메뉴 건너뛰기




Volumn 22, Issue 4, 2012, Pages 220-227

Active DNA demethylation by Gadd45 and DNA repair

Author keywords

[No Author keywords available]

Indexed keywords

GROWTH ARREST AND DNA DAMAGE INDUCIBLE PROTEIN 45; NUCLEOTIDE;

EID: 84859265962     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2012.01.002     Document Type: Review
Times cited : (211)

References (91)
  • 1
    • 70450217879 scopus 로고    scopus 로고
    • Human DNA methylomes at base resolution show widespread epigenomic differences
    • Lister R., et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009, 462:315-322.
    • (2009) Nature , vol.462 , pp. 315-322
    • Lister, R.1
  • 2
    • 0034625064 scopus 로고    scopus 로고
    • Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a
    • Ramsahoye B.H., et al. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:5237-5242.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 5237-5242
    • Ramsahoye, B.H.1
  • 3
    • 21244461137 scopus 로고    scopus 로고
    • Dynamic CpG and non-CpG methylation of the Peg1/Mest gene in the mouse oocyte and preimplantation embryo
    • Imamura T., et al. Dynamic CpG and non-CpG methylation of the Peg1/Mest gene in the mouse oocyte and preimplantation embryo. J. Biol. Chem. 2005, 280:20171-20175.
    • (2005) J. Biol. Chem. , vol.280 , pp. 20171-20175
    • Imamura, T.1
  • 4
    • 0036144048 scopus 로고    scopus 로고
    • DNA methylation patterns and epigenetic memory
    • Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002, 16:6-21.
    • (2002) Genes Dev. , vol.16 , pp. 6-21
    • Bird, A.1
  • 5
    • 0035839057 scopus 로고    scopus 로고
    • The role of DNA methylation in mammalian epigenetics
    • Jones P.A., Takai D. The role of DNA methylation in mammalian epigenetics. Science 2001, 293:1068-1070.
    • (2001) Science , vol.293 , pp. 1068-1070
    • Jones, P.A.1    Takai, D.2
  • 6
    • 21544474162 scopus 로고    scopus 로고
    • The controversial denouement of vertebrate DNA methylation research
    • Ehrlich M. The controversial denouement of vertebrate DNA methylation research. Biochemistry (Mosc) 2005, 70:568-575.
    • (2005) Biochemistry (Mosc) , vol.70 , pp. 568-575
    • Ehrlich, M.1
  • 7
    • 66149146320 scopus 로고    scopus 로고
    • Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
    • Tahiliani M., et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009, 324:930-935.
    • (2009) Science , vol.324 , pp. 930-935
    • Tahiliani, M.1
  • 8
    • 66149123748 scopus 로고    scopus 로고
    • The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain
    • Kriaucionis S., Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 2009, 324:929-930.
    • (2009) Science , vol.324 , pp. 929-930
    • Kriaucionis, S.1    Heintz, N.2
  • 9
    • 78650826181 scopus 로고    scopus 로고
    • Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates
    • Globisch D., et al. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS ONE 2010, 5:e15367.
    • (2010) PLoS ONE , vol.5
    • Globisch, D.1
  • 10
    • 78651280460 scopus 로고    scopus 로고
    • Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine
    • Song C.X., et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat. Biotechnol. 2011, 29:68-72.
    • (2011) Nat. Biotechnol. , vol.29 , pp. 68-72
    • Song, C.X.1
  • 11
    • 80052461558 scopus 로고    scopus 로고
    • Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine
    • Ito S., et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 2011, 333:1300-1303.
    • (2011) Science , vol.333 , pp. 1300-1303
    • Ito, S.1
  • 12
    • 12844278737 scopus 로고    scopus 로고
    • Processive methylation of hemimethylated CpG sites by mouse Dnmt1 DNA methyltransferase
    • Vilkaitis G., et al. Processive methylation of hemimethylated CpG sites by mouse Dnmt1 DNA methyltransferase. J. Biol. Chem. 2005, 280:64-72.
    • (2005) J. Biol. Chem. , vol.280 , pp. 64-72
    • Vilkaitis, G.1
  • 13
    • 60549088692 scopus 로고    scopus 로고
    • Active DNA demethylation and DNA repair
    • Niehrs C. Active DNA demethylation and DNA repair. Differentiation 2009, 77:1-11.
