메뉴 건너뛰기




Volumn 119, Issue 51, 2015, Pages 15601-15612

Glycosidic Bond Cleavage in DNA Nucleosides: Effect of Nucleobase Damage and Activation on the Mechanism and Barrier

Author keywords

[No Author keywords available]

Indexed keywords

BIOMOLECULES; CHEMICAL ACTIVATION; CHEMICAL BONDS; DENSITY FUNCTIONAL THEORY; DISSOCIATION; REDUCTION; REPAIR; STABILITY; SUGARS; SURFACE REACTIONS;

EID: 84952342375     PISSN: 15206106     EISSN: 15205207     Source Type: Journal    
DOI: 10.1021/acs.jpcb.5b10337     Document Type: Article
Times cited : (15)

References (84)
  • 1
    • 84865093016 scopus 로고    scopus 로고
    • Base Excision Repair and Cancer
    • Wallace, S. S.; Murphy, D. L.; Sweasy, J. B. Base Excision Repair and Cancer Cancer Lett. 2012, 327 (1-2) 73-89 10.1016/j.canlet.2011.12.038
    • (2012) Cancer Lett. , vol.327 , Issue.12 , pp. 73-89
    • Wallace, S.S.1    Murphy, D.L.2    Sweasy, J.B.3
  • 2
    • 79957456954 scopus 로고    scopus 로고
    • Base Excision Repair and Lesion-Dependent Subpathways for Repair of Oxidative DNA Damage
    • Svilar, D.; Goellner, E. M.; Almeida, K. H.; Sobol, R. W. Base Excision Repair and Lesion-Dependent Subpathways for Repair of Oxidative DNA Damage Antioxid. Redox Signaling 2011, 14 (12) 2491-2507 10.1089/ars.2010.3466
    • (2011) Antioxid. Redox Signaling , vol.14 , Issue.12 , pp. 2491-2507
    • Svilar, D.1    Goellner, E.M.2    Almeida, K.H.3    Sobol, R.W.4
  • 3
    • 84867466090 scopus 로고    scopus 로고
    • Oxidatively Induced DNA Damage: Mechanisms, Repair and Disease
    • Dizdaroglu, M. Oxidatively Induced DNA Damage: Mechanisms, Repair and Disease Cancer Lett. 2012, 327 (1-2) 26-47 10.1016/j.canlet.2012.01.016
    • (2012) Cancer Lett. , vol.327 , Issue.12 , pp. 26-47
    • Dizdaroglu, M.1
  • 4
    • 84859749531 scopus 로고    scopus 로고
    • DNA Glycosylases: In DNA Repair and beyond
    • Jacobs, A. L.; Schar, P. DNA Glycosylases: In DNA Repair and Beyond Chromosoma 2012, 121 (1) 1-20 10.1007/s00412-011-0347-4
    • (2012) Chromosoma , vol.121 , Issue.1 , pp. 1-20
    • Jacobs, A.L.1    Schar, P.2
  • 5
    • 33644635257 scopus 로고    scopus 로고
    • Toward a Detailed Understanding of Base Excision Repair Enzymes: Transition State and Mechanistic Analyses of N-Glycoside Hydrolysis and N-Glycoside Transfer
    • Berti, P. J.; McCann, J. A. B. Toward a Detailed Understanding of Base Excision Repair Enzymes: Transition State and Mechanistic Analyses of N-Glycoside Hydrolysis and N-Glycoside Transfer Chem. Rev. 2006, 106 (2) 506-555 10.1021/cr040461t
    • (2006) Chem. Rev. , vol.106 , Issue.2 , pp. 506-555
    • Berti, P.J.1    McCann, J.A.B.2
  • 6
    • 42649085059 scopus 로고    scopus 로고
    • Transition-State Analysis of the DNA Repair Enzyme MutY
    • McCann, J. A. B.; Berti, P. J. Transition-State Analysis of the DNA Repair Enzyme MutY J. Am. Chem. Soc. 2008, 130 (17) 5789-5797 10.1021/ja711363s
    • (2008) J. Am. Chem. Soc. , vol.130 , Issue.17 , pp. 5789-5797
    • McCann, J.A.B.1    Berti, P.J.2
  • 7
    • 1642411206 scopus 로고    scopus 로고
    • Dissecting the Broad Substrate Specificity of Human 3-Methyladenine-DNA Glycosylase
    • O'Brien, P. J.; Ellenberger, T. Dissecting the Broad Substrate Specificity of Human 3-Methyladenine-DNA Glycosylase J. Biol. Chem. 2004, 279 (11) 9750-9757 10.1074/jbc.M312232200
    • (2004) J. Biol. Chem. , vol.279 , Issue.11 , pp. 9750-9757
    • O'Brien, P.J.1    Ellenberger, T.2
  • 8
    • 80051788353 scopus 로고    scopus 로고
    • Profiling Base Excision Repair Glycosylases with Synthesized Transition State Analogs
    • Chu, A. M.; Fettinger, J. C.; David, S. S. Profiling Base Excision Repair Glycosylases with Synthesized Transition State Analogs Bioorg. Med. Chem. Lett. 2011, 21 (17) 4969-4972 10.1016/j.bmcl.2011.05.085
    • (2011) Bioorg. Med. Chem. Lett. , vol.21 , Issue.17 , pp. 4969-4972
    • Chu, A.M.1    Fettinger, J.C.2    David, S.S.3
  • 9
    • 75749127253 scopus 로고    scopus 로고
    • Uracil-DNA Glycosylase: Structural, Thermodynamic and Kinetic Aspects of Lesion Search and Recognition
    • Zharkov, D. O.; Mechetin, G. V.; Nevinsky, G. A. Uracil-DNA Glycosylase: Structural, Thermodynamic and Kinetic Aspects of Lesion Search and Recognition Mutat. Res., Fundam. Mol. Mech. Mutagen. 2010, 685 (1-2) 11-20 10.1016/j.mrfmmm.2009.10.017
    • (2010) Mutat. Res., Fundam. Mol. Mech. Mutagen. , vol.685 , Issue.12 , pp. 11-20
    • Zharkov, D.O.1    Mechetin, G.V.2    Nevinsky, G.A.3
  • 10
    • 0033554424 scopus 로고    scopus 로고
    • Role of Electrophilic and General Base Catalysis in the Mechanism of Escherichia Coli Uracil DNA Glycosylase
