymine DNA glycosylase mutant N140A with 5-carboxylcytosine DNA at low pH. DNA Repair (Amst) 12: 535–40.
-
(2013)
DNA Repair (Amst)
, vol.12
, pp. 535-540
-
-
Hashimoto, H.1
Zhang, X.2
Cheng, X.3
-
116
-
-
84914817563
-
Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote
-
Guo F, Li X, Liang D, Li T, et al. 2014. Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote. Cell Stem Cell 15: 447–58.
-
(2014)
Cell Stem Cell
, vol.15
, pp. 447-458
-
-
Guo, F.1
Li, X.2
Liang, D.3
Li, T.4
-
117
-
-
79951810964
-
Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability
-
Cortazar D, Kunz C, Selfridge J, Lettieri T, et al. 2011. Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature 470: 419–23.
-
(2011)
Nature
, vol.470
, pp. 419-423
-
-
Cortazar, D.1
Kunz, C.2
Selfridge, J.3
Lettieri, T.4
-
118
-
-
78649487460
-
Variant base excision repair proteins: contributors to genomic instability
-
Nemec AA, Wallace SS, Sweasy JB. 2010. Variant base excision repair proteins: contributors to genomic instability. Semin Cancer Biol 20: 320–8.
-
(2010)
Semin Cancer Biol
, vol.20
, pp. 320-328
-
-
Nemec, A.A.1
Wallace, S.S.2
Sweasy, J.B.3
-
119
-
-
84956840247
-
Neil DNA glycosylases promote substrate turnover by Tdg during DNA demethylation
-
Schomacher L, Han D, Musheev MU, Arab K, et al. 2016. Neil DNA glycosylases promote substrate turnover by Tdg during DNA demethylation. Nat Struct Mol Biol 23: 116–24.
-
(2016)
Nat Struct Mol Biol
, vol.23
, pp. 116-124
-
-
Schomacher, L.1
Han, D.2
Musheev, M.U.3
Arab, K.4
-
120
-
-
32444434993
-
The metabolic syndrome resulting from a knockout of the NEIL1 DNA glycosylase
-
Vartanian V, Lowell B, Minko IG, Wood TG, et al. 2006. The metabolic syndrome resulting from a knockout of the NEIL1 DNA glycosylase. Proc Natl Acad Sci USA 103: 1864–9.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 1864-1869
-
-
Vartanian, V.1
Lowell, B.2
Minko, I.G.3
Wood, T.G.4
-
121
-
-
84943800916
-
Neil2-null mice accumulate oxidized DNA bases in the transcriptionally active sequences of the genome and are susceptible to innate inflammation
-
Chakraborty A, Wakamiya M, Venkova-Canova T, Pandita RK, et al. 2015. Neil2-null mice accumulate oxidized DNA bases in the transcriptionally active sequences of the genome and are susceptible to innate inflammation. J Biol Chem 290: 24636–48.
-
(2015)
J Biol Chem
, vol.290
, pp. 24636-24648
-
-
Chakraborty, A.1
Wakamiya, M.2
Venkova-Canova, T.3
Pandita, R.K.4
-
122
-
-
66449104386
-
Expression patterns of Neil3 during embryonic brain development and neoplasia
-
Hildrestrand GA, Neurauter CG, Diep DB, Castellanos CG, et al. 2009. Expression patterns of Neil3 during embryonic brain development and neoplasia. BMC Neurosci 10: 45.
-
(2009)
BMC Neurosci
, vol.10
, pp. 45
-
-
Hildrestrand, G.A.1
Neurauter, C.G.2
Diep, D.B.3
Castellanos, C.G.4
-
123
-
-
81755172871
-
Endonuclease VIII-like 3 (Neil3) DNA glycosylase promotes neurogenesis induced by hypoxia-ischemia
-
Sejersted Y, Hildrestrand GA, Kunke D, Rolseth V, et al. 2011. Endonuclease VIII-like 3 (Neil3) DNA glycosylase promotes neurogenesis induced by hypoxia-ischemia. Proc Natl Acad Sci USA 108: 18802–7.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 18802-18807
-
-
Sejersted, Y.1
Hildrestrand, G.A.2
Kunke, D.3
Rolseth, V.4
-
124
-
-
0033636312
-
Uracil-DNA glycosylase (UNG)-deficient mice reveal a primary role of the enzyme during DNA replication
-
Nilsen H, Rosewell I, Robins P, Skjelbred CF, et al. 2000. Uracil-DNA glycosylase (UNG)-deficient mice reveal a primary role of the enzyme during DNA replication. Mol Cell 5: 1059–65.