    • (2009) Differentiation , vol.77 , pp. 1-11
    • Niehrs, C.1
  • 14
    • 73349104113 scopus 로고    scopus 로고
    • Active DNA demethylation mediated by DNA glycosylases
    • Zhu J.K. Active DNA demethylation mediated by DNA glycosylases. Annu. Rev. Genet. 2009, 43:143-166.
    • (2009) Annu. Rev. Genet. , vol.43 , pp. 143-166
    • Zhu, J.K.1
  • 15
    • 59249109669 scopus 로고    scopus 로고
    • DNA demethylation by DNA repair
    • Gehring M., et al. DNA demethylation by DNA repair. Trends Genet. 2009, 25:82-90.
    • (2009) Trends Genet. , vol.25 , pp. 82-90
    • Gehring, M.1
  • 16
    • 77956095231 scopus 로고    scopus 로고
    • Active DNA demethylation: many roads lead to Rome
    • Wu S.C., Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat. Rev. Mol. Cell Biol. 2010, 11:607-620.
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , pp. 607-620
    • Wu, S.C.1    Zhang, Y.2
  • 17
    • 84860388901 scopus 로고    scopus 로고
    • Active DNA demethylation by oxidation and repair
    • Gong Z., Zhu J.K. Active DNA demethylation by oxidation and repair. Cell Res. 2011, 21:1649-1651.
    • (2011) Cell Res. , vol.21 , pp. 1649-1651
    • Gong, Z.1    Zhu, J.K.2
  • 18
    • 80052933429 scopus 로고    scopus 로고
    • DNA demethylation dynamics
    • Bhutani N., et al. DNA demethylation dynamics. Cell 2011, 146:866-872.
    • (2011) Cell , vol.146 , pp. 866-872
    • Bhutani, N.1
  • 19
    • 0034176639 scopus 로고    scopus 로고
    • Active demethylation of the paternal genome in the mouse zygote
    • Oswald J., et al. Active demethylation of the paternal genome in the mouse zygote. Curr. Biol. 2000, 10:475-478.
    • (2000) Curr. Biol. , vol.10 , pp. 475-478
    • Oswald, J.1
  • 20
    • 0034598784 scopus 로고    scopus 로고
    • Demethylation of the zygotic paternal genome
    • Mayer W., et al. Demethylation of the zygotic paternal genome. Nature 2000, 403:501-502.
    • (2000) Nature , vol.403 , pp. 501-502
    • Mayer, W.1
  • 21
    • 0019905063 scopus 로고
    • Presence of a DNA demethylating activity in the nucleus of murine erythroleukemic cells
    • Gjerset R.A., Martin D.W. Presence of a DNA demethylating activity in the nucleus of murine erythroleukemic cells. J. Biol. Chem. 1982, 257:8581-8583.
    • (1982) J. Biol. Chem. , vol.257 , pp. 8581-8583
    • Gjerset, R.A.1    Martin, D.W.2
  • 22
    • 33746807366 scopus 로고    scopus 로고
    • Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation
    • Agius F., et al. Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:11796-11801.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 11796-11801
    • Agius, F.1
  • 23
    • 0027310491 scopus 로고
    • Nuclear extracts of chicken embryos promote an active demethylation of DNA by excision repair of 5-methyldeoxycytidine
    • Jost J.P. Nuclear extracts of chicken embryos promote an active demethylation of DNA by excision repair of 5-methyldeoxycytidine. Proc. Natl. Acad. Sci. U.S.A. 1993, 90:4684-4688.
    • (1993) Proc. Natl. Acad. Sci. U.S.A. , vol.90 , pp. 4684-4688
    • Jost, J.P.1
  • 24
    • 0030572637 scopus 로고    scopus 로고
    • DNA demethylation in vitro: involvement of RNA
    • Weiss A., et al. DNA demethylation in vitro: involvement of RNA. Cell 1996, 86:709-718.
    • (1996) Cell , vol.86 , pp. 709-718
    • Weiss, A.1
  • 25
    • 75749142980 scopus 로고    scopus 로고
    • A role for the elongator complex in zygotic paternal genome demethylation
    • Okada Y., et al. A role for the elongator complex in zygotic paternal genome demethylation. Nature 2010, 463:554-558.