    • Drohat, A. C.; Jagadeesh, J.; Ferguson, E.; Stivers, J. T. Role of Electrophilic and General Base Catalysis in the Mechanism of Escherichia Coli Uracil DNA Glycosylase Biochemistry 1999, 38 (37) 11866-11875 10.1021/bi9910878
    • (1999) Biochemistry , vol.38 , Issue.37 , pp. 11866-11875
    • Drohat, A.C.1    Jagadeesh, J.2    Ferguson, E.3    Stivers, J.T.4
  • 11
    • 0000476915 scopus 로고
    • An N-Glycosidase from Eschirichia Coli That Releases Free Uracil from DNA Containing Deaminated Cytosine Residues
    • Lindahl, T. An N-Glycosidase from Eschirichia Coli That Releases Free Uracil from DNA Containing Deaminated Cytosine Residues Proc. Natl. Acad. Sci. U. S. A. 1974, 71 (9) 3649-3653 10.1073/pnas.71.9.3649
    • (1974) Proc. Natl. Acad. Sci. U. S. A. , vol.71 , Issue.9 , pp. 3649-3653
    • Lindahl, T.1
  • 12
    • 73249131232 scopus 로고    scopus 로고
    • Atomic Substitution Reveals the Structural Basis for Substrate Adenine Recognition and Removal by Adenine DNA Glycosylase
    • Lee, S.; Verdine, G. L. Atomic Substitution Reveals the Structural Basis for Substrate Adenine Recognition and Removal by Adenine DNA Glycosylase Proc. Natl. Acad. Sci. U. S. A. 2009, 106 (44) 18497-18502 10.1073/pnas.0902908106
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , Issue.44 , pp. 18497-18502
    • Lee, S.1    Verdine, G.L.2
  • 13
    • 55149093638 scopus 로고    scopus 로고
    • Repair of Deaminated Base Damage by Schizosaccharomyces Pombe Thymine DNA Glycosylase
    • Dong, L.; Mi, R.; Glass, R. A.; Barry, J. N.; Cao, W. Repair of Deaminated Base Damage by Schizosaccharomyces Pombe Thymine DNA Glycosylase DNA Repair 2008, 7 (12) 1962-1972 10.1016/j.dnarep.2008.08.006
    • (2008) DNA Repair , vol.7 , Issue.12 , pp. 1962-1972
    • Dong, L.1    Mi, R.2    Glass, R.A.3    Barry, J.N.4    Cao, W.5
  • 14
    • 33846885029 scopus 로고    scopus 로고
    • Substrate Specificity of Human Thymine-DNA Glycosylase on Exocyclic Cytosine Adducts
    • Hang, B.; Guliaev, A. B. Substrate Specificity of Human Thymine-DNA Glycosylase on Exocyclic Cytosine Adducts Chem.-Biol. Interact. 2007, 165 (3) 230-238 10.1016/j.cbi.2006.12.013
    • (2007) Chem.-Biol. Interact. , vol.165 , Issue.3 , pp. 230-238
    • Hang, B.1    Guliaev, A.B.2
  • 15
    • 0034625082 scopus 로고    scopus 로고
    • Uracil-DNA Glycosylase-DNA Substrate and Product Structures: Conformational Strain Promotes Catalytic Efficiency by Coupled Stereoelectronic Effects
    • Parikh, S. S.; Walcher, G.; Jones, G. D.; Slupphaug, G.; Krokan, H. E.; Blackburn, G. M.; Tainer, J. A. Uracil-DNA Glycosylase-DNA Substrate and Product Structures: Conformational Strain Promotes Catalytic Efficiency by Coupled Stereoelectronic Effects Proc. Natl. Acad. Sci. U. S. A. 2000, 97 (10) 5083-5088 10.1073/pnas.97.10.5083
    • (2000) Proc. Natl. Acad. Sci. U. S. A. , vol.97 , Issue.10 , pp. 5083-5088
    • Parikh, S.S.1    Walcher, G.2    Jones, G.D.3    Slupphaug, G.4    Krokan, H.E.5    Blackburn, G.M.6    Tainer, J.A.7
  • 16
    • 84862497076 scopus 로고    scopus 로고
    • 8-Oxoguanine DNA Glycosylases: One Lesion, Three Subfamilies
    • Faucher, F.; Doublié, S.; Jia, Z. 8-Oxoguanine DNA Glycosylases: One Lesion, Three Subfamilies Int. J. Mol. Sci. 2012, 13 (6) 6711-6729 10.3390/ijms13066711
    • (2012) Int. J. Mol. Sci. , vol.13 , Issue.6 , pp. 6711-6729
    • Faucher, F.1    Doublié, S.2    Jia, Z.3
  • 17
    • 84908450138 scopus 로고    scopus 로고
    • Structural Features of the Interaction between Human 8-Oxoguanine DNA Glycosylase hOgg1 and DNA
    • Koval, V. V.; Knorre, D. G.; Fedorova, O. S. Structural Features of the Interaction between Human 8-Oxoguanine DNA Glycosylase hOgg1 and DNA Acta Naturae 2014, 6 (3) 52-65
    • (2014) Acta Naturae , vol.6 , Issue.3 , pp. 52-65
    • Koval, V.V.1    Knorre, D.G.2    Fedorova, O.S.3
  • 18
    • 0034610336 scopus 로고    scopus 로고
    • Molecular Basis for Discriminating between Normal and Damaged Bases by the Human Alkyladenine Glycosylase, Aag
    • Lau, A. Y.; Wyatt, M. D.; Glassner, B. J.; Samson, L. D.; Ellenberger, T. Molecular Basis for Discriminating between Normal and Damaged Bases by the Human Alkyladenine Glycosylase, Aag Proc. Natl. Acad. Sci. U. S. A. 2000, 97 (25) 13573-13578 10.1073/pnas.97.25.13573
    • (2000) Proc. Natl. Acad. Sci. U. S. A. , vol.97 , Issue.25 , pp. 13573-13578
    • Lau, A.Y.1    Wyatt, M.D.2    Glassner, B.J.3    Samson, L.D.4    Ellenberger, T.5
  • 19
    • 84856695671 scopus 로고    scopus 로고
    • Structural Characterization of Viral Ortholog of Human DNA Glycosylase NEIL1 Bound to Thymine Glycol or 5-Hydroxyuracil-Containing DNA
    • Imamura, K.; Averill, A.; Wallace, S. S.; Doublie, S. Structural Characterization of Viral Ortholog of Human DNA Glycosylase NEIL1 Bound to Thymine Glycol or 5-Hydroxyuracil-Containing DNA J. Biol. Chem. 2012, 287 (6) 4288-4298 10.1074/jbc.M111.315309