-
(2000)
Mol Cell
, vol.5
, pp. 1059-1065
-
-
Nilsen, H.1
Rosewell, I.2
Robins, P.3
Skjelbred, C.F.4
-
125
-
-
33847625356
-
Base damage and single-strand break repair: mechanisms and functional significance of short- and long-patch repair subpathways
-
Fortini P, Dogliotti E. 2007. Base damage and single-strand break repair: mechanisms and functional significance of short- and long-patch repair subpathways. DNA Repair 6: 398–409.
-
(2007)
DNA Repair
, vol.6
, pp. 398-409
-
-
Fortini, P.1
Dogliotti, E.2
-
126
-
-
0344604528
-
Genomic instability in Gadd45a-deficient mice
-
Hollander MC, Sheikh MS, Bulavin DV, Lundgren K, et al. 1999. Genomic instability in Gadd45a-deficient mice. Nat Genet 23: 176–84.
-
(1999)
Nat Genet
, vol.23
, pp. 176-184
-
-
Hollander, M.C.1
Sheikh, M.S.2
Bulavin, D.V.3
Lundgren, K.4
-
127
-
-
84861003268
-
GADD45 proteins: central players in tumorigenesis
-
Tamura RE, de Vasconcellos JF, Sarkar D, Libermann TA, et al. 2012. GADD45 proteins: central players in tumorigenesis. Curr Mol Med 12: 634–51.
-
(2012)
Curr Mol Med
, vol.12
, pp. 634-651
-
-
Tamura, R.E.1
de Vasconcellos, J.F.2
Sarkar, D.3
Libermann, T.A.4
-
128
-
-
84930225330
-
Gadd45a promotes DNA demethylation through TDG
-
Li Z, Gu TP, Weber AR, Shen JZ, et al. 2015. Gadd45a promotes DNA demethylation through TDG. Nucleic Acids Res 43: 3986–97.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 3986-3997
-
-
Li, Z.1
Gu, T.P.2
Weber, A.R.3
Shen, J.Z.4
-
129
-
-
66449083819
-
Conserved DNA methylation in Gadd45a(-/-) mice
-
Engel N, Tront JS, Erinle T, Nguyen N, et al. 2009. Conserved DNA methylation in Gadd45a(-/-) mice. Epigenetics 4: 98–9.
-
(2009)
Epigenetics
, vol.4
, pp. 98-99
-
-
Engel, N.1
Tront, J.S.2
Erinle, T.3
Nguyen, N.4
-
130
-
-
59849090498
-
TAF12 recruits Gadd45a and the nucleotide excision repair complex to the promoter of rRNA genes leading to active DNA demethylation
-
Schmitz K-M, Schmitt N, Hoffmann-Rohrer U, Schafer A, et al. 2009. TAF12 recruits Gadd45a and the nucleotide excision repair complex to the promoter of rRNA genes leading to active DNA demethylation. Mol Cell 33: 344–53.
-
(2009)
Mol Cell
, vol.33
, pp. 344-353
-
-
Schmitz, K.-M.1
Schmitt, N.2
Hoffmann-Rohrer, U.3
Schafer, A.4
-
131
-
-
0025917146
-
DNA unwinding produced by site-specific intrastrand cross-links of the antitumor drug cis-diamminedichloroplatinum(II)
-
Bellon SF, Coleman JH, Lippard SJ. 1991. DNA unwinding produced by site-specific intrastrand cross-links of the antitumor drug cis-diamminedichloroplatinum(II). Biochemistry 30: 8026–35.
-
(1991)
Biochemistry
, vol.30
, pp. 8026-8035
-
-
Bellon, S.F.1
Coleman, J.H.2
Lippard, S.J.3
-
132
-
-
84864722177
-
5-formylcytosine and 5-carboxylcytosine reduce the rate and substrate specificity of RNA polymerase II transcription
-
Kellinger MW, Song CX, Chong J, Lu XY, et al. 2012. 5-formylcytosine and 5-carboxylcytosine reduce the rate and substrate specificity of RNA polymerase II transcription. Nat Struct Mol Biol 19: 831–3.
-
(2012)
Nat Struct Mol Biol
, vol.19
, pp. 831-833
-
-
Kellinger, M.W.1
Song, C.X.2
Chong, J.3
Lu, X.Y.4
-
133
-
-
84938411464
-
Molecular basis for 5-carboxycytosine recognition by RNA polymerase II elongation complex
-
Wang L, Zhou Y, Xu L, Xiao R, et al. 2015. Molecular basis for 5-carboxycytosine recognition by RNA polymerase II elongation complex. Nature 523: 621–5.