    • (2010) Nature , vol.463 , pp. 554-558
    • Okada, Y.1
  • 26
    • 79952713567 scopus 로고    scopus 로고
    • 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming
    • Wossidlo M., et al. 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat. Commun. 2011, 2:241.
    • (2011) Nat. Commun. , vol.2 , pp. 241
    • Wossidlo, M.1
  • 27
    • 79952763586 scopus 로고    scopus 로고
    • Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine
    • Iqbal K., et al. Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:3642-3647.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 3642-3647
    • Iqbal, K.1
  • 28
    • 77249148019 scopus 로고    scopus 로고
    • Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency
    • Popp C., et al. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 2010, 463:1101-1105.
    • (2010) Nature , vol.463 , pp. 1101-1105
    • Popp, C.1
  • 29
    • 77954345408 scopus 로고    scopus 로고
    • Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway
    • Hajkova P., et al. Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science 2010, 329:78-82.
    • (2010) Science , vol.329 , pp. 78-82
    • Hajkova, P.1
  • 30
    • 77649104794 scopus 로고    scopus 로고
    • Reprogramming towards pluripotency requires AID-dependent DNA demethylation
    • Bhutani N., et al. Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 2010, 463:1042-1047.
    • (2010) Nature , vol.463 , pp. 1042-1047
    • Bhutani, N.1
  • 31
    • 34248370597 scopus 로고    scopus 로고
    • Active tissue-specific DNA demethylation conferred by somatic cell nuclei in stable heterokaryons
    • Zhang F., et al. Active tissue-specific DNA demethylation conferred by somatic cell nuclei in stable heterokaryons. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:4395-4400.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 4395-4400
    • Zhang, F.1
  • 32
    • 33847614418 scopus 로고    scopus 로고
    • Covalent modification of DNA regulates memory formation
    • Miller C.A., Sweatt J.D. Covalent modification of DNA regulates memory formation. Neuron 2007, 53:857-869.
    • (2007) Neuron , vol.53 , pp. 857-869
    • Miller, C.A.1    Sweatt, J.D.2
  • 33
    • 0037340215 scopus 로고    scopus 로고
    • Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process
    • Bruniquel D., Schwartz R.H. Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nat. Immunol. 2003, 4:235-240.
    • (2003) Nat. Immunol. , vol.4 , pp. 235-240
    • Bruniquel, D.1    Schwartz, R.H.2
  • 34
    • 21544472099 scopus 로고    scopus 로고
    • DNA methylation and demethylation as targets for anticancer therapy
    • Szyf M. DNA methylation and demethylation as targets for anticancer therapy. Biochemistry (Mosc) 2005, 70:533-549.
    • (2005) Biochemistry (Mosc) , vol.70 , pp. 533-549
    • Szyf, M.1
  • 35
    • 26944485107 scopus 로고    scopus 로고
    • Preventing transcriptional gene silencing by active DNA demethylation
    • Kapoor A., et al. Preventing transcriptional gene silencing by active DNA demethylation. FEBS Lett. 2005, 579:5889-5898.
    • (2005) FEBS Lett. , vol.579 , pp. 5889-5898
    • Kapoor, A.1
  • 36
    • 60749094831 scopus 로고    scopus 로고
    • Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis
    • Ma D.K., et al. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 2009, 323:1074-1077.
    • (2009) Science , vol.323 , pp. 1074-1077
    • Ma, D.K.1
  • 37
    • 75749104729 scopus 로고    scopus 로고
    • DNMT1 maintains progenitor function in self-renewing somatic tissue
    • Sen G.L., et al. DNMT1 maintains progenitor function in self-renewing somatic tissue. Nature 2010, 463:563-567.
    • (2010) Nature , vol.463 , pp. 563-567
    • Sen, G.L.1
  • 38
    • 80053270332 scopus 로고    scopus 로고
    • Neuronal activity modifies the DNA methylation landscape in the adult brain
    • Guo J.U., et al. Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat. Neurosci. 2011, 14:1345-1351.