    • (2012) J. Biol. Chem. , vol.287 , Issue.6 , pp. 4288-4298
    • Imamura, K.1    Averill, A.2    Wallace, S.S.3    Doublie, S.4
  • 20
    • 0034666313 scopus 로고    scopus 로고
    • Substrate Specificity and Reaction Mechanism of Murine 8-Oxoguanine-DNA Glycosylase
    • Zharkov, D. O.; Rosenquist, T. A.; Gerchman, S. E.; Grollman, A. P. Substrate Specificity and Reaction Mechanism of Murine 8-Oxoguanine-DNA Glycosylase J. Biol. Chem. 2000, 275 (37) 28607-28617 10.1074/jbc.M002441200
    • (2000) J. Biol. Chem. , vol.275 , Issue.37 , pp. 28607-28617
    • Zharkov, D.O.1    Rosenquist, T.A.2    Gerchman, S.E.3    Grollman, A.P.4
  • 21
    • 84861398910 scopus 로고    scopus 로고
    • Role of Environment for Catalysis of the DNA Repair Enzyme MutY
    • Brunk, E.; Arey, J. S.; Rothlisberger, U. Role of Environment for Catalysis of the DNA Repair Enzyme MutY J. Am. Chem. Soc. 2012, 134 (20) 8608-8616 10.1021/ja301714j
    • (2012) J. Am. Chem. Soc. , vol.134 , Issue.20 , pp. 8608-8616
    • Brunk, E.1    Arey, J.S.2    Rothlisberger, U.3
  • 22
    • 80053510209 scopus 로고    scopus 로고
    • Modeling the Chemical Step Utilized by Human Alkyladenine DNA Glycosylase: A Concerted Mechanism AIDS in Selectively Excising Damaged Purines
    • Rutledge, L. R.; Wetmore, S. D. Modeling the Chemical Step Utilized by Human Alkyladenine DNA Glycosylase: A Concerted Mechanism Aids in Selectively Excising Damaged Purines J. Am. Chem. Soc. 2011, 133, 16258-16269 10.1021/ja207181c
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 16258-16269
    • Rutledge, L.R.1    Wetmore, S.D.2
  • 23
    • 84889241044 scopus 로고    scopus 로고
    • Standard Role for a Conserved Aspartate or More Direct Involvement in Deglycosylation? An ONIOM and MD Investigation of Adenine-DNA Glycosylase
    • Kellie, J. L.; Wilson, K. A.; Wetmore, S. D. Standard Role for a Conserved Aspartate or More Direct Involvement in Deglycosylation? An ONIOM and MD Investigation of Adenine-DNA Glycosylase Biochemistry 2013, 52 (48) 8753-8765 10.1021/bi401310w
    • (2013) Biochemistry , vol.52 , Issue.48 , pp. 8753-8765
    • Kellie, J.L.1    Wilson, K.A.2    Wetmore, S.D.3
  • 24
    • 78149279933 scopus 로고    scopus 로고
    • Promiscuous DNA Alkyladenine Glycosylase Dramatically Favors a Bound Lesion over Undamaged Adenine
    • Alexandrova, A. N. Promiscuous DNA Alkyladenine Glycosylase Dramatically Favors a Bound Lesion over Undamaged Adenine Biophys. Chem. 2010, 152 (1-3) 118-127 10.1016/j.bpc.2010.08.007
    • (2010) Biophys. Chem. , vol.152 , Issue.13 , pp. 118-127
    • Alexandrova, A.N.1
  • 25
    • 84933074351 scopus 로고    scopus 로고
    • An ONIOM and MD Investigation of Possible Monofunctional Activity of Human 8-Oxoguanine-DNA Glycosylase (hOgg1)
    • Kellie, J. L.; Wilson, K. A.; Wetmore, S. D. An ONIOM and MD Investigation of Possible Monofunctional Activity of Human 8-Oxoguanine-DNA Glycosylase (hOgg1) J. Phys. Chem. B 2015, 119 (25) 8013-8023 10.1021/acs.jpcb.5b04051
    • (2015) J. Phys. Chem. B , vol.119 , Issue.25 , pp. 8013-8023
    • Kellie, J.L.1    Wilson, K.A.2    Wetmore, S.D.3
  • 26
    • 84939237071 scopus 로고    scopus 로고
    • Unraveling the Base Excision Repair Mechanism of Human DNA Glycosylase
    • Sadeghian, K.; Ochsenfeld, C. Unraveling the Base Excision Repair Mechanism of Human DNA Glycosylase J. Am. Chem. Soc. 2015, 137 (31) 9824-9831 10.1021/jacs.5b01449
    • (2015) J. Am. Chem. Soc. , vol.137 , Issue.31 , pp. 9824-9831
    • Sadeghian, K.1    Ochsenfeld, C.2
  • 27
    • 84934880949 scopus 로고    scopus 로고
    • A Base-Independent Repair Mechanism for DNA Glycosylase¯No Discrimination within the Active Site
    • Blank, I. D.; Sadeghian, K.; Ochsenfeld, C. A Base-Independent Repair Mechanism for DNA Glycosylase¯No Discrimination within the Active Site Sci. Rep. 2015, 5, 10369 10.1038/srep10369
    • (2015) Sci. Rep. , vol.5 , pp. 10369
    • Blank, I.D.1    Sadeghian, K.2    Ochsenfeld, C.3
  • 29
    • 84942317152 scopus 로고    scopus 로고
    • Mechanism of the Glycosidic Bond Cleavage of Mismatched Thymine in Human Thymine DNA Glycosylase Revealed by Classical Molecular Dynamics and Quantum Mechanical/Molecular Mechanical Calculations
    • Kanaan, N.; Crehuet, R.; Imhof, P. Mechanism of the Glycosidic Bond Cleavage of Mismatched Thymine in Human Thymine DNA Glycosylase Revealed by Classical Molecular Dynamics and Quantum Mechanical/Molecular Mechanical Calculations J. Phys. Chem. B 2015, 119 (38) 12365-12380 10.1021/acs.jpcb.5b05496
    • (2015) J. Phys. Chem. B , vol.119 , Issue.38 , pp. 12365-12380
    • Kanaan, N.1    Crehuet, R.2    Imhof, P.3
  • 30
    • 79955826385 scopus 로고    scopus 로고