-
(2015)
Nature
, vol.523
, pp. 621-625
-
-
Wang, L.1
Zhou, Y.2
Xu, L.3
Xiao, R.4
-
134
-
-
38049178545
-
Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects
-
Fousteri M, Mullenders LHF. 2008. Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects. Cell Res 18: 73–84.
-
(2008)
Cell Res
, vol.18
, pp. 73-84
-
-
Fousteri, M.1
Mullenders, L.H.F.2
-
135
-
-
33646187811
-
The multifaceted mismatch-repair system
-
Jiricny J. 2006. The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 7: 335–46.
-
(2006)
Nat Rev Mol Cell Biol
, vol.7
, pp. 335-346
-
-
Jiricny, J.1
-
136
-
-
84914818905
-
Tet3 and DNA replication mediate demethylation of both the maternal and paternal genomes in mouse zygotes
-
Shen L, Inoue A, He J, Liu Y, et al. 2014. Tet3 and DNA replication mediate demethylation of both the maternal and paternal genomes in mouse zygotes. Cell Stem Cell 15: 459–70.
-
(2014)
Cell Stem Cell
, vol.15
, pp. 459-470
-
-
Shen, L.1
Inoue, A.2
He, J.3
Liu, Y.4
-
137
-
-
79960064353
-
Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation
-
Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, et al. 2011. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20: 11–24.
-
(2011)
Cancer Cell
, vol.20
, pp. 11-24
-
-
Moran-Crusio, K.1
Reavie, L.2
Shih, A.3
Abdel-Wahab, O.4
-
138
-
-
84948446391
-
Acute loss of TET function results in aggressive myeloid cancer in mice
-
An J, Gonzalez-Avalos E, Chawla A, Jeong M, et al. 2015. Acute loss of TET function results in aggressive myeloid cancer in mice. Nat Commun 6: 10071.
-
(2015)
Nat Commun
, vol.6
, pp. 10071
-
-
An, J.1
Gonzalez-Avalos, E.2
Chawla, A.3
Jeong, M.4
-
139
-
-
84952874773
-
Combined Loss of Tet1 and Tet2 promotes B cell, but not myeloid malignancies, in mice
-
Zhao Z, Chen L, Dawlaty MM, Pan F, et al. 2015. Combined Loss of Tet1 and Tet2 promotes B cell, but not myeloid malignancies, in mice. Cell Rep 13: 1692–704.
-
(2015)
Cell Rep
, vol.13
, pp. 1692-1704
-
-
Zhao, Z.1
Chen, L.2
Dawlaty, M.M.3
Pan, F.4
-
140
-
-
84894230669
-
TET2 plays an essential role in erythropoiesis by regulating lineage-specific genes via DNA oxidative demethylation in a zebrafish model
-
Ge L, Zhang RP, Wan F, Guo DY, et al. 2014. TET2 plays an essential role in erythropoiesis by regulating lineage-specific genes via DNA oxidative demethylation in a zebrafish model. Mol Cell Biol 34: 989–1002.
-
(2014)
Mol Cell Biol
, vol.34
, pp. 989-1002
-
-
Ge, L.1
Zhang, R.P.2
Wan, F.3
Guo, D.Y.4
-
141
-
-
84961291997
-
A zebrafish model of myelodysplastic syndrome produced through tet2 genomic editing
-
Gjini E, Mansour MR, Sander JD, Moritz N, et al. 2015. A zebrafish model of myelodysplastic syndrome produced through tet2 genomic editing. Mol Cell Biol 35: 789–804.
-
(2015)
Mol Cell Biol
, vol.35
, pp. 789-804
-
-
Gjini, E.1
Mansour, M.R.2
Sander, J.D.3
Moritz, N.4
-
142
-
-
84856657348
-
TET2 mutations are associated with specific 5-methylcytosine and 5-hydroxymethylcytosine profiles in patients with chronic myelomonocytic leukemia
-
Perez C, Martinez-Calle N, Martin-Subero JI, Segura V, et al. 2012. TET2 mutations are associated with specific 5-methylcytosine and 5-hydroxymethylcytosine profiles in patients with chronic myelomonocytic leukemia. PLoS One 7: e31605.
-
(2012)
PLoS One
, vol.7
-
-
Perez, C.1
Martinez-Calle, N.2
Martin-Subero, J.I.3
Segura, V.4
-
143
-
-
84942881407
-
TET2 mutations affect non-CpG island DNA methylation at enhancers and transcription factor-binding sites in chronic myelomonocytic leukemia
-
Yamazaki J, Jelinek J, Lu Y, Cesaroni M, et al. 2015. TET2 mutations affect non-CpG island DNA methylation at enhancers and transcription factor-binding sites in chronic myelomonocytic leukemia. Cancer Res 75: 2833–43.