    • (2011) Nat. Neurosci. , vol.14 , pp. 1345-1351
    • Guo, J.U.1
  • 39
    • 77950443318 scopus 로고    scopus 로고
    • NER factors are recruited to active promoters and facilitate chromatin modification for transcription in the absence of exogenous genotoxic attack
    • Le May N., et al. NER factors are recruited to active promoters and facilitate chromatin modification for transcription in the absence of exogenous genotoxic attack. Mol. Cell 2010, 38:54-66.
    • (2010) Mol. Cell , vol.38 , pp. 54-66
    • Le May, N.1
  • 40
    • 81755171480 scopus 로고    scopus 로고
    • Gadd45a plays an essential role in active DNA demethylation during terminal osteogenic differentiation of adipose-derived mesenchymal stem cells
    • Zhang R.P., et al. Gadd45a plays an essential role in active DNA demethylation during terminal osteogenic differentiation of adipose-derived mesenchymal stem cells. J. Biol. Chem. 2011, 286:41083-41094.
    • (2011) J. Biol. Chem. , vol.286 , pp. 41083-41094
    • Zhang, R.P.1
  • 41
    • 80053917872 scopus 로고    scopus 로고
    • Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites
    • Maiti A., Drohat A.C. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J. Biol. Chem. 2011, 286:35334-35338.
    • (2011) J. Biol. Chem. , vol.286 , pp. 35334-35338
    • Maiti, A.1    Drohat, A.C.2
  • 42
    • 80052495940 scopus 로고    scopus 로고
    • Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA
    • He Y.F., et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 2011, 333:1303-1307.
    • (2011) Science , vol.333 , pp. 1303-1307
    • He, Y.F.1
  • 43
    • 79959937861 scopus 로고    scopus 로고
    • Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair
    • Cortellino S., et al. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 2011, 146:67-79.
    • (2011) Cell , vol.146 , pp. 67-79
    • Cortellino, S.1
  • 44
    • 33646473818 scopus 로고    scopus 로고
    • DEMETER and REPRESSOR OF SILENCING 1 encode 5-methylcytosine DNA glycosylases
    • Morales-Ruiz T., et al. DEMETER and REPRESSOR OF SILENCING 1 encode 5-methylcytosine DNA glycosylases. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:6853-6858.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 6853-6858
    • Morales-Ruiz, T.1
  • 45
    • 70350044885 scopus 로고    scopus 로고
    • DNA demethylation in hormone-induced transcriptional derepression
    • Kim M.S., et al. DNA demethylation in hormone-induced transcriptional derepression. Nature 2009, 461:1007-1012.
    • (2009) Nature , vol.461 , pp. 1007-1012
    • Kim, M.S.1
  • 46
    • 57649196594 scopus 로고    scopus 로고
    • DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45
    • Rai K., et al. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 2008, 135:1201-1212.
    • (2008) Cell , vol.135 , pp. 1201-1212
    • Rai, K.1
  • 47
    • 40449123137 scopus 로고    scopus 로고
    • Cyclical DNA methylation of a transcriptionally active promoter
    • Metivier R., et al. Cyclical DNA methylation of a transcriptionally active promoter. Nature 2008, 452:45-50.
    • (2008) Nature , vol.452 , pp. 45-50
    • Metivier, R.1
  • 48
    • 33846933274 scopus 로고    scopus 로고
    • Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation
    • Barreto G., et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 2007, 445:671-675.
    • (2007) Nature , vol.445 , pp. 671-675
    • Barreto, G.1
  • 49
    • 78649505459 scopus 로고    scopus 로고
    • Gemcitabine functions epigenetically by inhibiting repair mediated DNA demethylation
    • Schäfer A., et al. Gemcitabine functions epigenetically by inhibiting repair mediated DNA demethylation. PLoS ONE 2010, 5:e14060.
    • (2010) PLoS ONE , vol.5
    • Schäfer, A.1
  • 50
    • 59849090498 scopus 로고    scopus 로고
    • TAF12 recruits Gadd45a and the nucleotide excision repair complex to the promoter of rRNA genes leading to active DNA demethylation
    • Schmitz K.M., et al. TAF12 recruits Gadd45a and the nucleotide excision repair complex to the promoter of rRNA genes leading to active DNA demethylation. Mol. Cell 2009, 33:344-353.