    • A QM/QM Investigation of the hUNG2 Reaction Surface: The Untold Tale of a Catalytic Residue
    • Przybylski, J. L.; Wetmore, S. D. A QM/QM Investigation of the hUNG2 Reaction Surface: The Untold Tale of a Catalytic Residue Biochemistry 2011, 50 (19) 4218-4227 10.1021/bi2003394
    • (2011) Biochemistry , vol.50 , Issue.19 , pp. 4218-4227
    • Przybylski, J.L.1    Wetmore, S.D.2
  • 31
    • 34248204233 scopus 로고    scopus 로고
    • A Kinetic and Thermodynamic Study of the Glycosidic Bond Cleavage in Deoxyuridine
    • Millen, A. L.; Archibald, L. A. B.; Hunter, K. C.; Wetmore, S. D. A Kinetic and Thermodynamic Study of the Glycosidic Bond Cleavage in Deoxyuridine J. Phys. Chem. B 2007, 111 (14) 3800-3812 10.1021/jp063841m
    • (2007) J. Phys. Chem. B , vol.111 , Issue.14 , pp. 3800-3812
    • Millen, A.L.1    Archibald, L.A.B.2    Hunter, K.C.3    Wetmore, S.D.4
  • 32
    • 68349121682 scopus 로고    scopus 로고
    • Glycosidic Bond Cleavage in Deoxynucleotides - A Density Functional Study
    • Millen, A. L.; Wetmore, S. D. Glycosidic Bond Cleavage in Deoxynucleotides-a Density Functional Study Can. J. Chem. 2009, 87 (7) 850-863 10.1139/V09-024
    • (2009) Can. J. Chem. , vol.87 , Issue.7 , pp. 850-863
    • Millen, A.L.1    Wetmore, S.D.2
  • 33
    • 66349138235 scopus 로고    scopus 로고
    • Designing an Appropriate Computational Model for DNA Nucleoside Hydrolysis: A Case Study of 2′-Deoxyuridine
    • Przybylski, J. L.; Wetmore, S. D. Designing an Appropriate Computational Model for DNA Nucleoside Hydrolysis: A Case Study of 2′-Deoxyuridine J. Phys. Chem. B 2009, 113 (18) 6533-6542 10.1021/jp810472q
    • (2009) J. Phys. Chem. B , vol.113 , Issue.18 , pp. 6533-6542
    • Przybylski, J.L.1    Wetmore, S.D.2
  • 34
    • 75649133217 scopus 로고    scopus 로고
    • Modeling the Dissociative Hydrolysis of the Natural DNA Nucleosides
    • Przybylski, J. L.; Wetmore, S. D. Modeling the Dissociative Hydrolysis of the Natural DNA Nucleosides J. Phys. Chem. B 2010, 114 (2) 1104-1113 10.1021/jp9098717
    • (2010) J. Phys. Chem. B , vol.114 , Issue.2 , pp. 1104-1113
    • Przybylski, J.L.1    Wetmore, S.D.2
  • 35
    • 77649096674 scopus 로고    scopus 로고
    • Effects of Nucleophile, Oxidative Damage, and Nucleobase Orientation on the Glycosidic Bond Cleavage in Deoxyguanosine
    • Shim, E. J.; Przybylski, J. L.; Wetmore, S. D. Effects of Nucleophile, Oxidative Damage, and Nucleobase Orientation on the Glycosidic Bond Cleavage in Deoxyguanosine J. Phys. Chem. B 2010, 114 (6) 2319-2326 10.1021/jp9113656
    • (2010) J. Phys. Chem. B , vol.114 , Issue.6 , pp. 2319-2326
    • Shim, E.J.1    Przybylski, J.L.2    Wetmore, S.D.3
  • 36
    • 84857719559 scopus 로고    scopus 로고
    • Combined Effects of π-π Stacking and Hydrogen Bonding on the (N1) Acidity of Uracil and Hydrolysis of 2′-Deoxyuridine
    • Kellie, J. L.; Navarro-Whyte, L.; Carvey, M. T.; Wetmore, S. D. Combined Effects of π-π Stacking and Hydrogen Bonding on the (N1) Acidity of Uracil and Hydrolysis of 2′-Deoxyuridine J. Phys. Chem. B 2012, 116 (8) 2622-2632 10.1021/jp2121627
    • (2012) J. Phys. Chem. B , vol.116 , Issue.8 , pp. 2622-2632
    • Kellie, J.L.1    Navarro-Whyte, L.2    Carvey, M.T.3    Wetmore, S.D.4
  • 37
    • 84871017094 scopus 로고    scopus 로고
    • Glycosidic Bond Cleavage in Deoxynucleotides: Effects of Solvent and the DNA Phosphate Backbone in the Computational Model
    • Lenz, S. A. P.; Kellie, J. L.; Wetmore, S. D. Glycosidic Bond Cleavage in Deoxynucleotides: Effects of Solvent and the DNA Phosphate Backbone in the Computational Model J. Phys. Chem. B 2012, 116 (49) 14275-14284 10.1021/jp3096677
    • (2012) J. Phys. Chem. B , vol.116 , Issue.49 , pp. 14275-14284
    • Lenz, S.A.P.1    Kellie, J.L.2    Wetmore, S.D.3
  • 38
    • 84886780046 scopus 로고    scopus 로고
    • Hydrolysis of the Damaged Deoxythymidine Glycol Nucleoside and Comparison to Canonical DNA
    • Navarro-Whyte, L.; Kellie, J. L.; Lenz, S. A. P.; Wetmore, S. D. Hydrolysis of the Damaged Deoxythymidine Glycol Nucleoside and Comparison to Canonical DNA Phys. Chem. Chem. Phys. 2013, 15 (44) 19343-19352 10.1039/c3cp53217h
    • (2013) Phys. Chem. Chem. Phys. , vol.15 , Issue.44 , pp. 19343-19352
    • Navarro-Whyte, L.1    Kellie, J.L.2    Lenz, S.A.P.3    Wetmore, S.D.4
  • 39
    • 84919372509 scopus 로고    scopus 로고
    • Computational Investigation of Glycosylase and β-Lyase Activity Facilitated by Proline: Applications to Fpg and Comparisons to hOgg1
    • Sowlati-Hashjin, S.; Wetmore, S. D. Computational Investigation of Glycosylase and β-Lyase Activity Facilitated by Proline: Applications to Fpg and Comparisons to hOgg1 J. Phys. Chem. B 2014, 118 (50) 14566-14577 10.1021/jp507783d
    • (2014) J. Phys. Chem. B , vol.118 , Issue.50 , pp. 14566-14577