-
(2015)
Cancer Res
, vol.75
, pp. 2833-2843
-
-
Yamazaki, J.1
Jelinek, J.2
Lu, Y.3
Cesaroni, M.4
-
144
-
-
84964614586
-
Fumarate and succinate regulate expression of hypoxia-inducible genes via TET enzymes
-
Laukka T, Mariani CJ, Ihantola T, Cao JZ, et al. 2016. Fumarate and succinate regulate expression of hypoxia-inducible genes via TET enzymes. J Biol Chem 291: 4256–65.
-
(2016)
J Biol Chem
, vol.291
, pp. 4256-4265
-
-
Laukka, T.1
Mariani, C.J.2
Ihantola, T.3
Cao, J.Z.4
-
145
-
-
84989159124
-
Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition
-
Sciacovelli M, Goncalves E, Johnson TI, Zecchini VR, et al. 2016. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature 537: 544–547.
-
(2016)
Nature
, vol.537
, pp. 544-547
-
-
Sciacovelli, M.1
Goncalves, E.2
Johnson, T.I.3
Zecchini, V.R.4
-
146
-
-
78651463452
-
Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases
-
Xu W, Yang H, Liu Y, Yang Y, et al. 2011. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19: 17–30.
-
(2011)
Cancer Cell
, vol.19
, pp. 17-30
-
-
Xu, W.1
Yang, H.2
Liu, Y.3
Yang, Y.4
-
147
-
-
84862632865
-
Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors
-
Xiao M, Yang H, Xu W, Ma S, et al. 2012. Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev 26: 1326–38.
-
(2012)
Genes Dev
, vol.26
, pp. 1326-1338
-
-
Xiao, M.1
Yang, H.2
Xu, W.3
Ma, S.4
-
148
-
-
0025739817
-
Ascorbic acid: biologic functions and relation to cancer
-
Henson DE, Block G, Levine M. 1991. Ascorbic acid: biologic functions and relation to cancer. J Natl Cancer Inst 83: 547–50.
-
(1991)
J Natl Cancer Inst
, vol.83
, pp. 547-550
-
-
Henson, D.E.1
Block, G.2
Levine, M.3
-
149
-
-
84881476916
-
Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells
-
Blaschke K, Ebata KT, Karimi MM, Zepeda-Martinez JA, et al. 2013. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature 500: 222–6.
-
(2013)
Nature
, vol.500
, pp. 222-226
-
-
Blaschke, K.1
Ebata, K.T.2
Karimi, M.M.3
Zepeda-Martinez, J.A.4
-
150
-
-
77957264475
-
Vitamin C promotes widespread yet specific DNA demethylation of the epigenome in human embryonic stem cells
-
Chung T-L, Brena RM, Kolle G, Grimmond SM, et al. 2010. Vitamin C promotes widespread yet specific DNA demethylation of the epigenome in human embryonic stem cells. Stem Cells 28: 1848–55.
-
(2010)
Stem Cells
, vol.28
, pp. 1848-1855
-
-
Chung, T.-L.1
Brena, R.M.2
Kolle, G.3
Grimmond, S.M.4
-
151
-
-
84880344660
-
Ascorbic acid enhances Tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals
-
Yin R, Mao SQ, Zhao B, Chong Z, et al. 2013. Ascorbic acid enhances Tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals. J Am Chem Soc 135: 10396–403.
-
(2013)
J Am Chem Soc
, vol.135
, pp. 10396-10403
-
-
Yin, R.1
Mao, S.Q.2
Zhao, B.3
Chong, Z.4
-
152
-
-
84937538653
-
Regulation of the epigenome by Vitamin C
-
Young JI, Zuchner S, Wang G. 2015. Regulation of the epigenome by Vitamin C. Annu Rev Nutr 35: 545–64.
-
(2015)
Annu Rev Nutr
, vol.35
, pp. 545-564
-
-
Young, J.I.1
Zuchner, S.2
Wang, G.3
-
153
-
-
84875370281
-
NANOG-dependent function of TET1 and TET2 in establishment of pluripotency
-
Costa Y, Ding J, Theunissen TW, Faiola F, et al. 2013. NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature 495: 370–4.
-
(2013)
Nature
, vol.495
, pp. 370-374
-
-
Costa, Y.1
Ding, J.2
Theunissen, T.W.3
Faiola, F.4
-
154
-
-
84865486793
-
Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2
-
Doege CA, Inoue K, Yamashita T, Rhee DB, et al. 2012. Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature 488: 652–5.