    • (2009) Mol. Cell , vol.33 , pp. 344-353
    • Schmitz, K.M.1
  • 51
    • 77957659555 scopus 로고    scopus 로고
    • Cytidine deaminases: AIDing DNA demethylation?
    • Fritz E.L., Papavasiliou F.N. Cytidine deaminases: AIDing DNA demethylation?. Genes Dev. 2010, 24:2107-2114.
    • (2010) Genes Dev. , vol.24 , pp. 2107-2114
    • Fritz, E.L.1    Papavasiliou, F.N.2
  • 52
    • 81555214652 scopus 로고    scopus 로고
    • Burning off DNA methylation: new evidence for oxygen-dependent DNA demethylation
    • Jurkowski T.P., Jeltsch A. Burning off DNA methylation: new evidence for oxygen-dependent DNA demethylation. Chembiochem 2011, 12:2543-2545.
    • (2011) Chembiochem , vol.12 , pp. 2543-2545
    • Jurkowski, T.P.1    Jeltsch, A.2
  • 53
    • 80355126514 scopus 로고    scopus 로고
    • Epigenetic reprogramming: is deamination key to active DNA demethylation?
    • Teperek-Tkacz M., et al. Epigenetic reprogramming: is deamination key to active DNA demethylation?. Reproduction 2011, 142:621-632.
    • (2011) Reproduction , vol.142 , pp. 621-632
    • Teperek-Tkacz, M.1
  • 54
    • 5444238192 scopus 로고    scopus 로고
    • DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei
    • Simonsson S., Gurdon J. DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nat. Cell Biol. 2004, 6:984-990.
    • (2004) Nat. Cell Biol. , vol.6 , pp. 984-990
    • Simonsson, S.1    Gurdon, J.2
  • 55
    • 0038556509 scopus 로고
    • DNA damage-inducible transcripts in mammalian cells
    • Fornace A.J., et al. DNA damage-inducible transcripts in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 1988, 85:8800-8804.
    • (1988) Proc. Natl. Acad. Sci. U.S.A. , vol.85 , pp. 8800-8804
    • Fornace, A.J.1
  • 56
    • 0027078830 scopus 로고
    • Genotoxic-stress-response genes and growth-arrest genes: gadd, MyD, and other genes induced by treatments eliciting growth arrest
    • Fornace A.J., et al. Genotoxic-stress-response genes and growth-arrest genes: gadd, MyD, and other genes induced by treatments eliciting growth arrest. Ann. N. Y. Acad. Sci. 1992, 663:139-153.
    • (1992) Ann. N. Y. Acad. Sci. , vol.663 , pp. 139-153
    • Fornace, A.J.1
  • 57
    • 0029818965 scopus 로고    scopus 로고
    • Antisense GADD45 expression results in decreased DNA repair and sensitizes cells to UV-irradiation or cisplatin
    • Smith M.L., et al. Antisense GADD45 expression results in decreased DNA repair and sensitizes cells to UV-irradiation or cisplatin. Oncogene 1996, 13:2255-2263.
    • (1996) Oncogene , vol.13 , pp. 2255-2263
    • Smith, M.L.1
  • 58
    • 0034053780 scopus 로고    scopus 로고
    • P53-mediated DNA repair responses to UV radiation: studies of mouse cells lacking p53, p21, and/or gadd45 genes
    • Smith M.L., et al. p53-mediated DNA repair responses to UV radiation: studies of mouse cells lacking p53, p21, and/or gadd45 genes. Mol. Cell. Biol. 2000, 20:3705-3714.
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 3705-3714
    • Smith, M.L.1
  • 59
    • 4644303124 scopus 로고    scopus 로고
    • Gadd45 proteins induce G2/M arrest and modulate apoptosis in kidney cells exposed to hyperosmotic stress
    • Mak S.K., Kultz D. Gadd45 proteins induce G2/M arrest and modulate apoptosis in kidney cells exposed to hyperosmotic stress. J. Biol. Chem. 2004, 279:39075-39084.
    • (2004) J. Biol. Chem. , vol.279 , pp. 39075-39084
    • Mak, S.K.1    Kultz, D.2
  • 60
    • 0037048302 scopus 로고    scopus 로고
    • Genomic instability, centrosome amplification, cell cycle checkpoints and Gadd45a
    • Hollander M.C., Fornace A.J. Genomic instability, centrosome amplification, cell cycle checkpoints and Gadd45a. Oncogene 2002, 21:6228-6233.