    • Sowlati-Hashjin, S.1    Wetmore, S.D.2
  • 40
    • 84865973920 scopus 로고    scopus 로고
    • Mechanistic and Conformational Flexibility of the Covalent Linkage Formed during β-Lyase Activity on an AP-Site: Application to hOgg1
    • Kellie, J. L.; Wetmore, S. D. Mechanistic and Conformational Flexibility of the Covalent Linkage Formed During β-Lyase Activity on an AP-Site: Application to hOgg1 J. Phys. Chem. B 2012, 116, 10786 10.1021/jp306344g
    • (2012) J. Phys. Chem. B , vol.116 , pp. 10786
    • Kellie, J.L.1    Wetmore, S.D.2
  • 41
    • 44649165675 scopus 로고    scopus 로고
    • The Effects of Oxidation and Protonation on the N-Glycosidic Bond Stability of 8-Oxo-2′-Deoxyguanosine: DFT Study
    • Zheng, Y.; Xue, Y.; Yan, S. G. The Effects of Oxidation and Protonation on the N-Glycosidic Bond Stability of 8-Oxo-2′-Deoxyguanosine: DFT Study J. Mol. Struct.: THEOCHEM 2008, 860 (1-3) 52-57 10.1016/j.theochem.2008.03.014
    • (2008) J. Mol. Struct.: THEOCHEM , vol.860 , Issue.13 , pp. 52-57
    • Zheng, Y.1    Xue, Y.2    Yan, S.G.3
  • 42
    • 77149157263 scopus 로고    scopus 로고
    • The Influences of Oxidation and Cationization on the N-Glycosidic Bond Stability of 8-Oxo-2′-Deoxyadenosine - A Theoretical Study
    • Zheng, Y.; Xue, Y.; Yan, G. S. The Influences of Oxidation and Cationization on the N-Glycosidic Bond Stability of 8-Oxo-2′-Deoxyadenosine-a Theoretical Study J. Theor. Comput. Chem. 2009, 8 (6) 1253-1264 10.1142/S0219633609005349
    • (2009) J. Theor. Comput. Chem. , vol.8 , Issue.6 , pp. 1253-1264
    • Zheng, Y.1    Xue, Y.2    Yan, G.S.3
  • 43
    • 77957305165 scopus 로고    scopus 로고
    • Theoretical Investigations on the Thermal Decomposition Mechanism of 5-Hydroxy-6-Hydroperoxy-5,6-Dihydrothymidine in Water
    • Chen, Z. Q.; Xue, Y. Theoretical Investigations on the Thermal Decomposition Mechanism of 5-Hydroxy-6-Hydroperoxy-5,6-Dihydrothymidine in Water J. Phys. Chem. B 2010, 114 (39) 12641-12654 10.1021/jp100933d
    • (2010) J. Phys. Chem. B , vol.114 , Issue.39 , pp. 12641-12654
    • Chen, Z.Q.1    Xue, Y.2
  • 44
    • 67651210703 scopus 로고    scopus 로고
    • Theoretical Studies on the Thermodynamics and Kinetics of the N-Glycosidic Bond Cleavage in Deoxythymidine Glycol
    • Chen, Z. Q.; Zhang, C. H.; Xue, Y. Theoretical Studies on the Thermodynamics and Kinetics of the N-Glycosidic Bond Cleavage in Deoxythymidine Glycol J. Phys. Chem. B 2009, 113 (30) 10409-10420 10.1021/jp903334j
    • (2009) J. Phys. Chem. B , vol.113 , Issue.30 , pp. 10409-10420
    • Chen, Z.Q.1    Zhang, C.H.2    Xue, Y.3
  • 45
    • 0142126715 scopus 로고    scopus 로고
    • Human Alkyladenine DNA Glycosylase Uses Acid-Base Catalysis for Selective Excision of Damaged Purines
    • O'Brien, P. J.; Ellenberger, T. Human Alkyladenine DNA Glycosylase Uses Acid-Base Catalysis for Selective Excision of Damaged Purines Biochemistry 2003, 42 (42) 12418-12429 10.1021/bi035177v
    • (2003) Biochemistry , vol.42 , Issue.42 , pp. 12418-12429
    • O'Brien, P.J.1    Ellenberger, T.2
  • 46
    • 0017392934 scopus 로고
    • DNA N-Glycosidases - Properties of Uracil-DNA Glycosidase from Escherichia-Coli
    • Lindahl, T.; Ljungquist, S.; Siegert, W.; Nyberg, B.; Sperens, B. DNA N-Glycosidases-Properties of Uracil-DNA Glycosidase from Escherichia-Coli J. Biol. Chem. 1977, 252 (10) 3286-3294
    • (1977) J. Biol. Chem. , vol.252 , Issue.10 , pp. 3286-3294
    • Lindahl, T.1    Ljungquist, S.2    Siegert, W.3    Nyberg, B.4    Sperens, B.5
  • 47
    • 0019878052 scopus 로고
    • Uracil DNA-Glycosylase from Hela-Cells - General-Properties, Substrate-Specificity and Effect of Uracil Analogs
    • Krokan, H.; Wittwer, C. U. Uracil DNA-Glycosylase from Hela-Cells-General-Properties, Substrate-Specificity and Effect of Uracil Analogs Nucleic Acids Res. 1981, 9 (11) 2599-2614 10.1093/nar/9.11.2599
    • (1981) Nucleic Acids Res. , vol.9 , Issue.11 , pp. 2599-2614
    • Krokan, H.1    Wittwer, C.U.2
  • 48
    • 18644363009 scopus 로고    scopus 로고
    • HUNG2 Is the Major Repair Enzyme for Removal of Uracil from U:A Matches, U:G Mismatches, and U in Single-Stranded DNA, with Hsmug1 as a Broad Specificity Backup
    • Kavli, B.; Sundheim, O.; Akbari, M.; Otterlei, M.; Nilsen, H.; Skorpen, F.; Aas, P. A.; Hagen, L.; Krokan, H. E.; Slupphaug, G. hUNG2 Is the Major Repair Enzyme for Removal of Uracil from U:A Matches, U:G Mismatches, and U in Single-Stranded DNA, with Hsmug1 as a Broad Specificity Backup J. Biol. Chem. 2002, 277 (42) 39926-39936 10.1074/jbc.M207107200
    • (2002) J. Biol. Chem. , vol.277 , Issue.42 , pp. 39926-39936
    • Kavli, B.1    Sundheim, O.2    Akbari, M.3    Otterlei, M.4    Nilsen, H.5    Skorpen, F.6    Aas, P.A.7    Hagen, L.8    Krokan, H.E.9    Slupphaug, G.10