-
(2012)
Nature
, vol.488
, pp. 652-655
-
-
Doege, C.A.1
Inoue, K.2
Yamashita, T.3
Rhee, D.B.4
-
155
-
-
85007203345
-
Vitamin C enhances epigenetic modifications induced by 5-azacytidine and cell cycle arrest in the hepatocellular carcinoma cell lines HLE and Huh7
-
Sajadian SO, Tripura C, Samani FS, Ruoss M, et al. 2016. Vitamin C enhances epigenetic modifications induced by 5-azacytidine and cell cycle arrest in the hepatocellular carcinoma cell lines HLE and Huh7. Clin Epigenetics 8: 46.
-
(2016)
Clin Epigenetics
, vol.8
, pp. 46
-
-
Sajadian, S.O.1
Tripura, C.2
Samani, F.S.3
Ruoss, M.4
-
156
-
-
84860749868
-
Tet family proteins and 5-hydroxymethylcytosine in development and disease
-
Tan L, Shi YG. 2012. Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development 139: 1895–902.
-
(2012)
Development
, vol.139
, pp. 1895-1902
-
-
Tan, L.1
Shi, Y.G.2
-
157
-
-
0015805627
-
Catalysis of three sequential dioxygenase reactions by thymine 7-hydroxylase
-
Liu CK, Hsu CA, Abbott MT. 1973. Catalysis of three sequential dioxygenase reactions by thymine 7-hydroxylase. Arch Biochem Biophys 159: 180–7.
-
(1973)
Arch Biochem Biophys
, vol.159
, pp. 180-187
-
-
Liu, C.K.1
Hsu, C.A.2
Abbott, M.T.3
-
158
-
-
0035834708
-
Definitive identification of mammalian 5-hydroxymethyluracil DNA N-glycosylase activity as SMUG1
-
Boorstein RJ, Cummings A, Jr., Marenstein DR, Chan MK, et al. 2001. Definitive identification of mammalian 5-hydroxymethyluracil DNA N-glycosylase activity as SMUG1. J Biol Chem 276: 41991–7.
-
(2001)
J Biol Chem
, vol.276
, pp. 41991-41997
-
-
Boorstein, R.J.1
Cummings, A.2
Marenstein, D.R.3
Chan, M.K.4
-
159
-
-
84860221291
-
Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation
-
Hashimoto H, Liu Y, Upadhyay AK, Chang Y, et al. 2012. Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res 40: 4841–9.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 4841-4849
-
-
Hashimoto, H.1
Liu, Y.2
Upadhyay, A.K.3
Chang, Y.4
-
160
-
-
0034687768
-
An unexpectedly high excision capacity for mispaired 5-hydroxymethyluracil in human cell extracts
-
Rusmintratip V, Sowers LC. 2000. An unexpectedly high excision capacity for mispaired 5-hydroxymethyluracil in human cell extracts. Proc Natl Acad Sci USA 97: 14183–7.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, pp. 14183-14187
-
-
Rusmintratip, V.1
Sowers, L.C.2
-
161
-
-
84902831568
-
Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA
-
Pfaffeneder T, Spada F, Wagner M, Brandmayr C, et al. 2014. Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA. Nat Chem Biol 10: 574–81.
-
(2014)
Nat Chem Biol
, vol.10
, pp. 574-581
-
-
Pfaffeneder, T.1
Spada, F.2
Wagner, M.3
Brandmayr, C.4
-
162
-
-
84912527399
-
Quantification of 5-methylcytosine, 5-hydroxymethylcytosine and 5-carboxylcytosine from the blood of cancer patients by an enzyme-based immunoassay
-
Chowdhury B, Cho IH, Hahn N, Irudayaraj J. 2014. Quantification of 5-methylcytosine, 5-hydroxymethylcytosine and 5-carboxylcytosine from the blood of cancer patients by an enzyme-based immunoassay. Anal Chim Acta 852: 212–7.
-
(2014)
Anal Chim Acta
, vol.852
, pp. 212-217
-
-
Chowdhury, B.1
Cho, I.H.2
Hahn, N.3
Irudayaraj, J.4
-
163
-
-
84956662519
-
Antibody diversification caused by disrupted mismatch repair and promiscuous DNA polymerases
-
Zanotti KJ, Gearhart PJ. 2016. Antibody diversification caused by disrupted mismatch repair and promiscuous DNA polymerases. DNA Repair 38: 110–6.
-
(2016)
DNA Repair
, vol.38
, pp. 110-116
-
-
Zanotti, K.J.1
Gearhart, P.J.2
|