    • (2002) Oncogene , vol.21 , pp. 6228-6233
    • Hollander, M.C.1    Fornace, A.J.2
  • 61
    • 0038246249 scopus 로고    scopus 로고
    • Loss of oncogenic H-ras-induced cell cycle arrest and p38 mitogen-activated protein kinase activation by disruption of Gadd45a
    • Bulavin D.V., et al. Loss of oncogenic H-ras-induced cell cycle arrest and p38 mitogen-activated protein kinase activation by disruption of Gadd45a. Mol. Cell. Biol. 2003, 23:3859-3871.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 3859-3871
    • Bulavin, D.V.1
  • 62
    • 0344604528 scopus 로고    scopus 로고
    • Genomic instability in Gadd45a-deficient mice
    • Hollander M.C., et al. Genomic instability in Gadd45a-deficient mice. Nat. Genet. 1999, 23:176-184.
    • (1999) Nat. Genet. , vol.23 , pp. 176-184
    • Hollander, M.C.1
  • 63
    • 27944451519 scopus 로고    scopus 로고
    • Gadd45 beta and Gadd45 gamma are critical for regulating autoimmunity
    • Liu L., et al. Gadd45 beta and Gadd45 gamma are critical for regulating autoimmunity. J. Exp. Med. 2005, 202:1341-1347.
    • (2005) J. Exp. Med. , vol.202 , pp. 1341-1347
    • Liu, L.1
  • 64
    • 27944502181 scopus 로고    scopus 로고
    • Hematopoietic cells from Gadd45a- and Gadd45b-deficient mice are sensitized to genotoxic-stress-induced apoptosis
    • Gupta M., et al. Hematopoietic cells from Gadd45a- and Gadd45b-deficient mice are sensitized to genotoxic-stress-induced apoptosis. Oncogene 2005, 24:7170-7179.
    • (2005) Oncogene , vol.24 , pp. 7170-7179
    • Gupta, M.1
  • 65
    • 0037115421 scopus 로고    scopus 로고
    • Gadd45a protects against UV irradiation-induced skin tumors, and promotes apoptosis and stress signaling via MAPK and p53
    • Hildesheim J., et al. Gadd45a protects against UV irradiation-induced skin tumors, and promotes apoptosis and stress signaling via MAPK and p53. Cancer Res. 2002, 62:7305-7315.
    • (2002) Cancer Res. , vol.62 , pp. 7305-7315
    • Hildesheim, J.1
  • 66
    • 66449083819 scopus 로고    scopus 로고
    • -/- mice
    • -/- mice. Epigenetics 2009, 4:98-99.
    • (2009) Epigenetics , vol.4 , pp. 98-99
    • Engel, N.1
  • 67
    • 41949136533 scopus 로고    scopus 로고
    • GADD45A does not promote DNA demethylation
    • Jin S., et al. GADD45A does not promote DNA demethylation. PLoS Genet. 2008, 4:1-9.
    • (2008) PLoS Genet. , vol.4 , pp. 1-9
    • Jin, S.1
  • 68
    • 84856031137 scopus 로고    scopus 로고
    • Growth arrest and DNA-damage-inducible, beta (GADD45b)-mediated DNA demethylation in major psychosis
    • Gavin D.P., et al. Growth arrest and DNA-damage-inducible, beta (GADD45b)-mediated DNA demethylation in major psychosis. Neuropsychopharmacology 2012, 37:531-542.
    • (2012) Neuropsychopharmacology , vol.37 , pp. 531-542
    • Gavin, D.P.1
  • 69
    • 36749082147 scopus 로고    scopus 로고
    • Base excision DNA repair defect in Gadd45a-deficient cells
    • Jung H.J., et al. Base excision DNA repair defect in Gadd45a-deficient cells. Oncogene 2007, 26:7517-7525.