  • 49
    • 0034086023 scopus 로고    scopus 로고
    • Thymine-DNA Glycosylase and G to a Transition Mutations at CpG Sites
    • Waters, T. R.; Swann, P. F. Thymine-DNA Glycosylase and G to a Transition Mutations at CpG Sites Mutat. Res., Rev. Mutat. Res. 2000, 462 (2-3) 137-147 10.1016/S1383-5742(00)00031-4
    • (2000) Mutat. Res., Rev. Mutat. Res. , vol.462 , Issue.23 , pp. 137-147
    • Waters, T.R.1    Swann, P.F.2
  • 50
    • 0036667452 scopus 로고    scopus 로고
    • Substrate Recognition by a Family of Uracil-DNA Glycosylases: UNG, MUG, and TDG
    • Liu, P. F.; Burdzy, A.; Sowers, L. C. Substrate Recognition by a Family of Uracil-DNA Glycosylases: UNG, MUG, and TDG Chem. Res. Toxicol. 2002, 15 (8) 1001-1009 10.1021/tx020030a
    • (2002) Chem. Res. Toxicol. , vol.15 , Issue.8 , pp. 1001-1009
    • Liu, P.F.1    Burdzy, A.2    Sowers, L.C.3
  • 51
    • 0038475941 scopus 로고    scopus 로고
    • Mismatch Repair in Methylated DNA - Structure and Activity of the Mismatch-Specific Thymine Glycosylase Domain of Methyl-CpG-Binding Protein Mbd4
    • Wu, P. Y.; Qiu, C.; Sohail, A.; Zhang, X.; Bhagwat, A. S.; Cheng, X. D. Mismatch Repair in Methylated DNA-Structure and Activity of the Mismatch-Specific Thymine Glycosylase Domain of Methyl-CpG-Binding Protein Mbd4 J. Biol. Chem. 2003, 278 (7) 5285-5291 10.1074/jbc.M210884200
    • (2003) J. Biol. Chem. , vol.278 , Issue.7 , pp. 5285-5291
    • Wu, P.Y.1    Qiu, C.2    Sohail, A.3    Zhang, X.4    Bhagwat, A.S.5    Cheng, X.D.6
  • 52
    • 0346434114 scopus 로고    scopus 로고
    • Probing the Requirements for Recognition and Catalysis in Fpg and MutY with Nonpolar Adenine Isosteres
    • Francis, A. W.; Helquist, S. A.; Kool, E. T.; David, S. S. Probing the Requirements for Recognition and Catalysis in Fpg and MutY with Nonpolar Adenine Isosteres J. Am. Chem. Soc. 2003, 125 (52) 16235-16242 10.1021/ja0374426
    • (2003) J. Am. Chem. Soc. , vol.125 , Issue.52 , pp. 16235-16242
    • Francis, A.W.1    Helquist, S.A.2    Kool, E.T.3    David, S.S.4
  • 53
    • 37249019710 scopus 로고    scopus 로고
    • Unnatural Substrates Reveal the Importance of 8-Oxoguanine for in Vivo Mismatch Repair by MutY
    • Livingston, A. L.; O'Shea, V. L.; Kim, T.; Kool, E. T.; David, S. S. Unnatural Substrates Reveal the Importance of 8-Oxoguanine for in Vivo Mismatch Repair by MutY Nat. Chem. Biol. 2008, 4 (1) 51-58 10.1038/nchembio.2007.40
    • (2008) Nat. Chem. Biol. , vol.4 , Issue.1 , pp. 51-58
    • Livingston, A.L.1    O'Shea, V.L.2    Kim, T.3    Kool, E.T.4    David, S.S.5
  • 54
    • 34347264416 scopus 로고    scopus 로고
    • Substrate Specificity of Fpg (MutM) and hOgg1, Two Repair Glycosylases
    • Hamm, M. L.; Gill, T. J.; Nicolson, S. C.; Summers, M. R. Substrate Specificity of Fpg (MutM) and hOgg1, Two Repair Glycosylases J. Am. Chem. Soc. 2007, 129 (25) 7724-7725 10.1021/ja0716453
    • (2007) J. Am. Chem. Soc. , vol.129 , Issue.25 , pp. 7724-7725
    • Hamm, M.L.1    Gill, T.J.2    Nicolson, S.C.3    Summers, M.R.4
  • 55
    • 80052329330 scopus 로고    scopus 로고
    • Structural, Thermodynamic, and Kinetic Basis for the Activities of Some Nucleic Acid Repair Enzymes
    • Nevinsky, G. A. Structural, Thermodynamic, and Kinetic Basis for the Activities of Some Nucleic Acid Repair Enzymes J. Mol. Recognit. 2011, 24 (4) 656-677 10.1002/jmr.1096
    • (2011) J. Mol. Recognit. , vol.24 , Issue.4 , pp. 656-677
    • Nevinsky, G.A.1
  • 56
    • 0032538337 scopus 로고    scopus 로고
    • Crystal Structure of a Human Alkylbase-DNA Repair Enzyme Complexed to DNA: Mechanisms for Nucleotide Flipping and Base Excision
    • Lau, A. Y.; Scharer, O. D.; Samson, L.; Verdine, G. L.; Ellenberger, E. Crystal Structure of a Human Alkylbase-DNA Repair Enzyme Complexed to DNA: Mechanisms for Nucleotide Flipping and Base Excision Cell 1998, 95 (2) 249-258 10.1016/S0092-8674(00)81755-9
    • (1998) Cell , vol.95 , Issue.2 , pp. 249-258
    • Lau, A.Y.1    Scharer, O.D.2    Samson, L.3    Verdine, G.L.4    Ellenberger, E.5
  • 57
    • 1342304229 scopus 로고    scopus 로고
    • Structural Basis for Removal of Adenine Mispaired with 8-Oxoguanine by MutY Adenine DNA Glycosylase
    • Fromme, J. C.; Banerjee, A.; Huang, S. J.; Verdine, G. L. Structural Basis for Removal of Adenine Mispaired with 8-Oxoguanine by MutY Adenine DNA Glycosylase Nat. Mater. 2004, 427 (6975) 652-656 10.1038/nature02306
    • (2004) Nat. Mater. , vol.427 , Issue.6975 , pp. 652-656
    • Fromme, J.C.1    Banerjee, A.2    Huang, S.J.3    Verdine, G.L.4
  • 58
    • 49749106226 scopus 로고    scopus 로고
    • Uracil DNA Glycosylase: Revisiting Substrate-Assisted Catalysis by DNA Phosphate Anions