    • (2007) Oncogene , vol.26 , pp. 7517-7525
    • Jung, H.J.1
  • 70
    • 0033023893 scopus 로고    scopus 로고
    • Gadd45, a p53-responsive stress protein, modifies DNA accessibility on damaged chromatin
    • Carrier F., et al. Gadd45, a p53-responsive stress protein, modifies DNA accessibility on damaged chromatin. Mol. Cell. Biol. 1999, 19:1673-1685.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 1673-1685
    • Carrier, F.1
  • 71
    • 0028569767 scopus 로고
    • Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen
    • Smith M.L., et al. Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science 1994, 266:1376-1380.
    • (1994) Science , vol.266 , pp. 1376-1380
    • Smith, M.L.1
  • 72
    • 24944549950 scopus 로고    scopus 로고
    • Deletion of XPC leads to lung tumors in mice and is associated with early events in human lung carcinogenesis
    • Hollander M.C., et al. Deletion of XPC leads to lung tumors in mice and is associated with early events in human lung carcinogenesis. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:13200-13205.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 13200-13205
    • Hollander, M.C.1
  • 73
    • 34247256517 scopus 로고    scopus 로고
    • XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: implications for Cockayne syndrome in XP-G/CS patients
    • Ito S., et al. XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: implications for Cockayne syndrome in XP-G/CS patients. Mol. Cell 2007, 26:231-243.
    • (2007) Mol. Cell , vol.26 , pp. 231-243
    • Ito, S.1
  • 74
    • 83855165536 scopus 로고    scopus 로고
    • True lies: the double life of the nucleotide excision repair factors in transcription and DNA repair
    • Le May N., et al. True lies: the double life of the nucleotide excision repair factors in transcription and DNA repair. J. Nucleic Acids 2010, 10.4061/2010/616342.
    • (2010) J. Nucleic Acids
    • Le May, N.1
  • 75
    • 33646589650 scopus 로고    scopus 로고
    • Cockayne syndrome B protein regulates the transcriptional program after UV irradiation
    • Proietti-De-Santis L., et al. Cockayne syndrome B protein regulates the transcriptional program after UV irradiation. EMBO J. 2006, 25:1915-1923.
    • (2006) EMBO J. , vol.25 , pp. 1915-1923
    • Proietti-De-Santis, L.1
  • 76
    • 80053538947 scopus 로고    scopus 로고
    • A DNA repair complex functions as an Oct4/Sox2 coactivator in embryonic stem cells
    • Fong Y.W., et al. A DNA repair complex functions as an Oct4/Sox2 coactivator in embryonic stem cells. Cell 2011, 147:120-131.
    • (2011) Cell , vol.147 , pp. 120-131
    • Fong, Y.W.1
  • 77
    • 0034720447 scopus 로고    scopus 로고
    • Gadd45 family proteins are coactivators of nuclear hormone receptors
    • Yi Y.W., et al. Gadd45 family proteins are coactivators of nuclear hormone receptors. Biochem. Biophys. Res. Commun. 2000, 272:193-198.
    • (2000) Biochem. Biophys. Res. Commun. , vol.272 , pp. 193-198
    • Yi, Y.W.1
  • 78
    • 80555136821 scopus 로고    scopus 로고
    • Gadd45beta is an inducible coactivator of transcription that facilitates rapid liver growth in mice
    • Tian J., et al. Gadd45beta is an inducible coactivator of transcription that facilitates rapid liver growth in mice. J. Clin. Invest. 2011, 121:4491-4502.
    • (2011) J. Clin. Invest. , vol.121 , pp. 4491-4502
    • Tian, J.1
  • 79
    • 35649018164 scopus 로고    scopus 로고
    • Acetylation-induced transcription is required for active DNA demethylation in methylation-silenced genes
    • D'Alessio A.C., et al. Acetylation-induced transcription is required for active DNA demethylation in methylation-silenced genes. Mol. Cell. Biol. 2007, 27:7462-7474.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 7462-7474
    • D'Alessio, A.C.1
  • 80
    • 84859364201 scopus 로고    scopus 로고
    • GADD45alpha inhibition of DNMT1 dependent DNA methylation during homology directed DNA repair
    • Lee B., et al. GADD45alpha inhibition of DNMT1 dependent DNA methylation during homology directed DNA repair. Nucleic Acids Res. 2011, 10.1093/nar/gkr1115.
    • (2011) Nucleic Acids Res.