    • Parker, J. B.; Stivers, J. T. Uracil DNA Glycosylase: Revisiting Substrate-Assisted Catalysis by DNA Phosphate Anions Biochemistry 2008, 47 (33) 8614-8622 10.1021/bi800854g
    • (2008) Biochemistry , vol.47 , Issue.33 , pp. 8614-8622
    • Parker, J.B.1    Stivers, J.T.2
  • 59
    • 0034686760 scopus 로고    scopus 로고
    • Transition-State Analysis for Depurination of DNA by Ricin A-Chain
    • Chen, X.-Y.; Berti, P. J.; Schramm, V. L. Transition-State Analysis for Depurination of DNA by Ricin A-Chain J. Am. Chem. Soc. 2000, 122 (28) 6527-6534 10.1021/ja992751a
    • (2000) J. Am. Chem. Soc. , vol.122 , Issue.28 , pp. 6527-6534
    • Chen, X.-Y.1    Berti, P.J.2    Schramm, V.L.3
  • 60
    • 79952189947 scopus 로고    scopus 로고
    • On the Mechanism of the N-Glycosydic Bond Hydrolysis of 2′-Deoxyguanosine: Insights from First Principles Calculations
    • Rios-Font, R.; Bertran, J.; Sodupe, M.; Rodriguez-Santiago, L. On the Mechanism of the N-Glycosydic Bond Hydrolysis of 2′-Deoxyguanosine: Insights from First Principles Calculations Theor. Chem. Acc. 2011, 128 (4-6) 619-626 10.1007/s00214-010-0826-3
    • (2011) Theor. Chem. Acc. , vol.128 , Issue.46 , pp. 619-626
    • Rios-Font, R.1    Bertran, J.2    Sodupe, M.3    Rodriguez-Santiago, L.4
  • 61
    • 0014514426 scopus 로고
    • Uncatalyzed Hydrolysis of Deoxyuridine, Thymidine, and 5-Bromodeoxyuridine
    • Shapiro, R.; Kang, S. Uncatalyzed Hydrolysis of Deoxyuridine, Thymidine, and 5-Bromodeoxyuridine Biochemistry 1969, 8 (5) 1806-1810 10.1021/bi00833a004
    • (1969) Biochemistry , vol.8 , Issue.5 , pp. 1806-1810
    • Shapiro, R.1    Kang, S.2
  • 62
    • 0001381895 scopus 로고
    • Acid-Catalyzed Solvolysis of Pyrimidine Nucleosides
    • Garrett, E. R.; Seydel, J. K.; Sharpen, A. J. Acid-Catalyzed Solvolysis of Pyrimidine Nucleosides J. Org. Chem. 1966, 31 (7) 2219-2227 10.1021/jo01345a033
    • (1966) J. Org. Chem. , vol.31 , Issue.7 , pp. 2219-2227
    • Garrett, E.R.1    Seydel, J.K.2    Sharpen, A.J.3
  • 63
    • 0015753524 scopus 로고
    • Heat-Induced Depyrimidination of Deoxyribonucleic Acid in Neutral Solution
    • Lindahl, T.; Karlstrom, O. Heat-Induced Depyrimidination of Deoxyribonucleic Acid in Neutral Solution Biochemistry 1973, 12 (25) 5151-5154 10.1021/bi00749a020
    • (1973) Biochemistry , vol.12 , Issue.25 , pp. 5151-5154
    • Lindahl, T.1    Karlstrom, O.2
  • 64
    • 36749040231 scopus 로고    scopus 로고
    • Rates of Spontaneous Disintegration of DNA and the Rate Enhancements Produced by DNA Glycosylases and Deaminases
    • Schroeder, G. K.; Wolfenden, R. Rates of Spontaneous Disintegration of DNA and the Rate Enhancements Produced by DNA Glycosylases and Deaminases Biochemistry 2007, 46 (47) 13638-13647 10.1021/bi701480f
    • (2007) Biochemistry , vol.46 , Issue.47 , pp. 13638-13647
    • Schroeder, G.K.1    Wolfenden, R.2
  • 66
    • 66349120487 scopus 로고    scopus 로고
    • Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions
    • Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions J. Phys. Chem. B 2009, 113 (18) 6378-6396 10.1021/jp810292n
    • (2009) J. Phys. Chem. B , vol.113 , Issue.18 , pp. 6378-6396
    • Marenich, A.V.1    Cramer, C.J.2    Truhlar, D.G.3
  • 67
    • 0015493356 scopus 로고
    • Acidic Hydrolysis of Deoxycytidine and Deoxyuridine Derivatives. General Mechanism of Deoxyribonucleoside Hydrolysis
    • Shapiro, R.; Danzig, M. Acidic Hydrolysis of Deoxycytidine and Deoxyuridine Derivatives. General Mechanism of Deoxyribonucleoside Hydrolysis Biochemistry 1972, 11 (1) 23-29 10.1021/bi00751a005
    • (1972) Biochemistry , vol.11 , Issue.1 , pp. 23-29
    • Shapiro, R.1    Danzig, M.2
  • 69
    • 0032544198 scopus 로고    scopus 로고
    • Misincorporation of 2′-Deoxyoxanosine 5′-Triphosphate by DNA Polymerases and Its Implication for Mutagenesis
    • Suzuki, T.; Yoshida, M.; Yamada, M.; Ide, H.; Kobayashi, M.; Kanaori, K.; Tajima, K.; Makino, K. Misincorporation of 2′-Deoxyoxanosine 5′-Triphosphate by DNA Polymerases and Its Implication for Mutagenesis Biochemistry 1998, 37 (33) 11592-11598 10.1021/bi980971f
    • (1998) Biochemistry , vol.37 , Issue.33 , pp. 11592-11598
    • Suzuki, T.1    Yoshida, M.2    Yamada, M.3    Ide, H.4    Kobayashi, M.5    Kanaori, K.6    Tajima, K.7    Makino, K.8
  • 70
  • 71
    • 0037452513 scopus 로고    scopus 로고
    • Structural and Biochemical Exploration of a Critical Amino Acid in Human 8-Oxoguanine Glycosylase
    • Norman, D. P. G.; Chung, S. J.; Verdine, G. L. Structural and Biochemical Exploration of a Critical Amino Acid in Human 8-Oxoguanine Glycosylase Biochemistry 2003, 42 (6) 1564-1572 10.1021/bi026823d
    • (2003) Biochemistry , vol.42 , Issue.6 , pp. 1564-1572
    • Norman, D.P.G.1    Chung, S.J.2    Verdine, G.L.3
  • 72
    • 0035900960 scopus 로고    scopus 로고
    • Coupling of Substrate Recognition and Catalysis by a Human Base-Excision DNA Repair Protein
    • Norman, D. P. G.; Bruner, S. D.; Verdine, G. L. Coupling of Substrate Recognition and Catalysis by a Human Base-Excision DNA Repair Protein J. Am. Chem. Soc. 2001, 123 (2) 359-360 10.1021/ja003144m
    • (2001) J. Am. Chem. Soc. , vol.123 , Issue.2 , pp. 359-360
    • Norman, D.P.G.1    Bruner, S.D.2    Verdine, G.L.3
  • 73
    • 0034708226 scopus 로고    scopus 로고
    • Structural Basis for Recognition and Repair of the Endogenous Mutagen 8-Oxoguanine in DNA
    • Bruner, S. D.; Norman, D. P. G.; Verdine, G. L. Structural Basis for Recognition and Repair of the Endogenous Mutagen 8-Oxoguanine in DNA Nature 2000, 403 (6772) 859-866 10.1038/35002510
    • (2000) Nature , vol.403 , Issue.6772 , pp. 859-866
    • Bruner, S.D.1    Norman, D.P.G.2    Verdine, G.L.3
  • 74
    • 0344875199 scopus 로고    scopus 로고
    • Human Thymine DNA Glycosylase (TDG) and Methyl-Cpg-Binding Protein 4 (MBD4) Excise Thymine Glycol (Tg) from a Tg:G Mispair
    • Yoon, J.-H.; Iwai, S.; O'Connor, T. R.; Pfeifer, G. P. Human Thymine DNA Glycosylase (TDG) and Methyl-Cpg-Binding Protein 4 (MBD4) Excise Thymine Glycol (Tg) from a Tg:G Mispair Nucleic Acids Res. 2003, 31 (18) 5399-5404 10.1093/nar/gkg730
    • (2003) Nucleic Acids Res. , vol.31 , Issue.18 , pp. 5399-5404
    • Yoon, J.-H.1    Iwai, S.2    O'Connor, T.R.3    Pfeifer, G.P.4
  • 76
    • 0034721829 scopus 로고    scopus 로고
    • Separating Substrate Recognition from Base Hydrolysis in Human Thymine DNA Glycosylase by Mutational Analysis
    • Hardeland, U.; Bentele, M.; Jiricny, J.; Schär, P. Separating Substrate Recognition from Base Hydrolysis in Human Thymine DNA Glycosylase by Mutational Analysis J. Biol. Chem. 2000, 275 (43) 33449-33456 10.1074/jbc.M005095200
    • (2000) J. Biol. Chem. , vol.275 , Issue.43 , pp. 33449-33456
    • Hardeland, U.1    Bentele, M.2    Jiricny, J.3    Schär, P.4
  • 77
    • 79952074754 scopus 로고    scopus 로고
    • Dynamics of Uracil and 5-Fluorouracil in DNA
    • Parker, J. B.; Stivers, J. T. Dynamics of Uracil and 5-Fluorouracil in DNA Biochemistry 2011, 50 (5) 612-617 10.1021/bi101536k
    • (2011) Biochemistry , vol.50 , Issue.5 , pp. 612-617
    • Parker, J.B.1    Stivers, J.T.2
  • 79
    • 0029835339 scopus 로고    scopus 로고
    • Catalytic Mechanism and DNA Substrate Recognition of Escherichia Coli Muty Protein
    • Lu, A. L.; Yuen, D. S.; Cillo, J. Catalytic Mechanism and DNA Substrate Recognition of Escherichia Coli Muty Protein J. Biol. Chem. 1996, 271 (39) 24138-24143 10.1074/jbc.271.39.24138
    • (1996) J. Biol. Chem. , vol.271 , Issue.39 , pp. 24138-24143
    • Lu, A.L.1    Yuen, D.S.2    Cillo, J.3
  • 80
    • 0035750483 scopus 로고    scopus 로고
    • Repair of Oxidative DNA Damage: Mechanisms and Functions
    • Lu, A. L.; Li, X.; Gu, Y.; Wright, P. M.; Chang, D.-Y. Repair of Oxidative DNA Damage: Mechanisms and Functions Cell Biochem. Biophys. 2001, 35 (2) 141-170 10.1385/CBB:35:2:141
    • (2001) Cell Biochem. Biophys. , vol.35 , Issue.2 , pp. 141-170
    • Lu, A.L.1    Li, X.2    Gu, Y.3    Wright, P.M.4    Chang, D.-Y.5
  • 82
    • 0346435086 scopus 로고    scopus 로고
    • DNA Lesion Recognition by the Bacterial Repair Enzyme MutM
    • Fromme, J. C.; Verdine, G. L. DNA Lesion Recognition by the Bacterial Repair Enzyme MutM J. Biol. Chem. 2003, 278 (51) 51543-51548 10.1074/jbc.M307768200
    • (2003) J. Biol. Chem. , vol.278 , Issue.51 , pp. 51543-51548
    • Fromme, J.C.1    Verdine, G.L.2
  • 83
    • 0028933306 scopus 로고
    • Properties of a Recombinant Human Uracil-DNA Glycosylase from the UNG Gene and Evidence That UNG Encodes the Major Uracil-DNA Glycosylase
    • Slupphaug, G.; Eftedal, I.; Kavli, B.; Bharati, S.; Helle, N. M.; Haug, T.; Levine, D. W.; Krokan, H. E. Properties of a Recombinant Human Uracil-DNA Glycosylase from the UNG Gene and Evidence That UNG Encodes the Major Uracil-DNA Glycosylase Biochemistry 1995, 34 (1) 128-138 10.1021/bi00001a016
    • (1995) Biochemistry , vol.34 , Issue.1 , pp. 128-138
    • Slupphaug, G.1    Eftedal, I.2    Kavli, B.3    Bharati, S.4    Helle, N.M.5    Haug, T.6    Levine, D.W.7    Krokan, H.E.8
  • 84
    • 0034601807 scopus 로고    scopus 로고
    • Escherichia Coli Uracil DNA Glycosylase: NMR Characterization of the Short Hydrogen Bond from His187 to Uracil O2
    • Drohat, A. C.; Stivers, J. T. Escherichia Coli Uracil DNA Glycosylase: NMR Characterization of the Short Hydrogen Bond from His187 to Uracil O2 Biochemistry 2000, 39 (39) 11865-11875 10.1021/bi000922e
    • (2000) Biochemistry , vol.39 , Issue.39 , pp. 11865-11875
    • Drohat, A.C.1    Stivers, J.T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.