    • Lee, B.1
  • 81
    • 55249089475 scopus 로고    scopus 로고
    • ROS3 is an RNA-binding protein required for DNA demethylation in Arabidopsis
    • Zheng X., et al. ROS3 is an RNA-binding protein required for DNA demethylation in Arabidopsis. Nature 2008, 455:1259-1262.
    • (2008) Nature , vol.455 , pp. 1259-1262
    • Zheng, X.1
  • 82
    • 79251559403 scopus 로고    scopus 로고
    • Gadd45a is an RNA binding protein and is localized in nuclear speckles
    • Sytnikova Y.A., et al. Gadd45a is an RNA binding protein and is localized in nuclear speckles. PLoS ONE 2011, 6:e14500.
    • (2011) PLoS ONE , vol.6
    • Sytnikova, Y.A.1
  • 83
    • 0033529121 scopus 로고    scopus 로고
    • Association with Cdc2 and inhibition of Cdc2/Cyclin B1 kinase activity by the p53-regulated protein Gadd45
    • Zhan Q., et al. Association with Cdc2 and inhibition of Cdc2/Cyclin B1 kinase activity by the p53-regulated protein Gadd45. Oncogene 1999, 18:2892-2900.
    • (1999) Oncogene , vol.18 , pp. 2892-2900
    • Zhan, Q.1
  • 84
    • 0036324977 scopus 로고    scopus 로고
    • GADD45b and GADD45g are cdc2/cyclinB1 kinase inhibitors with a role in S and G2/M cell cycle checkpoints induced by genotoxic stress
    • Vairapandi M., et al. GADD45b and GADD45g are cdc2/cyclinB1 kinase inhibitors with a role in S and G2/M cell cycle checkpoints induced by genotoxic stress. J. Cell. Physiol. 2002, 192:327-338.
    • (2002) J. Cell. Physiol. , vol.192 , pp. 327-338
    • Vairapandi, M.1
  • 85
    • 0035951829 scopus 로고    scopus 로고
    • Interaction of CR6 (GADD45gamma) with proliferating cell nuclear antigen impedes negative growth control
    • Azam N., et al. Interaction of CR6 (GADD45gamma) with proliferating cell nuclear antigen impedes negative growth control. J. Biol. Chem. 2001, 276:2766-2774.
    • (2001) J. Biol. Chem. , vol.276 , pp. 2766-2774
    • Azam, N.1
  • 86
    • 0028793807 scopus 로고
    • Gadd45 is a nuclear cell cycle regulated protein which interacts with p21Cip1
    • Kearsey J.M., et al. Gadd45 is a nuclear cell cycle regulated protein which interacts with p21Cip1. Oncogene 1995, 11:1675-1683.
    • (1995) Oncogene , vol.11 , pp. 1675-1683
    • Kearsey, J.M.1
  • 87
    • 0032514967 scopus 로고    scopus 로고
    • A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK
    • Takekawa M., Saito H. A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell 1998, 95:521-530.
    • (1998) Cell , vol.95 , pp. 521-530
    • Takekawa, M.1    Saito, H.2
  • 88
    • 77951745847 scopus 로고    scopus 로고
    • Overexpression of the growth arrest and DNA damage-induced 45alpha gene contributes to autoimmunity by promoting DNA demethylation in lupus T cells
    • Li Y., et al. Overexpression of the growth arrest and DNA damage-induced 45alpha gene contributes to autoimmunity by promoting DNA demethylation in lupus T cells. Arthritis Rheum. 2010, 62:1438-1447.
    • (2010) Arthritis Rheum. , vol.62 , pp. 1438-1447
    • Li, Y.1
  • 90
    • 0035895504 scopus 로고    scopus 로고
    • Human DNA repair genes
    • Wood R.D., et al. Human DNA repair genes. Science 2001, 291:1284-1289.
    • (2001) Science , vol.291 , pp. 1284-1289
    • Wood, R.D.1
  • 91
    • 21744452376 scopus 로고    scopus 로고
    • Cancer in xeroderma pigmentosum and related disorders of DNA repair
    • Cleaver J.E. Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nat. Rev. Cancer 2005, 5:564-573.
    • (2005) Nat. Rev. Cancer , vol.5 , pp. 564-573
    • Cleaver, J.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.